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1  Introduction  

 

Circular disks or plates are among the main engineering components that may be employed in 

both static and dynamic systems, due to e.g., their axisymmetric configuration, minimum 

perimeter, simplest manufacturing technologies and costs, and simplest fitting requirements 

(into another components or supports). On the other hand, in many practical applications, due 

to differences in the design requirements of the top and bottom surfaces of the pale, it is 

necessary to use different material properties for the top and bottom surfaces of the plate. In 

these circumstances, it is advantageous to use functionally graded materials for the plate, to 

prevent any discontinuities in the transverse distributions of the material properties and 

stresses.  

For thin and relatively thin plates, using the higher-order plate theories does not lead to 

pronounced enhancements in comparison to the first-order ones. Some researchers have 

proven that in these cases, results of the higher-order and even the elasticity theories may 
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exhibit more inaccuracies [1], in some situations. For this reason, many researchers have used 

the first-order plate theories, employing adequate shear correction factors to modify the 

computed strain energy of the transverse shear stresses [2-5].     

      The available shear correction factors have mainly been proposed for special transverse 

distributions of the material properties, tractions types, loading conditions, and boundary 

conditions [6]. Mindlin [7] derived two different shear coefficients: one was dependent on 

Poisson’s ratio and the other was a constant. Stephen [8] by matching between the long 

flexural wavelength phase velocity predictions of the second mode of Mindlin finite plate 

theory and the exact Rayleigh-Lamb frequency equation came to a conclusion that the best  

correction factor is due to Mindlin (that includes the Poisson ratio effect). Andrew [9] derived 

a shear correction coefficient for a plate with an infinite spatial extent. Liu and Soh [10] 

proposed two methods for determination of the shear correction factor and proposed the 0.8 

shear correction factor for the homogeneous elastic materials. Kirakosyan [11] introduced an 

extended concept of two correction coefficients for an orthotropic plate subjected to tangential 

shears at the top and bottom surfaces using the energy equivalence principle. Two shear 

correction expressions that account for the influence of the transverse normal stress 

component were derived by Batista [12] where the first was a slightly modified Mindlin 

factor. Sometimes, the shear correction factor concept may be used to impose the continuity 

condition of the transverse stresses at the layer interfaces [13]. The traditional correction 

factors have mainly been derived on the basis of situations where distribution of the 

transverse shear stress is parabolic. In functionally graded plates, this assumption may not 

hold, as the material properties distribution is generally non-uniform and non-linear.  

    In the above mentioned researches, material properties were assumed to be constant within 

each layer. To extend Mindlin’s correction factor to the FGM plates, Efraim and Eisenberger 

[14] replaced Poisson’s ratio with the average Poisson ratio of the mixture. Extending an 

approach previously used for the composite beams, Nguyen et al. [15] proposed shear 

correction factors for the FGM plates using the equivalent shear energy method.  

     The forgoing brief review reveals that the available shear correction factors have mainly 

been developed based on either assuming homogeneous isotropic material properties or 

assuming that no shear tractions are imposed on the top and bottom surfaces of the plate. In 

the present research, a more general case of a circular functionally graded plate subjected to 

simultaneous non-uniform normal and shear tractions at the top and bottom surfaces is 

considered, due to presence of the non-uniform inclined traction at the top surface and a non-

uniform Winkler-Pasternak elastic foundation at the bottom surface of the plate. Instead of 

using the approximate numerical methods, the solutions are derived using a pure analytical 

method. The employed analytical method is the differential transform method (DTM) that is a 

semi-analytical technique that uses Taylor’s series expansion. Employing the DTM enables 

obtaining highly convergent and accurate results and analytical solutions for the differential or 

integro-differential equations [16-18]. By using this method, the governing differential 

equations can be reduced to recurrence relations and the boundary conditions may be 

transformed into a set of algebraic equations. In the present paper, influences of using the 

derived analytical correction factor on results of both the modal and the stress analyses are 

evaluated.  

 

2 Governing equations of motion of the circular functionally graded plate 

 

Consider an FGM circular plate that is resting on a non-uniform two-parameter elastic 

foundation and undergoing non-uniform normal and shear tractions, as shown in Figure (1).  
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Figure 1 Parameters of the functionally graded circular plate and the elastic foundation,  

as well as the adopted coordinate system. 

 

 

Based on the Mindlin first-order shear-deformation plate theory for small deflections, the 

displacement field may be described as follows: 
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where u and w are the radial and transverse displacement components of an arbitrary point of 

the thickness and 0u , 0w , and r are, respectively, the radial and transverse displacements of 

the reference layer (e.g., the mid-layer) and rotation of the radial section. The coordinate z is 

measured from the reference layer and is positive upward. Therefore, the strain components 

may be expressed as: 

0
, 0, ,

, , , ,

, ,

0,

r
r r r r r

z z rz z r r r

u zu
u u z

r r

w u w w




  

  


    

     

 

(2) 

where the comma symbol stands for the partial derivative. 

Therefore, if the functionally graded plate is constructed from linear elastic constituent 

materials, the stress components may be derived from: 
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The governing equations are derived using Hamilton’s equation: 

 
t

dtVUK 0)( 

 

(4) 

Where in increments of the strain energy ( U ), kinetic energy ( K ), and energy of the 

externally applied loads ( V ) are: 
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(5) 

Here,  is the so-called shear correction factor that is usually included in the first-order shear-

deformation theories to correct the strain energy of the resulting transverse shear stresses. An 

accurate derivation procedure is proposed for this factor, in the next section. In Eq. (5), 
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2 31wk k r r    are the non-uniformly distributed normal 

traction and Winkler coefficient of the elastic foundation, respectively, and stq and sbq are, 

respectively, the shear tractions of the top and bottom surfaces of the plate. sk is the Pasternak 

coefficient of the elastic foundation and b is the outer radius of the plate [Figure (1)]. Integrals 

of Eq. (5) may be manipulated further through integration by parts, using the Green-Gauss 

rule to have: 
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(6) 

where,  is the boundary of the plate. Substituting Eq. (6) into Eq. (4) leads to:
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Defining the following symbols for the transverse integrals of the stress and inertia quantities: 
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Equation (7) may be rewritten as: 
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Since Eq. (9) must hold for any arbitrary time interval, it may be concluded that the integrand 

of Eq. (9) has to be zero. On the other hand, since this conclusion must hold for any arbitrary 

values of the displacement increments, terms multiplied by these displacement increments 

should be zero: 
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In the present research, distributions of the top and bottom shear tractions are also considered 

to be non-uniform, to obtain more general results: 
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Assuming that the FGM plate is fabricated from ceramic and metallic materials, variations of 

a representative material property P in the transverse direction may be assumed to be:
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mmcc VPVPP 

 

(12) 

where, the subscripts c and m denote the ceramic and metal, respectively. Also, Vc and Vm , 

the volume fractions of the ceramic and metallic constituent materials, may be related to each 

other as follows:
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The metal volume fraction is assumed to follow a power–law distribution [19]: 
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where g is the positive definite power–law index. From Eqs. (12-14), transverse variations of 

the modulus of elasticity, mass density, and Poisson’s ratio of the resulting mixture may be 

obtained at an arbitrary point as:
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Therefore, based on Eqs. (8,15): 
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3  Distribution of the transverse shear stress according to the 3D elasticity theory 

 

It is known that generally, the traditional approach of using the constitutive-based equations 

for determination of the through-thickness variations of the transverse shear stress does not 

lead to accurate results [20-24], especially when using the firs-order shear-deformation 

theory. In the present section, a general analytical shear correction factor is proposed for 

circular FGM plates subjected to non-uniform normal and shear tractions and resting on non-

uniform Winkler-Pasternak elastic foundations.  

    Based on the three-dimensional theory of elasticity, the equations of motion of the 

axisymmetric circular plate in terms of the stress components may be expressed as:
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where r ,  , and z  are the normal and rz  is the shear stress components. Although the 

radial and transverse inertia body forces resulted from the ( u  and w ) term appeared in 

Eqs. (17,18) may affect the shear correction factor, their effects may be ignored in comparison 

to the transversely applied distributed tractions, especially for the thin plates. This assumption 

has been employed in derivation of all of the available shear correction factors. By 
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substituting the radial and circumferential stress from Eq. (3) into Eq. (17), the equilibrium 

equation in the radial direction necessitates that: 
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Integration of the elasticity equilibrium Eq. (19) across the plate thickness and using the 

following boundary condition,
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By using the boundary condition of the top surface of the plate, 2

0u  can be expressed in 

terms of the shear tractions of the top and bottom layers of the plate. Then, distribution of the 

transverse shear stress may be obtained based on Eq. (21) as 
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( ) ( )
( ) ( ) , 1

hh hz
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h hh h h
z z z

L
F z F z

X F z L z dz Y q q dz
F F F

 
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 

      
       

     

    
    

        
    

    

 

 

(26) 

Based on Eq. (25), 2

r may be expressed in terms of rQ . Substituting the resulting 

expression into Eq. (24), distribution of the transverse shear stress may be written as follows: 

2

2 2 2

( ) ( )
( ) ( ) 1

h
z

r
rz b t

h h h
z z z

L
Q Y F z F z

F z L z
F X F F

  

 
 

 

     
       

     

   
   

       
   
     

(27) 
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4 Derivation of the shear correction factor 

 

The available shear correction factors have been derived for isotropic and homogeneous plate 

with shear tractions. Therefore, they are generally not suitable for heterogeneous functionally 

graded plates with shear tractions or elastic foundations that apply shear tractions (such as the 

present Winkler-Pasternak elastic foundation). Furthermore, since stiffness of the foundation 

of the plate varies in the radial direction, the governing equations of motion differ from those 

of the simple plates. The shear correction factor is determined in the present research base on 

equating of the shear strain energies of the transverse shear stress obtained based of the first-

order plate theory and the three-dimensional theory of elasticity. Moreover, the available 

shear correction factors have mainly been derived based on the assumption of linear through-

thickness distributions for the normal in-plane stresses. Due to transverse variations of the 

material properties across the thickness (e.g., according a power law), this assumption does 

not hold for structures with the transversely graded material properties. In the present 

research, the assumption of linear variations of the in-plane displacement component, that is a 

direct result of Eq. (1), is employed. However, this assumption leads to a linear through-

thickness distribution for the in-plane stresses of the isotropic homogeneous plates. 

    Based on the first-order shear-deformation plate theory (FSDT), distribution of the 

transverse shear stress of the functionally graded plate may be determined from: 

 ( ) ,rz r rG z w   

 

(28) 

By integrating Eq. (28) across the plate thickness, the relevant transverse shear force per unit 

length may be obtained as: 

 
/2 /2

/2 /2

, , ( )

h h

r rz r r

h h

Q dz C w C G z dz 
 

    

 

(29) 

Comparing Eqs. (28,29) leads to the following result: 

rrz Q
C

zG )(


 

(30) 

The strain energy of the transverse shear stress may be calculated using Eq. (6). Substituting 

Eqs.  (27) and (30) into the expression of the strain energy of the transverse shear stress, gives 

the following strain energy expressions that are associated with the three-dimensional theory 

of elasticity and the first-order shear-deformation plate theory, respectively: 

2
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2
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2 2 2

1 1 1 ( ) ( )
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 

       
       

     

    
    

          
    
    

   

 

(31) 

/2 /22 2

2

/2 /2

( )1 1

2 ( ) 2

b h b h

rz r
s

a h a h

G z Q
dz dr dz dr

G z C



 
 


       (32) 

Equating the strain energies appeared in Eqs. (31,32), leads to derivation of the shear 

correction factor: 
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 

   
(33) 

For the special cases where no shear tractions are imposed on the top and bottom surfaces, Eq. 

(33) reduces to the following expression for the shear correction factor: 

(34) 
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     
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    
    
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    
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 

  

If no shear tractions are imposed, the shear correction factor reduces to: 6/5 , for the 

isotropic homogeneous plates. 

5 Analytical solution of the governing equations 

 

By using Taylor’s series expansion, the governing differential equations and the relevant 

boundary conditions of the functionally graded plate may be transformed into a set of 

algebraic equations. Solution of the resulting algebraic system of equations gives the desired 

solution of the problem.  

    The functions 0( ), ( ), and ( )u r w r r are analytic in a domain R and can be represented by 

power series whose centers are located at r=r0.  

   In practical applications, these series have to be used as finite series. Therefore, Eq. (35) 

may be rewritten as 

0 0 0 0

0 0 0

( ) ( ) , ( ) ( ) , ( ) ( )
N N N

k k k

k k k

k k k

u r r r U w r r r W r r r
  

          (36) 

In the present research, the N value is so chosen that ignorable changes occur in the results 

due to further increasing this value. In a free vibration analysis, the mode superposition 

concept may be used to account for the oscillations of the responses: 

0 0 0 0

0 0 0

( , ) ( ) , ( , ) ( ) , ( , ) ( ) ,
N N N

k i t k i t k i t

k k r k

k k k

u r t U r r e w r t W r r e r t r r e  
  

          (37) 

Therefore, the static response is associated with 0  . In the present research, r0=0 is used 

as the center for the Taylor’s series. 

The transformed form of the governing equations of the circular plate may be obtained by 

substituting Eq. (37) into the governing equation (10). Performing some manipulations on the 

resulting equations, the transformed form of the governing equations may be obtained as 

follows:  

0 0 0 0

0 0 0

( ) ( ) , ( ) ( ) , ( ) ( )k k k

k k k

k k k

u r r r U w r r r W r r r
  

  

          (35) 
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(40) 

The most common edge conditions of the circular plates may be expressed as follows: 

 Clamped edge: 

0, 0, 0,ru w  

 

(41) 

 Simply supported edge: 

0, 0, 0,r ru N M  

 

(42) 

 Free edge: 

,0, 0, 0,r r r s rN M Q k w   

 

(43) 

By substituting Eq. (37) into Eqs. (41-43), the transformed forms of the boundary 

conditions (around  r0=0 ) are obtained:  

 Clamped edge:
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 Simply supported edge:  
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 (45) 

 Free edge: 

 
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Based on Eqs. (44-46), three boundary conditions are available along the outer edge (r=b), 

that may be employed in solution of Eq. (38-40) and consequently, determination of u0,  and 

w. Moreover, three additional conditions are required that may be extracted from the 

regularity conditions at the center of the moderately thick circular plate:
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By substituting , , and (2 2)i i iU W i N     from Eqs. (38-40) into Eqs. (44-46) and 

applying the regularity conditions (48), the final system of equations will have the following 

form:  
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221
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21
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11
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NNN
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



 (49) 

For static bending analysis, 02  and 1 0,U W and 1 may be determined by solving the 

mentioned system of equations. On the other hand, for free vibration analysis of the circular 

plate, 0321  FFF and existence of a non-trivial solution for the resulting system of 

equations requires that:  

( ) ( ) ( )

11 12 13

( ) ( ) ( )

21 22 23

( ) ( ) ( )

31 32 33

0

N N N

N N N

N N N

  
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  

  (50) 

6 Results and discussions 

 

6.1 Verification of the results and evaluation of the resulting enhancements 

 

Since general correction factors that may be used for functionally graded plates have not been 

proposed so far, especially for the circular plates, results of present section are compared with 

results of the first-order shear deformation theories that have used Mindlin’s correction 

factors. However, more but different verifications may be found in the next sections. In this 

regard, aluminium/alumina circular plates with the following material and geometric 

specifications are considered: 
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3 370 , 2700 / , 0.33, 380 , 3800 / ,

0.26, 1 ,

m m m c c

c

E GPa kg m E GPa kg m

b m

  



    

 
 

Therefore, results associated with g=0 correspond to a pure metallic plate. Results are 

extracted for various thickness ratios ( / 0.01,0.1,0.2h h b  ) to include the very thin, 

relatively thin, and relatively thick plates. Gupta et al. [25] have considered the same problem 

but used an exponential law for variations of the material properties and employed 2 /12   

Mindlin’s correction factor that is suitable for a plate with infinite extent.  Hosseini Hashemi 

et al. [26] have used the traditional 5 / 6   Mindlin shear correction factor. Both references 

used Mindlin first-order shear-deformation plate theory. For this reason, present results for the 

first two natural frequencies of the plate are compared with the results correspond to g=0 of 

Gupta et al. [25] and g=1 of Hosseini Hashemi et al. [26] in Table (1). As reference [25], 

results of Table (1) are extracted for the simply supported, clamped, and free edge conditions. 

As may be expected, the natural frequencies increase with increasing the volume fraction 

index. The results are in a good agreement. The maximum discrepancies have occurred 

between present results and results of reference [26], for the simply supported plates. 

However, the maximum relative difference is less than 4%. Indeed, the mentioned 

discrepancies are deviations of results of reference [26] with respect to present results and 

results of reference [25].    

 
Table 1 A comparison among the first two natural frequencies of the plate, for various thickness ratios, volume 

fraction indices, and edge conditions. 

 Edge 

condition 
/h h b   g=0 g=1 g=2 g=5 g=10 g=100 

Present Ref. [25] Present Ref. [26] 

Clamped 0.01 
1  25.045 --- 37.552 37.552 40.003 43.203 48.677 48.677 

2  97.439 --- 146.11 146.11 155.65 168.10 189.38 189.38 

0.1 
1  243.85 243.81 366.88 366.91 391.34 422.49 474.13 474.13 

2  895.37 894.53 1355.4 1355.7 1449.7 1564.2 1742.2 1742.2 

0.2 
1  453.67 453.21 688.45 688.62 736.78 794.65  882.93 882.93 

2  1485.2 1481.7 2287.1 2288.4 2463.6 2653.3 2895.5 2895.5 

Simply  

supported 

0.01 
1  12.101 --- 19.373 18.144 20.237 21.229 23.521 23.521 

2  72.843 --- 110.23 109.22 117.08 125.94 141.58 141.58 

0.1 
1  120.02 120.03 192.19 180.08 200.88 210.76 233.31 233.31 

2  692.87 692.52 1052.3 1044.0 1120.9 1205.9 1347.5 1347.5 

0.2 
1  234.37 234.29 375.55 352.38 393.17 412.73 455.73 455.73 

2  1227.7 1225.9 1878.7 1869.0 2012.9 2166.5 2390.7 2390.7 

Free 0.01 
1  22.075 --- 33.097 --- 35.257 38.078 39.978 42.904 

2  94.209 --- 141.25 --- 150.48 162.52 170.62 183.10 

0.1 
1  217.49 217.47 326.25 --- 347.81 375.72 394.31 422.77 

2  884.28 883.83 1331.5 --- 1422.9 1537.0 1610.2 1719.9 

0.2 
1  417.28 417.11 626.72 --- 669.53 723.65 758.71 811.46 

2  1528.1 1525.9 2314.6 --- 2490.4 2693.0 2810.6 2976.1 

To simultaneously verify the results and evaluate effects of the proposed shear correction 

factor on enhancing the static results, a titanium-zirconica FGM circular plate with the 
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following specifications, subjected to a uniformly distributed transverse load is considered as 

Reddy et al. [27] and Saidi et al. [28]:  

2

0 40 / , / 0.396, 0.288, 1 ,m cq N m E E b m     

In this case, g=0 denotes a pure ceramic plate. References [27] and [28] have used a FSDT 

with a 5 / 6   correction factor and a third-order shear-deformation theory (TSDT), 

respectively. Present results for the dimensionless maximum lateral deflection of the plate 

(  4
064 /cw D w q b ) are compared with results of references [27] and [28] in Table (2), for 

various thickness ratios, volume fraction indices, and simply supported and clamped edge 

conditions. As may be noted from results appeared in Table (2), present results are closer to 

results of the third-order shear-deformation theory. It is important to remind that since the 

order of the transverse shear stress is much lower than that of the bending stresses, the 

relevant effects on the results are ignorable. Therefore, even ignorable differences in the 

results may reflect high effects of the proposed shear correction factors. In Figure (2), 3D 

plots are presented for the transverse and radial distributions of the lateral deflection of plates 

with clamped and simply supported edge conditions (q0=100kPa, g=1, and 0.2h  ), for a 

better visualization.   
 

Table 2 A comparison among the maximum non-dimensional deflections  4
064 /cw D w q b of FG circular 

plates under uniform transverse pressures. 
 

Edge 

condition 

g Source Thickness radius ratio ( h ) 

0.05 0.1 0.15 0.2 

Clamped 0 

 

FSDT [27] 2.554 

2.553 

2.554 

2.639 

2.638 

2.638 

2.781 

2.779 

2.781 

2.979 

2.975 

2.979 
TSDT [28] 

Present 

2 FSDT [27] 1.402 

1.402 

1.402 

1.444 

1.443 

1.443 

1.515 

1.511 

1.512 

1.613 

1.606 

1.608 
TSDT [28] 

Present 

6 FSDT [27] 1.220 

1.220 

1.220 

1.257 

1.255 

1.255 

1.318 

1.314 

1.315 

1.404 

1.397 

1.398 
TSDT [28] 

Present 

10 FSDT [27] 1.155 

1.154 

1.154 

1.190 

1.189 

1.189 

1.250 

1.247 

1.248 

1.333 

1.327 

1.329 
TSDT [28] 

Present 

100 FSDT [27] 1.029 

1.029 

1.029 

1.063 

1.063 

1.063 

1.119 

1.119 

1.119 

1.199 

1.197 

1.198 
TSDT [28] 

Present 

Simply 

supported  

0 

 

FSDT [27] 10.396 

10.394 

10.396 

10.481 

10.479 

10.481 

10.623 

10.621 

10.623 

10.822 

10.820 

10.821 
TSDT [28] 

Present 

2 FSDT [27] 5.497 

5.497 

5.497 

5.539 

5.538 

5.538 

5.610 

5.607 

5.607 

5.708 

5.703 

5.703 
TSDT [28] 

Present 

6 FSDT [27] 4.909 

4.909 

4.909 

4.946 

4.944 

4.945 

5.007 

5.004 

5.004 

5.094 

5.087 

5.088 
TSDT [28] 

Present 

10 FSDT [27] 4.677 

4.676 

4.676 

4.712 

4.711 

4.711 

4.772 

4.769 

4.770 

4.855 

4.851 

4.851 
TSDT [28] 

Present 

100 FSDT [27] 4.189 

4.189 

4.189 

4.223 

4.223 

4.223 

4.280 

4.279 

4.279 

4.359 

4.358 

4.359 
TSDT [28] 

Present 
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(a)                                                                                                 (b) 

Figure 2 Through-thickness distribution of the lateral deflection of a: (a) clamped and (b) simply supported 

FGM plate subjected uniform normal load (q0=100kPa, g=1, and 0.2h  ). 

 

6.2 Influence of the shear correction factor on the trough-thickness distribution of the 

transverse shear stress  

 

To ensure that the proposed shear correction factor and the elasticity-based modifications 

employed to determine the transverse shear stress have enhanced the results, distribution of 

the transverse shear stress is plotted for the mid-section (r=b/2) of the mentioned titanium-

zirconica FGM circular plate. This distribution is compared with those obtained based on the 

third-order shear-deformation [29] and elasticity [30] theories in Figure (3), for g=0.5 and 2.  

 

In Figure (3), the dimensionless transverse shear stress ( /rz rz q  ) is plotted versus the 

dimensionless transverse coordinate ( /z z h ). Although the constitutive-equation-based 

distribution of the transverse shear stress according to the first-order shear-deformation 

theories is a uniform and constant one (and therefore, an erroneous one), present distribution 

is both non-uniform and non-linear, due to using the elasticity correction. Furthermore, while 

results of the third-order shear-deformation theory exhibit some deviations, results of the 

present first-order approach with elasticity-based correction are almost coincident with the 

elasticity results. This comparison confirms that determining the transverse stresses based on 

the equilibrium requirements leads to more accurate results in comparison to the constitutive-

equations-based approach.  
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(a) 

 
(b) 

Figure 3 A comparison among the through-thickness distributions of the dimensionless transverse shear stress of 

a simply supported FGM plate subjected to a uniform transverse pressure, predicted by the present approach and 

the third-order shear-deformation (TST) [29] and elasticity (exact) [30] theories 

( / , / , 0.5 , /rz rz q z z h r b h h b     ): (a) g=0.5 and (b) g=2. 

 

 

 

6.3 Effects of the non-uniformity of the elastic foundation and the applied tractions 

 

The first two natural frequencies of aluminium/alumina plates with linear variations of the 

material properties (g=1) and uniform Winkler elastic foundations are reported in Table (3), 

for various edge conditions and thickness ratios and compared with those of the three-

dimensional elasticity theory. The elasticity results are extracted form ABAQUS software, 

using the 3D quadratic eight-node axisymmetric elements (CAX8R). As expected, since the 

elastic foundation increase the stiffness of the structure, the natural frequencies have increased 

[in comparison with results of Table (1)] due to using Winkler-type elastic foundations. 

Furthermore, effects of the non-uniformity of the Winkler-type and the Pasternak-type elastic 
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foundations are investigated and the relevant results are given in Table (3). It is evident that 

the natural frequencies increase further as a Pasternak-type elastic foundation is added. 

 

 
Table 3 Influence of the elastic foundation on the first two natural frequencies (Hz) of the aluminium/alumina 

FG circular with various boundary conditions and thickness ratios (g=1). 

Edge 

condition 
h  

 ks=0  ks=
710  

kw= 810  kw= 
810 (1 )r  

kw= 
8 210 (1 )r r   

 kw= 810  kw= 
810 (1 )r  

kw= 
8 210 (1 )r r   Present FEM(3D)  

Clamped 0.1 
1  377.0 378.23 380.67 382.27  383.97 387.58 389.15 

2  1357.8 1364.8 1359.1 1359.9  1366.9 1368.2 1369.0 

0.2 
1  691.09 693.21 692.1 692.55  692.93 693.94 694.39 

2  2290.2 2317.2 2290.6 2290.8  2292.7 2293.1 2293.34 

0.3 
1  946.35 956.59 946.85 947.07  947.21 947.71 947.93 

2  2844.7 2898.4 2845.0 2845.1  2846.0 2846.3 2846.4 

Simply  

supported 

0.1 
1  209.68 207.65 217.49 221.43  220.13 227.58 231.35 

2  1053.9 1051.8 1055.6 1056.8  1064.8 1066.5 1067.6 

0.2 
1  377.12 363.83 379.29 380.42  380.04 382.20 383.32 

2  1878.3 1847.6 1878.7 1879.0  1881.2 1881.7 1882.0 

0.3 
1  541.11 522.34 542.11 542.63  542.45 543.45 543.96 

2  2456.8 2331.8 2457.1 2457.2  2458.3 2458.5 2458.7 

Free 0.1 
1  337.14 337.41 343.67 348.71  355.22 361.37 366.10 

2  1333.3 1336.9 1334.7 1335.7  1348.08 1349.5 1350.4 

0.2 
1  628.62 626.92 630.29 631.57  633.35 635.01 636.28 

2  2317.2 2333.9 2317.5 2317.8  2320.9 2321.3 2321.5 

0.3 
1  886.92 889.98 887.66 888.23  889.01 889.75 890.32 

2  2787.0 2782.1 2787.1 2787.2  2787.3 2787.4 2787.5 

 

Results of Table (3) reveal that the natural frequencies associated with the free edge condition 

are smaller than those of the clamped plate and both are smaller than the natural frequencies 

of plates with simply supported edges and similar other specifications.    

    Influences of imposing simultaneous normal and shear stresses and their non-uniformities 

on radial distribution of the lateral deflection of the clamped and simply supported 

aluminium/alumina FGM plates (g=1 and 0.2h  ) is investigated in Figure (4). These results 

show that imposing shear tractions on the top surface of the FGM plate, reduces the lateral 

deflection of the plate. Generally, the overall effect of these shear tractions resembles effects 

of a tensile radial tension; so that both lead to lower lateral deflections.   
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(a) 

 
(b) 

Figure 4 Influences of the normal and shear stresses and their non-uniformities on radial  

Distribution  of the lateral deflection of the: (a) clamped and (b)  

simply supported aluminium/alumina FGM plates (g=1, 0.2h  ). 

 

 

7 Conclusions 

 

In the present paper, an analytical shear correction factor that is suitable for functionally 

graded plates (with heterogeneous material properties) that are subjected to non-uniform 

normal and shear tractions and resting on elastic foundations, is proposed for the first time. 

This shear correction factor is the most general one, because it considers many issues that 

have not been treated so far. The shear factor is determined based on equivalence the strain 

energies of the transverse shear, using elasticity-based corrections. The Taylor transformation 

technique is employed to analytically solve the governing equations. In contrast to the 

available first-order formulations, the resulting through-thickness distribution of the shear 

stress is not uniform; it is bot non-uniform and non-linear. The verification examples have 

revealed accuracy of the present formulation; so that this accuracy is sometime higher than 
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that of the third-order shear-deformation theories. Effects of the non-uniform Winkler-

Pasternak elastic foundations are discussed in detail. Very rare researches may be found in 

literature on plates (especially, the circular ones) subjected to shear tractions. Influences of the 

proposed correction factor are evaluated on results of both the modal and the stress analyses.  
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Nomenclature 

 

A :                    elemental area. 

A,B,D:              parameters of the stress resultants. 

A , B , D :          integrals of the elastic coefficients. 

A :                    parameters of the shear stress. 

b:                      outer radius of the plate. 

C :                    constant. 

cD :                    bending stiffness of the ceramic. 

E:                     Young’s modulus.          

F :                    integral of the elastic coefficients; right hand side expression. 

 g :                     is the positive definite power–law index 

G :                    shear modulus. 

h:                      thickness. 

/h h b :          dimensionless thickness. 

 i :                      counter. 

0I , 1I , 2I :        mass density integrals. 

k:                      Winkler coefficient of the elastic foundation;  counter. 

sk :                    Pasternak coefficient of the elastic foundation. 

wk :                    amplitude of the Winkler coefficient of the elastic foundation. 

K:                      kinetic energy. 

L :                     integral of the elastic coefficients. 

rM , M :          resultant moments of the radial and circumferential stresses per unit length. 

N :                    number of the series expressions.  

rN , N :           resultant forces of the radial and circumferential stresses per unit length. 

P:                      representative material property 

0q :                    amplitude of the normal traction. 

nq :                    normal traction. 

stq , sbq :            shear tractions of the top and bottom surfaces. 

rQ :                    resultant transverse shear force per unit length.  

r:                       radial coordinate. 

r0:                     center of the series expansion. 

t:                       time. 

tT , bT  :              amplitudes of the shear tractions of the top and bottom surfaces. 

u, 0u :                radial displacement, radial displacement of the mid-layer. 

U:                      strain energy. 

,i iU W :             series coefficients of the in-plane displacement parameters. 

V:                      energy of the externally applied loads, volume. 

Vc , Vm :            volume fractions of the ceramic and metallic materials. 

w, 0w :              transverse displacement, radial displacement of the mid-layer. 

w :                    dimensionless lateral deflection. 

X , Y :              complicated expressions of the elastic coefficients. 

z:                       transverse coordinate. 

z :                     dimensionless transverse coordinate. 
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Greek symbols 

 

2 3,  :              coefficients of the normal traction. 

2 3,  :              coefficients of the Winkler coefficient of the elastic foundation. 

 :                     elements of the coefficients matrix. 

 :                     increment; Dirac’s delta function.     

 :                     differentiation operator. 

r ,  , z :         normal strains in the radial, circumferential, and transverse directions.  

2 3,  , 2 3,  :    coefficients of the shear tractions of the top and bottom surfaces. 

rz :                   in-plane shear strain. 

 :                     shear correction factor. 

 :                     boundary of the plate. 

v :                     Poisson’s ratio. 

s , s
 :           shear strain energies based on the 3D elasticity and FSDT. 

 :                     circumferential coordinate. 

 :                     mass density. 

r ,  , z :        normal stresses in the radial, circumferential, and transverse directions. 

rz :                    in-plane shear stress. 

rz :                    dimensionless transverse shear stress. 

 :                     natural frequency. 

r :                    rotation of the radial section. 

i :                    series coefficients of the rotation parameter. 
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 چکيده

 

ضرايب تصحيح برشي موجود، اساساً براي ورقهاي همسانگرد همگن و بر پايه فرض صفر بودن تنشهاي برشي 

سطوح رويين و که در آن  يترکلي حالتي اند. در پژوهش کنوني،موثر بر سطوح بالا و پايين ورق بدست آمده

اخت قرار دارند، بررسي شده است. تحت تنشهاي قائم و برشي غير يکنواي هدفمند ورق دايرهزيرين يک 

غيريکنواختي توزيع تنشهاي قائم و برشي ياد شده ممکن است ناشي از اعمال تنشهاي مايل بر سطح رويين 

گاه الاستيک غير يکنواخت از نوع ونکلر، باشد. به جاي ورق و اتکاي سطح زيرين ورق بر روي يک تکيه

ت حاکم بر پايه يک روش تحليلي بدست آمده است. در اين استفاده از روشهاي تقريبي عددي، حل معادلا

راستا، تاثير ضريب تصحيح برشي تحليلي پيشنهاد شده بر روي نتايج هر دو نوع تحليل مودال و تنشي نيز 

   ارزيابي شده است.     

 


