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1 Introduction

Circular disks or plates are among the main engineering components that may be employed in
both static and dynamic systems, due to e.g., their axisymmetric configuration, minimum
perimeter, simplest manufacturing technologies and costs, and simplest fitting requirements
(into another components or supports). On the other hand, in many practical applications, due
to differences in the design requirements of the top and bottom surfaces of the pale, it is
necessary to use different material properties for the top and bottom surfaces of the plate. In
these circumstances, it is advantageous to use functionally graded materials for the plate, to
prevent any discontinuities in the transverse distributions of the material properties and
stresses.

For thin and relatively thin plates, using the higher-order plate theories does not lead to
pronounced enhancements in comparison to the first-order ones. Some researchers have
proven that in these cases, results of the higher-order and even the elasticity theories may
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exhibit more inaccuracies [1], in some situations. For this reason, many researchers have used
the first-order plate theories, employing adequate shear correction factors to modify the
computed strain energy of the transverse shear stresses [2-5].

The available shear correction factors have mainly been proposed for special transverse
distributions of the material properties, tractions types, loading conditions, and boundary
conditions [6]. Mindlin [7] derived two different shear coefficients: one was dependent on
Poisson’s ratio and the other was a constant. Stephen [8] by matching between the long
flexural wavelength phase velocity predictions of the second mode of Mindlin finite plate
theory and the exact Rayleigh-Lamb frequency equation came to a conclusion that the best
correction factor is due to Mindlin (that includes the Poisson ratio effect). Andrew [9] derived
a shear correction coefficient for a plate with an infinite spatial extent. Liu and Soh [10]
proposed two methods for determination of the shear correction factor and proposed the 0.8
shear correction factor for the homogeneous elastic materials. Kirakosyan [11] introduced an
extended concept of two correction coefficients for an orthotropic plate subjected to tangential
shears at the top and bottom surfaces using the energy equivalence principle. Two shear
correction expressions that account for the influence of the transverse normal stress
component were derived by Batista [12] where the first was a slightly modified Mindlin
factor. Sometimes, the shear correction factor concept may be used to impose the continuity
condition of the transverse stresses at the layer interfaces [13]. The traditional correction
factors have mainly been derived on the basis of situations where distribution of the
transverse shear stress is parabolic. In functionally graded plates, this assumption may not
hold, as the material properties distribution is generally non-uniform and non-linear.

In the above mentioned researches, material properties were assumed to be constant within
each layer. To extend Mindlin’s correction factor to the FGM plates, Efraim and Eisenberger
[14] replaced Poisson’s ratio with the average Poisson ratio of the mixture. Extending an
approach previously used for the composite beams, Nguyen et al. [15] proposed shear
correction factors for the FGM plates using the equivalent shear energy method.

The forgoing brief review reveals that the available shear correction factors have mainly
been developed based on either assuming homogeneous isotropic material properties or
assuming that no shear tractions are imposed on the top and bottom surfaces of the plate. In
the present research, a more general case of a circular functionally graded plate subjected to
simultaneous non-uniform normal and shear tractions at the top and bottom surfaces is
considered, due to presence of the non-uniform inclined traction at the top surface and a non-
uniform Winkler-Pasternak elastic foundation at the bottom surface of the plate. Instead of
using the approximate numerical methods, the solutions are derived using a pure analytical
method. The employed analytical method is the differential transform method (DTM) that is a
semi-analytical technique that uses Taylor’s series expansion. Employing the DTM enables
obtaining highly convergent and accurate results and analytical solutions for the differential or
integro-differential equations [16-18]. By using this method, the governing differential
equations can be reduced to recurrence relations and the boundary conditions may be
transformed into a set of algebraic equations. In the present paper, influences of using the
derived analytical correction factor on results of both the modal and the stress analyses are
evaluated.

2 Governing equations of motion of the circular functionally graded plate

Consider an FGM circular plate that is resting on a non-uniform two-parameter elastic
foundation and undergoing non-uniform normal and shear tractions, as shown in Figure (1).
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Figure 1 Parameters of the functionally graded circular plate and the elastic foundation,
as well as the adopted coordinate system.

Based on the Mindlin first-order shear-deformation plate theory for small deflections, the
displacement field may be described as follows:

u(r,z,t) =uy(r,t) +zy, (r,t) .
w(r,z,t) =w,(r,t) ()
where u and w are the radial and transverse displacement components of an arbitrary point of
the thickness and u,, w,, and v, are, respectively, the radial and transverse displacements of
the reference layer (e.g., the mid-layer) and rotation of the radial section. The coordinate z is

measured from the reference layer and is positive upward. Therefore, the strain components
may be expressed as:

u Uu,+zy
gr:ur:uo,r+zlt”rr’ gg:_:—r,

r r (2)
gz:Wz:()’ 7rz:uz+Wr:Wr+\N,r

where the comma symbol stands for the partial derivative.
Therefore, if the functionally graded plate is constructed from linear elastic constituent
materials, the stress components may be derived from:

E E uO l//r
o =——¢& +ve,))=——|| U, +Vv— |+ 2Z +v— 1],
r 1_\/2 ( r 67) l—VZ |:( o,r r J (l//r,r r j:|

E E u v,
Oy = m(ga +Vgr) = 1—\2 |:(TO+VUOJJ+ Z(T+VWr,rj:|! (3)

E E
TI’Z = 7/I'Z =
2(L+v) 2(1+v)

(v, +w,)
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The governing equations are derived using Hamilton’s equation:

!(5K—éu +oV)dt=0 @)

Where in increments of the strain energy (oU ), kinetic energy (oK), and energy of the
externally applied loads (6V ) are:

ouU =J.{0'r5(uor +2y, r)+0'95(—u° i J+m'rz§(1,//r +Wr)}dV
: : r :
\

5K =~ p{uisu+wsw}dv, )
\
o =| [qn5w+ W+ W, W, + (0, + 1)U, + (0 —qsb)&//r}dA
A

Here, xis the so-called shear correction factor that is usually included in the first-order shear-
deformation theories to correct the strain energy of the resulting transverse shear stresses. An
accurate derivation procedure is proposed for this factor, in the next section. In Eq. (5),

Ay =0 (L+a, r+ayr*)and k=K, (1+B,r+p,r*)are the non-uniformly distributed normal
traction and Winkler coefficient of the elastic foundation, respectively, and q,and g are,

respectively, the shear tractions of the top and bottom surfaces of the plate. Kk, is the Pasternak

coefficient of the elastic foundation and b is the outer radius of the plate [Figure (1)]. Integrals
of Eqg. (5) may be manipulated further through integration by parts, using the Green-Gauss
rule to have:

h/2

oU Zj I {_(O-rr+ﬁj5(uo+Zl//r)+&5(UO+ZWr)+KTrZ§l//r —K(rr“Jrrijgw}dsz
L. " R

h/2
+J. j {0,6(Uy +2y,) + k7,6 | rdzd @
I -h/2
h/2

§K——J. I u5u+w§w dzdA (6)

A-h/2

oV = {qo(1+a2r+a3 )5w+kw(lJrﬁzr+ﬂ3r2)w5w—%(rksw,r),r+(qst+qsb)5u0

)>'—-

5 @u-0)av, [dA+ [k, awrdo
T

where, T"is the boundary of the plate. Substituting Eq. (6) into Eq. (4) leads to:

J-j hj‘z {(O- = o-r’rjé‘(uo_'-Zylr)_’(z-rzé‘lr//r +|:K[Trz,r +T_:)+q0 (1+Olzl‘+0£3r2)}

t A-h/2

h
+K,, (1+ Bor +ﬂ3r2) }5w+ (Qg + g, )0U, +§(q“ — 0, )0V, (7

—p(Uy+ 297, ) 6(Uy + 27, ) + pWSW }dsz dt=0
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Defining the following symbols for the transverse integrals of the stress and inertia quantities:

h/2

N, = I o dz= A(uor +Ku0j+ B(‘//rr +Kwrj
' r ’ r

-h/2

h/2
N, = I o,dz = A(u—°+vu0rj+ B(ﬂﬂ/t//”j
r ’ r '

-h/2
h/2

M, = J. o,20z = B[uoyr+zuoj+ D(l//r,r+zv/rj
-h/2 r r
h/2
M, = I o,2dz = B(U_O+VUo,rj+ D(ﬂﬂ/t//”j ®)
-h/2 r r
h/2 h/2
@-v) -~ ~
Q =x| r,dz=—"—Aly, +W,, ), A=k dz
I |25
A h/2 E 1 IO h/2 1
B:I =12 ¢dz, Il:Ipzdz
D 7h/21_v Zz |2 —h/2 22

Equation (7) may be rewritten as:

N, —-N
J.J.{( rr g+Nr,r_IOUO_Ill/;r+qst+qsbj5u0
t A

{M -M
r

h " ..
+| —— 0+Mr,r_Qr+E(qst_qsb)_lluO_IZWr:|5!//r (9)

W{Qm +%+ O (1+ ol +agr? )+ kK, (1+ Byr + By Jw— Iow}éw}dAdt =0
Since Eq. (9) must hold for any arbitrary time interval, it may be concluded that the integrand
of Eq. (9) has to be zero. On the other hand, since this conclusion must hold for any arbitrary

values of the displacement increments, terms multiplied by these displacement increments
should be zero:

Su, : N, —N,
.

M -M h . .
oy, : rfa“'Mr,r —Qrz+§(qst ~ 0y ) = 10g + 1,37,

Q

sw: Q, +T+%(rNrw,r),r K, (L+ Bor + Br? )W+ (1+ a,f +atr?)

+ Nr,r +qst +qsb = IOUO + I1'/;r

(10)

_%(rksw'r )'r = IOW

In the present research, distributions of the top and bottom shear tractions are also considered
to be non-uniform, to obtain more general results:

ay =T, (1+/12r+ﬂ3r2) , Ay =T, (1+7/2I’+7/3r2) (11)

Assuming that the FGM plate is fabricated from ceramic and metallic materials, variations of
a representative material property P in the transverse direction may be assumed to be:
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P = Pch + Pme (12)
where, the subscripts ¢ and m denote the ceramic and metal, respectively. Also, V¢ and Vm ,

the volume fractions of the ceramic and metallic constituent materials, may be related to each
other as follows:

V. +V =1 (13)
The metal volume fraction is assumed to follow a power—law distribution [19]:
1 z\°
V, ——= 14
(32 (14)

where g is the positive definite power—law index. From Egs. (12-14), transverse variations of
the modulus of elasticity, mass density, and Poisson’s ratio of the resulting mixture may be
obtained at an arbitrary point as:

z 1Y
E(Z)z(Em_Ec)(E+Ej +Ec
p(z)z(pm—pa(h—j p, (15)

z 1Y
v(z)=(v, -V = | +v,
@=,-w)[ 23] v
Therefore, based on Egs. (8,15):

—hf;dE(z) z A:KT—E(Z) dz

ol v(z)? o 21+ v(2)] (16)
hj.Z E(Z) hj_z E(Z)
1= v(z) ’ 1= v(z)

3 Distribution of the transverse shear stress according to the 3D elasticity theory

It is known that generally, the traditional approach of using the constitutive-based equations
for determination of the through-thickness variations of the transverse shear stress does not
lead to accurate results [20-24], especially when using the firs-order shear-deformation
theory. In the present section, a general analytical shear correction factor is proposed for
circular FGM plates subjected to non-uniform normal and shear tractions and resting on non-
uniform Winkler-Pasternak elastic foundations.

Based on the three-dimensional theory of elasticity, the equations of motion of the
axisymmetric circular plate in terms of the stress components may be expressed as:

oo, 0% or,, — pii (17)
or r 0z
or T oo
—E 44— =pW 18
or r 0z r (18)

where o,, 0,, and o, are the normal and z,, is the shear stress components. Although the

radial and transverse inertia body forces resulted from the (pli and pw) term appeared in
Egs. (17,18) may affect the shear correction factor, their effects may be ignored in comparison
to the transversely applied distributed tractions, especially for the thin plates. This assumption
has been employed in derivation of all of the available shear correction factors. By
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substituting the radial and circumferential stress from Eq. (3) into Eqg. (17), the equilibrium
equation in the radial direction necessitates that:

E(z) =, =, oz, -, (& 10 1
v, + 2V =0, V +-——= 19
1—v(z)2( 0 vi)+ az [ar ror r (19)

Integration of the elasticity equilibrium Eq. (19) across the plate thickness and using the
following boundary condition,

Trz[zz_hj = qsb
2

(20)
one arrives at
=-F(2)Vu, - L(2)Vy, +q,, (21)
where
F(z)} i E(z) [1
L@2)| 4 1-v(z)’ (22)

By using the boundary condition of the top surface of the plate, V?u, can be expressed in

terms of the shear tractions of the top and bottom layers of the plate. Then, distribution of the
transverse shear stress may be obtained based on Eq. (21) as

TI’Z h = qSt
(=) (23)

L

r = F(Z) F( ] L(Z) Vzl//,+ 1- FF(Z) Oy + FF(Z) O (24)
4 E

By integrating of the transverse shear stress (Eq. 24) across the plate thickness, the transverse
shear force per unit length may be obtained as:

h

hi2 Lzh
Q= | F(z)F( T AN PRS2 AL I P

e & =) T

where
h/2 L[ hj h/2 E E(z
xzhj/2 F(z)—2 F{ . _L(2) |dz, Y_hjlz 1- F[(Zh)j ., F[Lh)qut dz (26)

Based on Eqg. (25), Vi, may be expressed in terms of Q,. Substituting the resulting
expression into Eq. (24), distribution of the transverse shear stress may be written as follows:
& Q-Y |, F@| . F@
7, =| F(z L(z ! +|1- T, +—=T,
()F[h) (2) X = T e (27)
2

&
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4 Derivation of the shear correction factor

The available shear correction factors have been derived for isotropic and homogeneous plate
with shear tractions. Therefore, they are generally not suitable for heterogeneous functionally
graded plates with shear tractions or elastic foundations that apply shear tractions (such as the
present Winkler-Pasternak elastic foundation). Furthermore, since stiffness of the foundation
of the plate varies in the radial direction, the governing equations of motion differ from those
of the simple plates. The shear correction factor is determined in the present research base on
equating of the shear strain energies of the transverse shear stress obtained based of the first-
order plate theory and the three-dimensional theory of elasticity. Moreover, the available
shear correction factors have mainly been derived based on the assumption of linear through-
thickness distributions for the normal in-plane stresses. Due to transverse variations of the
material properties across the thickness (e.g., according a power law), this assumption does
not hold for structures with the transversely graded material properties. In the present
research, the assumption of linear variations of the in-plane displacement component, that is a
direct result of Eq. (1), is employed. However, this assumption leads to a linear through-
thickness distribution for the in-plane stresses of the isotropic homogeneous plates.

Based on the first-order shear-deformation plate theory (FSDT), distribution of the
transverse shear stress of the functionally graded plate may be determined from:

7, =G(2)(y, +w,) (28)
By integrating Eq. (28) across the plate thickness, the relevant transverse shear force per unit
length may be obtained as:

h/2 h/2

Q = [ 7dz=C(y, +w,), C= [ G(2)dz (29)

i “hi2
Comparing Egs. (28,29) leads to the following result:
_G(@)
" C
The strain energy of the transverse shear stress may be calculated using Eq. (6). Substituting
Egs. (27) and (30) into the expression of the strain energy of the transverse shear stress, gives

the following strain energy expressions that are associated with the three-dimensional theory
of elasticity and the first-order shear-deformation plate theory, respectively:

T

Q (30)

2

L

1 b h/2 b h/2 (Z j Qr _Y F(Z) F(Z)
HS:_.[ .[ G(Z) :_I J G() F(Z) L(Z) X + 1_F qsb+F Oy dzdr (31)
a—h/2 a—h/2 ng] (Z:g] [Z:g]
152 72 b n2
:—H —2 gz dr = ”ﬂdzdr (32)
a- h/zKG(Z) a —h/2

Equating the strain energies appeared in Egs. (31,32), leads to derivation of the shear
correction factor:
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T T LZ)ZQE dzdr

a—h/2

2

L

b h2 4 [z:gj Q -Y F(2) F(2)
U,zG(z) F@) - L(@) [P+ 1= (At G | dzdr

) ) )

For the special cases where no shear tractions are imposed on the top and bottom surfaces, Eq.
(33) reduces to the following expression for the shear correction factor:

(33)

HZ G@Q g, g
_ a —h/2 C
” |_Z:D 2 (34)
0 Giz) F(2) E ZiL(z) S 1%(23 qsb+FF((z))qst dzdr

If no shear tractions are imposed, the shear correction factor reduces to: x=5/6, for the
isotropic homogeneous plates.

5 Analytical solution of the governing equations

By using Taylor’s series expansion, the governing differential equations and the relevant
boundary conditions of the functionally graded plate may be transformed into a set of
algebraic equations. Solution of the resulting algebraic system of equations gives the desired
solution of the problem.

The functions u,(r), w(r), and y(r)are analytic in a domain R and can be represented by

power series whose centers are located at r=ro.

()= =K) Uy, W)= (=6 W, y() =D (r =), (3)

In practical applications, these series have to be used as finite series. Therefore, Eq. (35)
may be rewritten as

Uy () = Z(f —1)"U, w(r)= Z(r L)W, p(n)= Z(r —1)" Y, (36)

In the present research, the N value is so chosen that ignorable changes occur in the results
due to further increasing this value. In a free vibration analysis, the mode superposition
concept may be used to account for the oscillations of the responses:

B = S U1 €, w(rt) = YW (r—0)e™, v, (rn) =3 B (r—r)e”, @7

Therefore, the static response is associated with @ =0. In the present research, ro=0 is used
as the center for the Taylor’s series.

The transformed form of the governing equations of the circular plate may be obtained by
substituting Eq. (37) into the governing equation (10). Performing some manipulations on the
resulting equations, the transformed form of the governing equations may be obtained as
follows:
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{AG+D)(i+3)U,,, + B+ +3W,,, + &’ U, + 0’1, ¥, -

N
i=0

T (104, +b74)5(0) + (4, — 2045 ) 5 ~1) + 4,5 - 2) |- (38)
T, [ (1-by, +b75 ) 8(1) + (7, - 2075) 5 -1) + 1,6~ 2) |} r' =0

N ~
{B(i +1D(i +3U,,, + D +1)(i +3)¥,,, - A[¥, + (i +DW,,, |+ &* LU,
i=0
2 h 2 . . .
+a'l ¥ =0T, [ (1-b2, +b°2) 5(0) + (4, ~ 204 ) 5(i~1) + £48( - 2) | (39)
h . : : i
+T, [ (1-by, +b%) 50) + (7, 207, ) 5 =) + 550 —2)]} r=0
N
{A[(i F2W,, + (I +2°W,, [+ @’ LW, —q [(1—ba2 +0%at ) 5(1) + (o, — 2ba;)
i=0
8(-1)+a8(i-2)] -k, | (1-bB, +b”B, )W, + (B, — 20, )W, , + BW,, | (40)
+k (i +2)°W._, }ri =0
The most common edge conditions of the circular plates may be expressed as follows:
e Clamped edge:
u=0, y, =0, w=0, (41)
e Simply supported edge:
u=0, N,=0, M, =0, (42)
e Free edge:
N, =0, M, =0, Q +kw, =0, (43)

By substituting Eq. (37) into Egs. (41-43), the transformed forms of the boundary
conditions (around ro=0 ) are obtained:

e Clamped edge:

N N N
u|r=b :Zui =0 ' l//f|r=b :Z\Pi =0 ' W|r=b = ZWI =0 (44)
i=0 i=0 i=0
e Simply supported edge:
u|r:b = iul =0
i=0
M., =i{ [B(i+)+B]U,,+[D(i+1)+D]¥,,}=0 (45)
i=0
W| b iwi =0
i=0
e Free edge:

N, = sz{ [AG+D)+ AU, +[B(+1)+B]¥, =0
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M|, = Nzl{ [B(i+)+B]U,,+[D(i+)+D]¥,}=0
= (46)

N+1

Q, +k.w, r=b=§[/&\1’i+(/&+ks)(i+1) i+l]:o
Where
g :hj}mt dz 47
5 2, 1-v(z)? 22 (47)

Based on Egs. (44-46), three boundary conditions are available along the outer edge (r=b),
that may be employed in solution of Eq. (38-40) and consequently, determination of uo, y and

w. Moreover, three additional conditions are required that may be extracted from the
regularity conditions at the center of the moderately thick circular plate:

u =0  —U,=0
'//r|r=o =0 - ¥, =0 (48)
W =0 W =0

By substituting U,,W,, and ¥, (2<i<N+2) from Eqgs. (38-40) into Egs. (44-46) and
applying the regularity conditions (48), the final system of equations will have the following
form:

Zﬂ\‘)U1+Z$‘)WO +Zl(§l)‘{ll =K
ZSI‘)UI +Z§g)wo +Z§’3\‘) Y =F, (49)
X Uy + 25 Wy + 23 W, = F,

For static bending analysis, °=0and U,, W,and ¥,may be determined by solving the
mentioned system of equations. On the other hand, for free vibration analysis of the circular
plate, F =F, =F, =0and existence of a non-trivial solution for the resulting system of

equations requires that:
(N)
X1

(N)
X1

(N)
Xa1

(N) (N)
X2 X3

Yo' Xn'|=0 (50)
Yo Xs

6 Results and discussions
6.1 Verification of the results and evaluation of the resulting enhancements

Since general correction factors that may be used for functionally graded plates have not been
proposed so far, especially for the circular plates, results of present section are compared with
results of the first-order shear deformation theories that have used Mindlin’s correction
factors. However, more but different verifications may be found in the next sections. In this
regard, aluminium/alumina circular plates with the following material and geometric
specifications are considered:
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E, =70GPa, p, =2700kg/m® v, =033, E,=380GPa, p,=3800kg/m’,
v, =0.26, b=1m,

Therefore, results associated with g=0 correspond to a pure metallic plate. Results are
extracted for various thickness ratios (h=h/b=0.01,0.1,0.2) to include the very thin,
relatively thin, and relatively thick plates. Gupta et al. [25] have considered the same problem

but used an exponential law for variations of the material properties and employed « = z*/12
Mindlin’s correction factor that is suitable for a plate with infinite extent. Hosseini Hashemi
et al. [26] have used the traditional «=5/6 Mindlin shear correction factor. Both references
used Mindlin first-order shear-deformation plate theory. For this reason, present results for the
first two natural frequencies of the plate are compared with the results correspond to g=0 of
Gupta et al. [25] and g=1 of Hosseini Hashemi et al. [26] in Table (1). As reference [25],
results of Table (1) are extracted for the simply supported, clamped, and free edge conditions.
As may be expected, the natural frequencies increase with increasing the volume fraction
index. The results are in a good agreement. The maximum discrepancies have occurred
between present results and results of reference [26], for the simply supported plates.
However, the maximum relative difference is less than 4%. Indeed, the mentioned
discrepancies are deviations of results of reference [26] with respect to present results and
results of reference [25].

Table 1 A comparison among the first two natural frequencies of the plate, for various thickness ratios, volume
fraction indices, and edge conditions.

Edge h=h/b g=0 g=1 g=2 g=5 g=10 g=100

condition Present Ref. [25] Present Ref. [26]
Clamped 0.01 o, 25.045 37.552 37.552  40.003 43.203 48.677 48.677
w, 97.439 146.11 146.11  155.65 168.10 189.38  189.38

0.1 o, 24385 243.81 366.88 366.91 391.34 42249 47413 474.13
o, 895.37 894.53 1355.4 1355.7 1449.7 1564.2 17422 17422
0.2 o, 453.67 45321  688.45 688.62 736.78 794.65 88293 882.93
o, 14852 14817 2287.1 2288.4 2463.6 2653.3 28955 28955

Simply 001 12101  — 19373 18144 20237 21229 23521 23521
supported w, 72843 -~ 11023 10922 11708 12594 14158 14158
01  p 12002 12003 19219  180.08 200.88 210.76 23331 23331

©, 69287 69252 10523 10440 11209 12059 13475 13475

02 23437 23420 37555 35238 39317 41273 45573 45573

w, 12277 12259 18787 18690 20129 21665 23907 23907

Free 0.01 o, 22.075 --- 33.097 --- 35.257 38.078 39.978 42.904
o, 94.209 --- 141.25 --- 150.48 162.52 170.62 183.10

0.1 o, 21749 21747  326.25 --- 34781 37572 39431 422.77

o, 884.28 883.83 13315 --- 14229 1537.0 1610.2 17199

0.2 o, 41728 41711  626.72 --- 669.53 723.65 758.71 811.46

o, 1528.1 15259  2314.6 --- 24904 2693.0 28106 2976.1

To simultaneously verify the results and evaluate effects of the proposed shear correction
factor on enhancing the static results, a titanium-zirconica FGM circular plate with the
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following specifications, subjected to a uniformly distributed transverse load is considered as
Reddy et al. [27] and Saidi et al. [28]:

Qo =40N /m?,E, /E, =0.396, v=0.288, b=1m,

In this case, g=0 denotes a pure ceramic plate. References [27] and [28] have used a FSDT
with a x=5/6 correction factor and a third-order shear-deformation theory (TSDT),
respectively. Present results for the dimensionless maximum lateral deflection of the plate

(v‘v=64DcW/(q0b4)) are compared with results of references [27] and [28] in Table (2), for

various thickness ratios, volume fraction indices, and simply supported and clamped edge
conditions. As may be noted from results appeared in Table (2), present results are closer to
results of the third-order shear-deformation theory. It is important to remind that since the
order of the transverse shear stress is much lower than that of the bending stresses, the
relevant effects on the results are ignorable. Therefore, even ignorable differences in the
results may reflect high effects of the proposed shear correction factors. In Figure (2), 3D
plots are presented for the transverse and radial distributions of the lateral deflection of plates

with clamped and simply supported edge conditions (qo=100kPa, g=1, and h =0.2), for a
better visualization.

Table 2 A comparison among the maximum non-dimensional deflections v‘v:64DCw/(q0b4) of FG circular

plates under uniform transverse pressures.

Edge 9 Source Thickness radius ratio (h )
condition 0.05 0.1 0.15 0.2
Clamped 0 FSDT [27] 2.554 2.639 2.781 2.979
TSDT [28] 2.553 2.638 2.779 2.975
Present 2.554 2.638 2.781 2.979
2 FSDT [27] 1.402 1.444 1.515 1.613
TSDT [28] 1.402 1.443 1.511 1.606
Present 1.402 1.443 1.512 1.608
6 FSDT [27] 1.220 1.257 1.318 1.404
TSDT [28] 1.220 1.255 1.314 1.397
Present 1.220 1.255 1.315 1.398
10 FSDT [27] 1.155 1.190 1.250 1.333
TSDT [28] 1.154 1.189 1.247 1.327
Present 1.154 1.189 1.248 1.329
100 FSDT [27] 1.029 1.063 1.119 1.199
TSDT [28] 1.029 1.063 1.119 1.197
Present 1.029 1.063 1.119 1.198
Simply 0 FSDT [27] 10.396 10.481 10.623 10.822
supported TSDT [28] 10.394 10.479 10.621 10.820
Present 10.396 10.481 10.623 10.821
2 FSDT [27] 5.497 5.539 5.610 5.708
TSDT [28] 5.497 5.538 5.607 5.703
Present 5.497 5.538 5.607 5.703
6 FSDT [27] 4,909 4,946 5.007 5.094
TSDT [28] 4.909 4,944 5.004 5.087
Present 4.909 4.945 5.004 5.088
10 FSDT [27] 4,677 4,712 4772 4.855
TSDT [28] 4.676 4,711 4,769 4,851
Present 4.676 4711 4,770 4,851
100 FSDT [27] 4,189 4,223 4.280 4,359
TSDT [28] 4,189 4,223 4,279 4,358

Present 4.189 4223 4.279 4,359
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Figure 2 Through-thickness distribution of the lateral deflection of a: (a) clamped and (b) simply supported

FGM plate subjected uniform normal load (qo=100kPa, g=1, and h =0.2).

oz !

6.2 Influence of the shear correction factor on the trough-thickness distribution of the
transverse shear stress

To ensure that the proposed shear correction factor and the elasticity-based modifications
employed to determine the transverse shear stress have enhanced the results, distribution of
the transverse shear stress is plotted for the mid-section (r=b/2) of the mentioned titanium-
zirconica FGM circular plate. This distribution is compared with those obtained based on the
third-order shear-deformation [29] and elasticity [30] theories in Figure (3), for g=0.5 and 2.

In Figure (3), the dimensionless transverse shear stress (7,, =7,,/q) is plotted versus the

dimensionless transverse coordinate (zZ=1z/h). Although the constitutive-equation-based
distribution of the transverse shear stress according to the first-order shear-deformation
theories is a uniform and constant one (and therefore, an erroneous one), present distribution
is both non-uniform and non-linear, due to using the elasticity correction. Furthermore, while
results of the third-order shear-deformation theory exhibit some deviations, results of the
present first-order approach with elasticity-based correction are almost coincident with the
elasticity results. This comparison confirms that determining the transverse stresses based on
the equilibrium requirements leads to more accurate results in comparison to the constitutive-
equations-based approach.
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Figure 3 A comparison among the through-thickness distributions of the dimensionless transverse shear stress of
a simply supported FGM plate subjected to a uniform transverse pressure, predicted by the present approach and
the third-order shear-deformation (TST) [29] and elasticity (exact) [30] theories

(7, =71,19,Z=2z/h,r =0.5b,h =h/b): (a) g=0.5 and (b) g=2.

6.3 Effects of the non-uniformity of the elastic foundation and the applied tractions

The first two natural frequencies of aluminium/alumina plates with linear variations of the
material properties (g=1) and uniform Winkler elastic foundations are reported in Table (3),
for various edge conditions and thickness ratios and compared with those of the three-
dimensional elasticity theory. The elasticity results are extracted form ABAQUS software,
using the 3D quadratic eight-node axisymmetric elements (CAX8R). As expected, since the
elastic foundation increase the stiffness of the structure, the natural frequencies have increased
[in comparison with results of Table (1)] due to using Winkler-type elastic foundations.
Furthermore, effects of the non-uniformity of the Winkler-type and the Pasternak-type elastic
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foundations are investigated and the relevant results are given in Table (3). It is evident that
the natural frequencies increase further as a Pasternak-type elastic foundation is added.

Table 3 Influence of the elastic foundation on the first two natural frequencies (Hz) of the aluminium/alumina
FG circular with various boundary conditions and thickness ratios (g=1).

Edge ks=0 ks=107
condition Ky=10° K= K= Kyy=10° Ky= ky=
Present FEM(3D) 10°(1+r) 10%(1+r+r?) 108(@+r)  108(+r+r?)
Clamped 0.1 4 3770 37823  380.67 382.27 383.97  387.58 389.15
w, 13578 13648  1350.1 1359.9 13669  1368.2 1369.0
02 @ 691.09 693.21 692.1 692.55 692.93  693.94 694.39
®, 22902 23172 22906 2290.8 22927  2293.1 2293.34
03 @ 94635 95659  946.85 947.07 94721  947.71 947.93
@, 28447 28984 28450 2845.1 2846.0  2846.3 2846.4
Simply 01 g 20968 20765  217.49 221.43 220.13  227.58 231.35
supported ®, 10539 10518 10556 1056.8 10648  1066.5 1067.6
02 @ 37712 36383  379.29 380.42 380.04  382.20 383.32
w, 18783 18476 18787 1879.0 18812 18817 1882.0
03 @ 54111 52234 54211 542.63 542.45  543.45 543.96
®, 24568 23318  2457.1 2457.2 24583 24585 2458.7
Free 01 @ 33714 33741 34367 348.71 355.22  361.37 366.10
w, 13333 13369 13347 1335.7 134808 13495 1350.4
02 @ 62862 62692 630.29 631.57 633.35  635.01 636.28
w, 23172 23339 23175 2317.8 23209 23213 23215
03 @ 88692 889.98  887.66 888.23 889.01  889.75 890.32
w, 27870 27821  2787.1 2787.2 27873  2787.4 2787.5

Results of Table (3) reveal that the natural frequencies associated with the free edge condition
are smaller than those of the clamped plate and both are smaller than the natural frequencies
of plates with simply supported edges and similar other specifications.

Influences of imposing simultaneous normal and shear stresses and their non-uniformities
on radial distribution of the lateral deflection of the clamped and simply supported

aluminium/alumina FGM plates (g=1 and h =0.2) is investigated in Figure (4). These results
show that imposing shear tractions on the top surface of the FGM plate, reduces the lateral
deflection of the plate. Generally, the overall effect of these shear tractions resembles effects
of a tensile radial tension; so that both lead to lower lateral deflections.
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Figure 4 Influences of the normal and shear stresses and their non-uniformities on radial
Distribution of the lateral deflection of the: (a) clamped and (b)

simply supported aluminium/alumina FGM plates (g=1, h =0.2).

7 Conclusions

In the present paper, an analytical shear correction factor that is suitable for functionally
graded plates (with heterogeneous material properties) that are subjected to non-uniform
normal and shear tractions and resting on elastic foundations, is proposed for the first time.
This shear correction factor is the most general one, because it considers many issues that
have not been treated so far. The shear factor is determined based on equivalence the strain
energies of the transverse shear, using elasticity-based corrections. The Taylor transformation
technique is employed to analytically solve the governing equations. In contrast to the
available first-order formulations, the resulting through-thickness distribution of the shear
stress is not uniform; it is bot non-uniform and non-linear. The verification examples have
revealed accuracy of the present formulation; so that this accuracy is sometime higher than
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that

of the third-order shear-deformation theories. Effects of the non-uniform Winkler-

Pasternak elastic foundations are discussed in detail. Very rare researches may be found in
literature on plates (especially, the circular ones) subjected to shear tractions. Influences of the
proposed correction factor are evaluated on results of both the modal and the stress analyses.
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Nomenclature

A: elemental area.
AB,D: parameters of the stress resultants.

A,B,D: integrals of the elastic coefficients.

A: parameters of the shear stress.
b: outer radius of the plate.

C: constant.

D,: bending stiffness of the ceramic.
E: Young’s modulus.

F: integral of the elastic coefficients; right hand side expression.
g: is the positive definite power—law index

G: shear modulus.
h: thickness.

h=h/b dimensionless thickness.

i counter.

Iy, 1, 1, mass density integrals.
k: Winkler coefficient of the elastic foundation; counter.

k,: Pasternak coefficient of the elastic foundation.

K, amplitude of the Winkler coefficient of the elastic foundation.
K: kinetic energy.

L: integral of the elastic coefficients.

M,, M,: resultant moments of the radial and circumferential stresses per unit length.
N : number of the series expressions.

N,, N,: resultant forces of the radial and circumferential stresses per unit length.
P: representative material property

0o amplitude of the normal traction.

q,: normal traction.

Oy Oy shear tractions of the top and bottom surfaces.

Q,: resultant transverse shear force per unit length.
r radial coordinate.
ro: center of the series expansion.
t: time.
T, T, - amplitudes of the shear tractions of the top and bottom surfaces.
u, U,: radial displacement, radial displacement of the mid-layer.
u: strain energy.
U, W: series coefficients of the in-plane displacement parameters.
V: energy of the externally applied loads, volume.
Ve, Vm: volume fractions of the ceramic and metallic materials.
W, W,: transverse displacement, radial displacement of the mid-layer.
W dimensionless lateral deflection.

X,Y: complicated expressions of the elastic coefficients.

transverse coordinate.
dimensionless transverse coordinate.



An Analytical Shear Factor for FGM Circular Plates ...

Greek symbols

a,,0y:
By s
7

0.

V:

E 1 Ep &yl

V2rVar Ao Ag
7/rz:

1A

coefficients of the normal traction.

coefficients of the Winkler coefficient of the elastic foundation.
elements of the coefficients matrix.

increment; Dirac’s delta function.

differentiation operator.

normal strains in the radial, circumferential, and transverse directions.
coefficients of the shear tractions of the top and bottom surfaces.
in-plane shear strain.

shear correction factor.

boundary of the plate.

Poisson’s ratio.

shear strain energies based on the 3D elasticity and FSDT.
circumferential coordinate.

mass density.

normal stresses in the radial, circumferential, and transverse directions.
in-plane shear stress.

dimensionless transverse shear stress.

natural frequency.

rotation of the radial section.

series coefficients of the rotation parameter.



72 Iranian Journal of Mechanical Engineering Vol. 14, No. 2, Sep. 2013
oS

s et (g yao (B8 Al n s (Fes 0, Kileos sledys sln Lolal wgzge L3 rmal culpo
5 w9y ool ol 10 45 PSS (> (S95 ragh e ileasl Cavs Gyg mb 9 YU zobw 2 Fge
Lol 00l (qumy g iyl 18 ESES, e LDy g oI Gleddd Lo wiedan Slopls 59 SO n
o) g » hle Gl Jlosl 51 (L2306 conl (Sam 00 ol S8 5 3B Sletd mjy SS90 8
Sl @l GISGy go 5l S e e SVl DBASS SS s5 2 B9 Oy e SS9 Gy
Ol e el sl vy Ldos gy Sl oS OYolae o qgoue oo 8 Sledg, l colaial

oS g Jloge Julm g9 90 1o mll (g9, p oad slpidan Ll (b p momal copo pSU L,



