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An Exact Solution for Quasi-Static Poro-
M. Jabbari’ R T her moelasticity in Spherical Coordinates

Assistant Professor l  this naper the Quasi-Static poro-thermoelasticity model of a
hollow and solid sphere under radial symmetric loading condition
(r, t) is" considered. A full analytical method is used and an exact
unique solution of the Quasi-Satic equations is presented.

The thermal, mechanical and pressure boundary conditions, the
body force, the heat source and the injected volume rate per unit
volume of a distribute water source are considered in the most
general forms where no limiting assumption is used. This generality
allows to simulate variety of applicable problems.
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1 Introduction

Quasi-Static thermal and poro-mechanical processes play an important role in a number of
problems of interest in geomechanics such as stability of boreholes and permeability
enhancement in geothermal reservoirs or high temperature petroleum bearing formations. A
poro-thermoelastic approach combines the theory of heat conduction with poroelastic
constitutive equations coupling the temperature field with the stresses and pore pressure.
There are a limited number of papers that present the closed-form or analytical solution for
the quasi-static porothermoelasticity problems. Bai [1] investigated the response of saturated
porous media subjected to local thermal loading on the surface of semi-infinite space. He used
the numerical integral methods for calculating the unsteady temperature, pore pressure and
displacement fields. This author also studied the fluctuation responses of saturated porous
media subjected to cyclic thermal loading [2]. In mentioned paper an analytical solution was
deduced by using the Laplace transform and the Gauss-Legendre method of Laplace
transform inversion. Droujinine [3] investigated dispersion and attenuation of body waves in a
wide range of materials representing realistic rock structures. He used the time-domain
asymptotic ray theory to a new generalized coordinate-free wave equation with an arbitrary
tensor relaxation function. Bai and Li [4] found solution for cylindrical cavety in saturated
thermoporoelastic medium by using Laplace transform and numerical Laplace transform
inversion.

Also the numbers of papers that present the closed-form or analytical solutions for the quasi-
static thermoelasticity problems are limited. Hetnarski [5] found the solution of quasi-static
thermoelasticity in the form of series function. Hetnarski and Ignaczak presented a study of
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the one-dimensional thermoelastic waves produced by an instantaneous plane source of heat

in homogeneous isotropic infinite and semi-infinite bodies of the Green-Lindsay type [6].
Also, these authors presented an analysis of laser-induced waves propagating in an absorbing
thermoelastic semi-space of the Green-Lindsay type [7]. Georgiadis and Lykotrafitis obtained
a three-dimensional transient thermoelastic solution for Rayleigh-type disturbances
propagating on the surface of a half-space [8]. Wagner [9] presented the fundamental matrix
of a system of partial differential operators that governs the diffusion of heat and the strains in
elastic media. This method can used to predict the temperature distribution and the strains by
an instantaneous point heat, point source of heat, or by a suddenly applied delta force.

Smith and Booker presented [10] a direct method (Green’s functions) for porothermoelasticity
in the Laplace transform domain. The boundary element techniques have been successfully
applied to many geological engineering the boundary element method (BEM) or the boundary
integral equation formulation also has proven effective for the poroelastic and thermoelastic
problems.
Koshelev and Ghassemi [11] is suggested a stationary boundary element method for thermo
and poroelasticity based on the complex variable hypersingular boundary integral equation.
Zhou and Ghassemi [12] developed a finite element method to implement the fully coupled
chemo-poro-thermoelastic linear and non-linear problems.
In this work a full analytical method is used to obtain the response of the governing equations,
where an exact solution is presented. The method of solution is based on the Fourier
expansion and eigenfunction methods, which is a traditional and routine method in solving the
partial differential equations. Since the coefficients of equations are not functions of the time
variable (t), an exponential form is considered for the general solution matched with the
physical wave properties of thermal, mechanical and pressure waves. For the particular
solution, that is the response to mechanical and thermal shocks, the eigenfuncion method and
Laplace transformation is used.

2 Governing equations

A hollow cylinder with inner and outer radius r; and r,, respectively, made of isotropic
material subjected to radial-symmetric mechanical, thermal and pressure shocks is considered.
The theory of porothermoelasticity for wave propagation is considered to allow coupling
between deformation, thermal energy and pressure fields and to describe the physical
behavior of the elastic domain to mechanical, thermal and pressure shock loads. Navier
equation in term of the displacement components is obtained as [4]

u,r,+gu,,—%u—a(l+v)(l_2v) p,r_ﬂ(l+v)(1—2v) ’r_p(1+v)(l—2v)u=_(1+v)(l—2v) Frt)
rolor (1-v)E (1-v)E (1-v)E (1-v)E
(1
Heat conduction equation in radial-symmetric direction with the mechanical coupling term is
2 T . T T 2 1
T, ,+=T,2Z—=—T+Y—=p-pF—U, +—U)=——0Q(r,t 2
T2 T Y () = — QU @

According to Darcy's law and continuity condition of seepage, the equation of mass
conservation can be written as
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where (,) denotes partial derivative, u is the displacement component in the radial direction, p
the pore pressure and a =1-C,/C is Biot’s coefficient,C, = 3(1 - 2v,)E_the is coefficient of

volumetric compression of solid grains, with E_ and v, being the elastic modulus and
Poission’s ratio of solid grains and C=3(1-2v)E 1is the coefficient of volumetric
compression of solid skeleton, with E and v being the elastic modulus and Poission’s ratio
of solid skeleton, T, is the initial reference temperature, 8 =3a,/C the thermal expansion

factor, «, 1is the coefficient of linear thermal expansion of solid grains,

S
Y =3(na,, +(¢—n)ay) and a, =n(C, -C,)+aC, are coupling parameters, «,, and C,
are the coefficients of linear thermal expansion and volumetric compression of pure water, n
is the porosity, K is the hydraulic conductivity, p, is the unit of pore water and

Z =((1-n)psCs +np,C,) /T, =3Ba, 1s coupling parameter, p, and p, are the densities of pore
water and solid grains , C,, and C, are the heat capacities of pore water and solid grains and

K 1is the coefficient of heat conductivity. Here, F(r, t), Q(r, t) and W(r, t) are the body force,
heat generation source and the injected volume rate per unit volume of a distribute water
source, respectively. The mechanical, thermal and pressure boundary conditions are

Chu(, ) +Chu (r,t)+ C3T(r, 1) + Cpup(r;, t) = £, (1)
Cyu(r,, t) +Cpu (r,,t) + C, T(r,,t) + Cpyp(r,, t) =1, (1)
Cy T(r,, )+ C, T (1, t) = £5(D)

C,T(r,,t)+C,, T, (r,,t) =1,(1)

Csip(r;, ) = £5 ()

Cap(r,, 1) =14 (t)

(4)

Where C;; are the mechanical, thermal and pressure coefficients, which by assigning different

values for them different types of mechanical, thermal and pressure boundary conditions may
be obtained. These boundary conditions include the displacement, strain, stress, specified
temperature, convection, pressure, and heat flux. The initial boundary conditions are assumed
in general form

u(r,0) =1, (r)
u (1,0) = £, (r)
T(r,0) =1£,(r)
p(r,0) = £}, (r)

)

3 Solution

Equations (1) to (3) are the system of non-homogeneous partial differential equations with
non-constant coefficients (functions of radius variable r only) has general and particular
solutions.

3-1 General solution with homogeneous boundary conditions

Since the coefficients of these equations are independent of time variable (t), the exponential
function form of time variable may be assumed for the general solution as
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u(r,t) =[U(r)le*
T(r,t)=[0(r)]e" (6)
p(r,t) =[P(r)le*

Substituting Egs.(6) into homogeneous parts of Egs. (1) to (3), yields

U”+1U’—L2U +d,P'+d,0'=0
r r

0+ 1o d, A0+ d5/1P+d6/1(U'+lU)= 0 (7)
r r

P"+1P'+d7/1P+ d8/10+d9/1(U'+lU)=0
r r

Equations (7) are a system of ordinary differential equations, where the prime symbol (')
shows differentiation with respect to the radius variable ® and d, to d, are constant

parameters given in the appendix.
3.2 Change in Dependent Variables

To obtain a solution for Egs.(7) the dependent variables are changed as
1

U'(ry=r 2U(r)
O’ (r)y=r 26(r) (8)
P'(r)=r 2P(r)

Substituting Eqs.(8) into Eqs.(7) gives

v+ lu 2 yiaeu-d, o0 -d tlpiap =0
r r 2r 2r
w1y 11 31 ,
0"+-0'-——0+d,A0+d1——U +d,AU"+d;AP =0 9)
r 4r 2r
1 11

P +=P -

. P+d, AP+ d8/16?+d9/1%%U +d,AU"=0

o
3.3 Solution
The first solutions of U, ,6, and P, are considered as
U, () =AJ, (4
2
6,(r)=BJ, (pr) (10)
2
R(r) :Cl‘]l(ﬂr)
2
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Substituting Eqgs.(10) into Egs. (9) yields

{(_IBZ +/12d3)'6\ - dzﬂBl _dlﬁq}‘J}(ﬁr) =0
(Ad,BA + (= 4+ 2d,)B + 2d,C, 1, (fr) =0 (11)

{ﬂdgﬂA +Z’dsBl +(_ﬂ2 +ﬂd7)Cl}‘Jl(ﬁr) =0

2

Equations (11) show that U, ,6, and P, can be the solutions of Egs. (9), if and only if

g +xd,  -d,B -dp 1(A] (o
M —p+ad,  Ad, B =140 (12)
Ad, B iad,  —p+ad, ||lc| |0

The non-trivial solution of Eq. (12) is obtained by equating the determinant of this equation to
ZEero as

d,d,d, 2 —d,d.d2* — p2d,d £ - p2d,d, 2 — p2d,d A2 + A2dd 2
+ p2dd,d, 2 - f2d,d,d, 2 + p2d,d.d A2 - p2d,d,d, 2 + 5, 2 (13)
+pid A+ pid A - pd,d A - pdd,A— B =0

Equation (13) is the first characteristic equation. Thus, it is concluded that U, ,6, and B

satisfy the system of equations (9) and they are the first solution of the system. The second
solutions of U, ,8, and P, are considered as

U, (1) =[A () + Ard ()]
6,(r)=[B,J, (A1) + Byrd, (/)] (14)
P(1) =[C,J, (Br)+Cyrd, ()]

Substituting Egs. (14) to Egs. (9) yield
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{5 ~d,2) +cd p+B.d, B3, (1)

+{— AS+AdL - A B —Cd, —Bd, - B,d,f—C,d A+ Ad, 4’ %}Jz(ﬂr) =0

{-B,S +2B,5+B,d, A+ AdS1+C,d A}, (Br)

+{Ad B2+ (- B +d,A)B, + C,dAJr, () _ 0 )
C,p+C,d,A+B,dA+ A2d9/1,B—C2,;2}J1(,Br)

+{+ AdyAB + Bidd+ (- f2 +d,A)C, }rJ3(/2)’r) =0

The expressions for U, ,8, and P, can be the solutions of Egs. (9), if and only if

BT+ Ad, —d,p —d,p (A [0
M, -pF+ad, Ad B, =10 (16)

Ad, d, —p*+ad, ||c,] |0
(d3ﬂ*2 _ﬂz)Az +(d3/12%_ﬂJA3 _dzﬂBz - dzB3 _dlﬂcz - d1C3 =0 (17)
d,ABA, + (- B> +d,4)B, + 2B, +d,AC, =0 (18)
dyABA, +dyAB, +(d, A - A7 )C, +2/5C, = 0 (19)

The non-trivial solution of Egs. (16) is obtained by equating the determinant to zero as
d,d,d, 2" -d,d,d, 2" - °d,d, A’ - g°d,d, 2’ - g°d,d. A’ + p*d,d A’
+4°dd,d, 2’ - g°dd.d. A + g°d,d.d, 2 - g°d,d,d, 2> + g*d A (20)
+p4d, A+ p'd,A-pd,dA-pdd,A-B°=0

Equations (17) to (19) give the relations between A,,A,,B,,B;,C, and C, and they play as

the balancing ratios that make Eq. (14) to be the second solution of the system of equations
(9). The third solution of the system of the ordinary differential equations with non-constant
coefficients (9) must be considered as

U, (1) =[A3, (Br)+ Ard (A + Arid, (4]
6,(r)=[B,J, fr)+ Byrd, (Sr) + BrJ ()] 1)

P3(r) = [C4Jl(,6’r)+C5rJi(ﬂr)+C(,eré(,Br)]

Substituting Eqgs. (21) into Eq. (9) yield
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J -
. L) =0

% B> +d, /12 A4+(—ﬁ'+d y jA5+(—3 dﬂfﬂ JAS
B,d,—d,B, —3d, B, ~C, Ad, - Csdl—C6—d1 2
- ' p A s

(8> —d,22)A, +C,Bd, + B,d, B} (ﬁ’r) 0

rJ, (Br)=0

1

{
{dﬁ/wAﬁ ﬂ +d /1) 4+2ﬂBS+d5/1C4}Jl(ﬁr):0
-
{

{ﬂ —d,2)A + ﬂ—EdyiszﬁBsd2ﬂ+dzBﬁ+C5ﬂdl
doABA + (B —d,A)B, —d,AC, Jr*J (ﬁr) 0

d ABA +3d A +(d,A— B°)B, +[ ;ﬂ+ﬂJB +d,AC, +d, > /5’ }rJ3(ﬂr)=O
+d, A, B+ dAB, + (- ,82+d7/1)C4+2C5,B}J1(/3r)=0
{~d.2+ > )c, - dy 1B, d/lAs/i’}rJ(ﬂr) 0

22
{(—ﬂ2+d7/1)cs [ﬁ+d zﬂjc +d B, +d, ﬂﬂ,B +d,A8A +3d, M\S}r\] (fr)=0 2)
2
The expressions for U, ,8; and P, can be solutions of Eq. (9), if and only if

- B+ Ad, -d,p -df A 0
Ad. S - B +d, Ad, B, r=10 (23)

Ad, B Ad, - B> +d, ||C, 0

2 2 2 15

(g +d/1)A4+[—ﬂ+d/1 JA5+(—3 +d,/ jAﬁ

B B (24)

_B,d,f—d,B, —3d, ﬂB _C,pd, - Csdl—Cé%dlzo

5 3,001
(B> —d.22)A +(,B—Ed3/12jA3 +B,d,f+d,B,+C,d +C,Jd,~—C,d, =0 (25)

d,ABA, + (- f> +d,4)B, + 2B, +d,AC, = 0 (26)
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doABA +3d A +(d,A— B )B, + (d4 %/1 + ﬂJ B, +d,AC, +d, %;tcé =0 27)

dyAAB +dyAB, + (- > +d,2)C, +2C,8 =0 (28)
(g2 +da), +(ﬂ+ d7z%jcﬁ +d B, +d, %,156 +d, 1A +3d, A, =0 (29)

The non-trivial solution of Eq. (23) is obtained by equating the determinant of this equation to
Zero as

d,d,d, 2 —d,d.d.4* — g°d,d, £ - p>d,d, 2 - p°d,d, 2 + B2 d 2
+ 4%d,d,d, A% — p>d.dd, 4 + B2d,d d, 2 — B°d,d.d, 2 + Bd, 2 (30)
+ B A+ pid, A - pid,d A - BAd,d,A— B =0

The characteristic equation (30) is the same as the characteristic equations (13) and (20).
This equality is interesting as it prevents mathematical dilemma and complexity and a single
value for the eigenvalue £ simultaneously satisfies three characteristic equations (13), (20)

and (30). Equations (24) to (29) gives the relations between A, A,A,B,,B;,B,,C,,C, and
C,. These relations play as the balancing ratios that help Eq. (21) to be the third solution of
the system of equations (9). The complete general solutions for the solid sphere are

U9(r) = Ad3 (B + ALE IS (A +13 5 (] + ALE, I3 (B +E3rds () +12 34 ()]

2 2 2 2 2 2

0%(1) = AL4d, () + ATEsI, (B)+¢6rds (A1+ AL, 31 (A +Eerds (B +Eor? s (A] - (31)
2 2 2

2 2 2

Pg(r):AiClO‘]l(,b)r)‘*‘Aa[gllJl(ﬁr)+§12rJg(ﬁr)]+A6[§13Jl(,3r)+§14r~]3(ﬂr)+§15rng(ﬁr)]

2 2 2 2 2 2

and for hollow sphere are

US(r)= Ady () + ALE I3 (B + 15 (BN1+ AEd5 (B + Grd s (Br) +125 (Bn)
2

2 2 2 2 2

+ AY; (B + ALE Y3 (B +1Ys (BO]1+ ALSLYs (BN +ErYs (B +12Y, (B
2 2 2 2 2

2
09%(r) = A1§4Ji(,3r)+As[éls‘]l(ﬂr)+é’6r‘]§(ﬂr)]+%[§7Jl(ﬁr)+§8r‘]g(ﬁr)+§9rzJé(ﬁr)]
A 2 2 2 2 2 2 (*Y)
+'A1§4Yl(ﬁr)+As[ngl(ﬂr)+§6rY3(ﬂr)]+A6[§7Yl(,3r)+gerg(ﬁr)+§9r2Y§(ﬁr)]
2 2 2 2 2 2
PI(r = AigloJl(ﬁr)+ As[gllJl(ﬂr)+§12rJ§(ﬁr)]+ A6[§13Jl(ﬁr)+§14r\]i(,6‘r)+glseré(,Br)]
2 2

2 2 2 2

+ AL10Y1 (B + ALEHY (B + &Y B0+ ALS 1Y) (B + 1Y (B + &5t Y5 ()]
2 2 2 2 2 2

Where ¢, to £ are ratios obtained from Egs. (23) to (29), (16) to (19) and (12) and are given
in the appendix. SubstitutingU ¢ ,0° and P? in the homogeneous form of the boundary
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conditions (4), three linear algebraic equations are obtained. They are the coefficients
depending on A and f. Setting the determinant of the coefficients equal to zero, the second

characteristic equation is obtained. Simultaneous solution of this equation and Eq. (11),
results into infinite number of two eigenvalues S, and A,. Therefore U? ,0° and P9 for

solid sphere are rewritten as

U9(r)= A{Js(ﬂf)+§16[§133(,3f)+r35(,b’r)]+§17[§z~]3(ﬂr)+é“3r35(ﬂf)+f237(ﬁr)]}

2 2 2 2 2 2

eg(r)=A1[§4J1(ﬁr)+§16[§5J1(,Br)+§6rJ3(ﬁr)]+g“l7[g”7Jl(ﬂr)+§8rJ3(ﬁr)+§9r2J5(ﬁr)]} (33)

2 2 2 2 2 2

Pg(r):Al{é’loJl(ﬁr)+§16[§11\]1(ﬁr)+§12rJ3(ﬂr)]+§17[§1331(ﬁr)+§14r~]3(,Br)"‘é,lsers(ﬂr)]}
2 2 2

2 2 2

Where £, and ¢, are presented in the appendix. Let us show the functions in the brackets
of Eq. (33) by functions H_,H, and H, as

Ho = 35 () + C16[61 35 () + 15 (A1 61 €035 () + 43835 () +1235 (4]
2 2

2 2 2 2

H, :§4Jl(ﬂr)+gle[gle(ﬂr)+é’érJi(ﬂr)]‘i‘4’17[4’7Jl(ﬂr)+§8r~]g(ﬂr)+§9r2J§(ﬂr)] (34)
2 2 2 2 2

2

H, :gloJl(ﬂ)+516[511\%(,57)+512r‘]3(,3r)]+517[513\%(,57)+§14r33(ﬂr)+§15r235(ﬂr)]
2 2 2 2 2

2

According to the Sturm-Liouville theorem, these functions are orthogonal with respect to
the weight function p(r) = r such as

R nem 35
{ (B,nH(B,,r)rdr = ||H(an)|2 (35)

where ||H (,Bnr)” is norm of the H function and equals

IH(B,)

|=[rfrH2<Bnr>drT (™)

Due to the orthogonality of function H, every piece-wise continuous function, such as f{(r), can
be expanded in terms of the function H (either H_, H, or H, ), and is called the H-Fourier
series as
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fn="Xe, H(p,n (37)
where €, equals
e, = JfH@rdr (38)
[HB, 0| =

Using Egs. (6), (33) and (34) the displacement and temperature distributions due to the
general solution become

W= 5 (3 a,,eH, (B,

= m=1

T =5 {2 Nyyayue™ JH, (B1) (39)

© 4
pg(r’t) = Z_:l {Z—:1 Mnmanmex"mt}Hz(Bnr)

where Ny, and M, are ratios obtained by substituting Eqgs. (39) to Eq. (1) to (3). Using the
initial conditions (5) and with the help of Egs. (36), (37) and (38), four unknown constants are
obtained.

3-4 Particular solution with non-homogeneous boundary conditions

The general solutions may be used as proper functions for guessing the particular solution
adopted to the non-homogeneous parts of the Eqgs.(1) to (3) and the non-homogeneous
boundary conditions (4) as

u’(r,t) = ii{ Gy, (0T 3 (Bur) + G, (1T 5 (Bur) + G, (DT (Bnr)} +1°G,, (1)}

T (1,0 = X4{ G (OF, (Bur) + G, (01T, Bur) + Gy, (t)ers(Bnr)}rngn ®)  (40)

2 2 2

p’(r,t) = Zai: {| Gon (t)Jl (Bnr) + Gy, (t)rJg (Brr) + Gy, (t)erSBnr)} +1°G,, (1)}

2 2 2

For the solid sphere, the second type of Bessel function Y is excluded. It is necessary and
suitable to expand the body force F(r, t), heat source Q(r, t) and porosity function W(r, t) in H-
Fourier expansion form as

F(r0=3 E,(OH, (B0
Q0= Q(VH, (B, (D)

PO =3 P,OH,(B,1)
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where Fy(t) , Qn(t) and Py (t) are

F.(t)= 3 5 jF(r t)H, (B, r)rdr
[HoGn]"

Q)= JQULOH, (A ek
LAVERY

P.(t) %jP(r t)H, (S, r)rdr
[H- B0

.. .3 .
-G (1B +diG (1) -G, (B + dse‘z(t)ﬁ —-3G;(H)+ d3G3(t) ,6’2 {Co + CI 5 +GC, 5 }d1664(t)
3 3
{Co +G E +C— 5 }d19G4(t) Gs(t)d, 8 — d,Gg (1) — 3d,G, (t) 5 + {Co +C E +C— 7 }dnGx(t)

1 3 15 3 15
—d,Gy (1) 5~ d,Gyo(t) - 3d1611(t)z + {Co +C E +C, F}dlsqz(t) - {Co +C E +C, F}dIOdBFn(t)

{Gg(t)ﬂz = diG3(1) = 66 C;G4 (1) — 1y CoGy (1) + Gy (1) /8 -y C,Gy (1) dlgczeu(o} o
+d,G;; (1) B +d;di3C, Ry (1)

G, (1) —diG, (1) + G (1) B - daés(t)% {— C -G, %}dm@ )+ {— C -G, %}dw@(t)

+ {Cl F.)+C, %}dlodn Fa()

+d,Gg (1) B +d, G, (1) - {C1 +G, %}dne‘s(t) +d,G, () B+dG (1) - {C1 +C, }d18612(t) =0

(42)

Substituting Egs. (40) and (41) into non-homogeneous form of equations (1) into (3) yield

_o (43a)

{+d6G1 (OB +dy, EOG4 ) -Gs (t)ﬁ2 +d4G5 () +2G4 (1) +dyEgGy (1) +d,, EOGS (t)} -0

+ d5G9 (H)dps EOGIZ (t)—d;d14EoQn (D)
{— 4G (0)8 — dy ExGy 1)+ Gy (0 — 0,6, (1)~ dyg EyGy (0 — cp Ex Gy (1) - dsé‘n(t)} »
— 0y, E,Gp, (1) + dy 0y, E,Q, (1)
d Gz OB+ 3déG3(t) + {El +E, ﬂ}d2164(t) Ge (t)ﬁ +d Ge O+G ML+ d4G7 (t)—

{El +E, ﬂ}dzoGg(t) +{E1 +E ﬁ}dzzeg(t) +dsGo (1) + dsGy (t) 5 {E1 +E ﬁ}dZBGlz(t)

{E1 +E, ﬂ}dlldMQn(t)

=0

(43b)

(43c)

(43d)

(43e)

(431)
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{+ Gy (1)dy /5 + Dy 5G4 (1) +dyGs (1)~ Gy (157 + 5 Gy (1) + Dy d G (t)+2elo<t)ﬂ} o (43g)
+ DG (1) + Dydy; Gy (1) — A2 dys DgWi (1)
{Gll(t) B — 6y (1) — dgG (1) — dyGy (£)5 — D1 205Gy (1) — Dyl Gy (1) - D2d24Glz(t)} o (43h)
— D065 () + dy .y s D W5 (t)

+G, (1) fdy +3G; (t)d, +{D1 +D, %}%64 (t)+dgGg (1)

+d3G; (U%{DIGS (H+D, %}Gs (D)5 — Gy (DA +d;Gyq (t)+Gll(t)ﬂ+d7GII(t)% =0 (431)

3 . 3 3
+{D1 +D, E}d27G12(t)+{D1 +D, E}dMGlZ (t)—{+ D, +D, E}dIZdISWn t)

where d,, to d,, are the coefficients of the H-expansion and constant parameters presented in

the appendix. By taking Laplace transform of Eq. (43) and using three boundary conditions of
Eq. (4) (for solid sphere only second, fourth and sixth boundary conditions are applicable), a
system of algebraic equations is obtained and solved by Cramer's methods in the Laplace
domain, where by the inverse Laplace transform the functions are transformed into the real
time domain and finally G,,(t) to G,,,(t) are calculated.

In this process it is necessary to consider the following points
1- The initial conditions (5) are considered only for the general solutions and the initial

conditions of G,,(t) to G,,,(t) for the particular solutions are considered equal to zero.

2- Laplace transform of Egs. (43) is in terms of polynomial function form of the Laplace
parameter s (not the Bessel functions form of s). Therefore, the exact inverse Laplace
transform is possible and somehow simple.

3- For the hollow Sphere it is enough to include the second type of Bessel function Y (r) in a
sequence of the particular solution as
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uP (1) = i{lGlnmJg(Bnr) 4Gy (OF) 5 (Br) + G (01T 5 (Bor)

n=1 2 2 2

+[G4n (DY (Bar) + G, (OFY 5 (Bor) + G g, (O07Y (Bnr)}ern (0+r°Gy, (0}
2 2 2

n=1 2 2 2

Try=Y {[ng (O, (Br) + G (O 5 Bir) + G“nmers(Bnr)]
(44)

[Glzn (Y, (Bur) + G 3, (OrY 3 Bar) + Gy <t>r2Y5<Bnr>]+er (©+1°Gyq, (1)}
2 2 2

pP(r,t) = i {[G17n (OF 1 (Bor) + Gg, (O1T 3 (Brr) + Gy, (t)ersﬁnr)]

n=l 2 2 2

+[G20n (OF , (Bar) + Gy (OFT 5 (Bo) + G, <t)r2J5Bnr>]+rzGZ4n O}
2 2 2

By substituting Egs. (44) in Egs. (1) to (3), eighteen equations are obtained, where using the
six boundary conditions (4) twenty four functions G, (t) to G,,,(t) are obtained for the

hollow sphere.
4 Resultsand discussions

In this section, the responses of a solid cylinder with radius 1m under different thermal
boundary are considered .the result obtained from the present formulation for a solid cylinder
are shown for several case. These include investigating the wave propagation in solid cylinder

on variation of the temperature, displacement. The initial temperature T, is considered to be

293°K The material properties are:
Tablel
Material Parameters

Parameter | Value Unit | Parameter Value Unit
n 0.4 - O 1.5x10° | 1/°C
E ) e Pa Oy Yx10* | 1/°C
\ 0.3 - Cs 0.8 J/g°C
To Yay Cw 4.2 J/g°C
K, Yx)o Pa Ds 2.6xV:" | g/m’
K. ox ' Pa Pw Yx Yo g/m3

K 0.3 w/m°C o ) -

For the first example, an instantaneous hot spot T(1,t) =107 Too(t), where d(t) is a unit Dirac
function, is considered and the outside radius of the cylinder is assumed to be fixed (u(1,t))=0
and p(1,t)=0).Figures la to lc show the wave fronts for the displacement , temperature and
pressure at three times(0.0001,0.00005,0.00001 second).
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Figure 1.a Non-dimensional displacement distribution due to input T(1,t) =107 T,5(t)

0.086,

L 1 L
01 0.2 03 0.4 05 0.6 0.7 0.8 09 1
Non-dimensional radius(r/r.)

0.05F

0.041

0.03

0.02

0.01

0

Non-dimensional temperature(T/T,)

-0.01

b

|met=0.0001
===t=0.00005
[1t=0,00001

LT

L 1 L

-0_02D

L 1 L
0.1 0.2 0.3 0.4 05 0.6 0.7 08 09 1
Non-dimensional radius(r/r_)

99

Figure 1.b Non-dimensional temperature distribution due to input T(1,t) =107 T,5(t)
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For the second example, a Heaviside function is applied to the outside surface of the cylinder
given as T(1,t)=10"> H(t), and the surface is assumed to be at zero temperature (u(1,t)=0 and
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p(1,t)=0). Figures 2a to 2c show variations for the displacement, temperature and pressure at

three times (0.0001, 0.00005, 0.00001 second).
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Figure 2.a Non-dimensional displacement distribution due to input T(1,t) =107 H (t)

0.7 T T T T T T T T

0.6 ==1=0.0001
===t=0.00005

0.5+ (t=0.00001

0.4}
0.3f

0.2

Non-dimensional temperature(T/T,)

0.1}F

L 1

0 1 L

L

Non-dimensional radius(r/r_)

L 1 L
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8

0.9 1

Figure2.b Non-dimensional temperature distribution due to input T(1,t) =107 H (t)
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Figure2.c Non-dimensional pressure distribution due to input T(1,t) =107 H(t)



An Exact Solution for Quasi-Static Poro-Thermoelasticity ...

101

For the third example, a sinosial function is applied to the outside surface of the cylinder
given as T(1,t)=sin(10t), and the surface is assumed to be at zero temperature (u(1,t)=0 and
p(1,t)=0). Figures 3a to 3¢ show variations for the displacement, temperature and pressure at

three times (0.0001, 0.00005, 0.00001 second).

-14

ex 10 T T T T T T T T
= o —1=0.0001
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E 4
[}
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o 3r
L
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kel
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-1 I I I
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Figure3.a Non-dimensional displacement distribution due to input T(1,t) = sin(10~t)
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5 Conclusion

In this paper analytical solution for the Quasi-Static porothermoelasticity of thick cylinders
under radial temperature is presented. The method is based on the eigenfunctions Fourier
expansion, which is a classical and traditional method of solution of the typical initial and
boundary value problems. The non-competetive strength of this method is its ability to reveal
the fundamental mathematical and physical properties and interpretations of the problem
under studying. In the Quasi-Static porothermoelastic problem of radial-symmetric cylinder,
the governing equations are a system of partial differential equations with two independent
variables, radius (r) and time (t). The traditional procedure to solve this class of problems is to
eliminate the time variable by using the Laplace transform. The resulting system is a set of
ordinary differential equations in terms of the radius variable, which falls in the Bessel
functions family. This method of analysis brings the Laplace parameter (s) in the argument of
the Bessel functions, causing hardship or impossibility in carrying out the exact inverse of the
Laplace transformation. As a result, the numerical inverse of the Laplace transformation is
used in the papers dealing with this type of problems in literature. In the present paper, to
prevent this problem, when the Laplace transform is applied to the particular solutions, it is
postponed after eliminating the radius variable r by H-Fourier Expansion. Thus, the Laplace
parameter (s) appears in polynomial function forms and hence the exact Laplace inversion
transformation is possible.
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Nomenclature

C, Heat capacities of pore water

C, Heat capacities of solid grains

Kk Hydraulic conductivity

n The porosity

u Displacement component in the radial direction

P Pore pressure component

C Coefficient of volumetric compression of solid skeleton
C, Coefficient of volumetric compression of solid grains
C, Volumetric compression of pure water

E, Elastic modulus of solid grains

K Coefficient of heat conductivity

Y Coupling parameter

T Temperature component

z Coupling parameter

E Elastic modulus of solid skeleton

T, Initial reference temperature

Greek symbols

o, Coefficient of linear thermal expansion of solid grains
a, Coupling parameter

o, Coefficients of linear thermal expansion

g Thermal expansion factor

Yw - Unit of pore wate

1% : Poission’s ratio of solid skeleton
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Vs Poission’s ratio of solid grains
Pu - Densities of pore water
Ps - Densities of solid grains
Appendix
dlz_a(l+v)(l—2v), dzz_ﬂ(l+v)(1—2v)
(l—v)E (l—v)E
T T T
d4 =—Z?, d5=Y?, d6=_5?7 d7=—0.’
1 1-2 1
dy =—aL, dm:_M, dy=-——,
k (1-v)E K
1 1 1
d;=[F()rdr,  dy=[G()rdr,  d=[W(r)rdr
0 0 0
71 3 L 3 1
dm—zgrdr, d17=5d2£r dr, d18=§d2£r dr,
7
d21 = E

1
dy, =dg[r’ar,
0

g1=¢s=¢p =

1
dy, =d, [ridr
0
L B
m, m
{ )M _ms}
my

m m

¢r=¢7=¢s :{—_—FjQ}

m,

{my, —dy &5 —di g5 }m6}

mz}{rnllé/S m3
m,m,
"
3

> d; =-p

Vol. 12, No. 1, March. 2011

1 151
dyp =dsfridr,  dyy=—rdr
0 4 0

1 1 1 1 1
de[r?dr,  dy=dyfridr,  dy=ds[ridr,  dy :1—5jrdr, d,s :ldgjrzdr
0 0 0 4 0 2 0

{mlo -dy s —d1§7}

-m s +my

my

mm
m, — M.
my

)
m mm}

m
Mg —My —— Ay +my
my
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{m“_mrlnm6} {mllgs_{m1o—d2§5—d1§7}m6

m,

}

S4=19-— mm & -
]

m _{mlo_dzgs _d1§7}_ﬂ§ }
3 4

Sy =—

-]
m,

m,
il
4 5 s

My —My — ¢ —9—My ——+1Tg
{ ’ mé} { Mg {m m ms}
h =My —
Mg
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m,
m, —m; —-
1 my m; I
Cio = + My =My —— Lo +9—My ——
mg mg my 6
m, —m, —- m, —m, —-
m m,
My
m {_m24_m3 }
o
+o-my ——d, -my, —
ms

ml Z—ﬂz +ﬁ«2d3, m2 =_d2,B, m3 =_dllB

m4 Zld6ﬂ, m5 :_ﬂz +ﬂ‘d4a m6 :ﬂ’dS

m, = SAd,, mg = Adg, m, =—ﬂ2 +4d,

my, =d3ﬂz %—,3, my; =2,3, my, :_3+d3ﬂ’2 1_52

My =-3d, 4, m,=->d, mg=--d

13 zﬂ’ 14 5 % 15 1

5 3 3

m16 =ﬂ—Ed3l2, ml7 :ﬂd4z+ﬂy ’m18:ﬂ+d7ﬂz
3 3

myy = ds Eﬂ’ My = dg Eﬂa m,, =34ds

my, =3dy4, My =My, + M58 +MyisCys

1
My, = Mg —Myy&ys _5d1§15 +dy &0,

Mys = My + M7, + Myds
My = Myglys + MGy + My,
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Co =1+ +4&17

C =411 +8281

C, =43¢y,

Eo =4 +¢5C16 +¢7617
E =616 + <3817

E, =&l

Dy = &0+ 11816 + 613617
D) = {12016 +S1aé17

D, =¢15¢17

Ho = Cod;3 () +Cirds (Br)+Cyr?J; ()
2 2 2

H, = EoJl(ﬂr)+ Elr\]g(ﬂr)ﬁL Ezeré(/}r)
2 2 2

Hy = DyJ, (Br)+Dyrd5 (Br)+D,r s ()
2 2 2
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