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A Differential Transform Approach for
Modal Analysis of Variable Thickness

A;}.faaf:grgfxgoj Two-directional FGM Circular Plates
on Elastic Foundations

Based on the differential transformation method, a semi-
analytical solution is developed for free vibration and modal
stress analyses of variable thickness two-directional functionally
graded circular plates with restrained edges, resting on elastic
foundations. Variations of the material and geometry
parameters are monitored by five distinct exponential functions.
The presented non-dimensional solution covers complex
combinations of the material properties, edge conditions, and
M.M. Alipour * § parameters of the elastic foundation. Results reveal that by a
Ph.D. Candidate @ proper adoption of the distribution of the material properties, a
somewhat uniform strength may be attained for the cross
sections without the need to change the geometric parameters of
the plate.
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1 Introduction

Many engineering components may be modeled directly or through employing some
simplifications, to circular plates with variable or constant thickness. Due to offering the
capability to monitor the material properties to meet the strength, toughness, heat transfer, and
other design requirements, plates made of functionally graded materials resting on simple,
elastic, or complex foundations, have recently drawn attention of numerous researchers. The
main advantage of using the functionally graded materials is the capability to accurately
monitor variations of the material properties of the mixture of the constituent materials at the
microstructure or continuum level. Therefore, e.g. one may achieve the strength requirements
by means of increasing the material strength at the more critical sections instead of increasing
the cross section at the mentioned regions. Two or three-directional functionally graded
materials enable a more accurate monitoring of the material properties.

Free vibration and modal stress characteristics of the functionally graded plates, affect their
transient dynamic responses significantly. Indeed, the transient response of the plate may be
determined through a mode superposition technique. Majority of the modal analyses of the
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circular plates have been accomplished for the isotropic ones [1,2]. Gupta et a. [3] analyzed
free axisymmetric vibrations of non-homogeneous isotropic circular plates with nonlinear
thickness variations on the basis of the classical plate theory employing the differential
quadrature method (DQM).

Some researchers have studied free vibration of functionally graded circular plates whose
material properties vary in the transverse or radia directions according to a power law or
exponential functions (one-directional functionally graded materials). Using the finite el ement
procedure, Prakash and Ganapathi [4] investigated asymmetric free vibration characteristics
of the functionally graded circular plates. Nie and Zhong [5] proposed a semi-analytical
method which uses the state space method and the one-dimensional differential quadrature
method, for three-dimensional free and forced vibration analyses of functionally graded
circular plates with various boundary conditions. Allahverdizadeh et al. [6] developed a semi-
analytical approach for nonlinear free and forced axisymmetric vibrations of a thin circular
functionally graded plate, using a time averaging technique. Hosseini-Hashemi et al. [7]
studied free vibration of radially FGM sectoria plates of variable thickness on elastic
foundations, using the classical plate theory. Dong [8] investigated three-dimensional free
vibration of functionally graded annular plates with different boundary conditions, using the
Chebyshev—Ritz method. A free vibration analysis of thick functionally graded plates
supported by two-parameter elastic foundations was presented by Malekzadeh [9], using the
three-dimensional theory of easticity. A semi-analytical approach composed of DQM and a
series solution was adopted to solve the governing equations.

The differential transform method (DTM) is a semi-analytical technigue the uses Taylor’s
series expansion. Employing DTM, it is possible to obtain highly convergent and accurate
results and exact solutions for differential or integro-differential equations [10]. By using this
method, the governing differential equations can be reduced to recurrence relations and the
boundary conditions may be transformed into a set of algebraic equations. Some researchers
have successfully used the DTM in solving the eigenvalue problems [11-13]. Yeh et al. [14]
analyzed free vibration of the rectangular thin plates, using a hybrid method which combines
the finite difference and the differential transformation methods. Yeh et al. [15] studied large
deflections of the orthotropic rectangular thin plates, employing asimilar hybrid method. Shin
et al. [16] applied the generdized differential quadrature method and the DTM for vibration
analysis of circular arches with variable cross-section. Yalcin [17] analyzed free vibration of
thin circular plates with various boundary conditions, using the differential transform method.

In the present paper, a semi-analytical solution for free vibration and modal stress analyses
of two-directional functionally graded circular plates with restrained edges, resting on two-
parameter elastic foundations is developed based on the differentia transformation method.
Thickness of the plate may vary in the radial direction. Although it is known that the exact
and analytical solutions are generally restricted to some specific geometry, boundary, or
loading conditions, present solution may be used for complex combinations of the material
properties, boundary conditions, and foundation stiffnesses. Plates with free, simply-
supported, and clamped edge conditions resting on two-parameter foundations are considered
in the present semi-analytical solution.

2 Description of the two-directional variations of the material properties

Consider acircular plate with an outer radius » made of a two-directional functionally graded
material supported by an elastic foundation with Winkler's (normal) and Pasternak’s (shear)
coefficients. The external edge of the plate may experience free, simply-supported, or
clamped axisymmetric boundary conditions. Variations of the material properties of the plate
are considered to be exponential in both radial and transverse directions. It is assumed that the
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material properties at any arbitrary point of the thickness located at a distance z from the mid-
plane of the plate, may be determined based on the following equations:

E(r,z)=E eml(%%)wi (1)
1«) = Eq

ol )= poe 2 @
Therefore, each of Young's modulus £ and mass density p functions is defined based on
multiplication of two exponential functions with dimensionless exponents. £, and p,are the
reference Young's modulus and mass density, respectively. The exponentsm,, m,, n,, and
n,may be positive or negative. Variations of Poisson’s ratio are negligibly small and
therefore may be ignored [18-21]. Therefore, this coefficient may be considered to be constant

all over.

Thickness of the plate may increase or decrease in the radia direction according to a
prescribed function such as the following one:

h(r) = hye ©)
Therefore, in Egs. (1) and (2), 4 that is appeared in the exponents, itself is a function of the
radial coordinate r:
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3 Thegoverning equations

Usually, the classical plate theory leads to sufficiently accurate results for the thin plates [22].
Since is intended to derive governing equations suitable for modal or afree vibration analysis
purpose, it is implicitly assumed that values of the externally applied forces (including the
body forces) are zero. Furthermore, the rigid-body modes are of no concern in the present
study. Therefore, since the materia properties are dependent on the radial coordinate r, the
equation of motion of the plate may be written as[3]:

Dd { d {1 d ( dwﬂ} dD dw 1( dD dzDszw 1 [dD dzDde
— || r— +2——3+— (2+V)—+r—2 — | V== |
rdr| dr|rdr\ dr dr dr r dr dr® ) dr ro\ dr dr< | dr

k, d( dw ®)

——‘—(r—) +k,w=—-Iw
rdr\  dr

where w is the transverse deflection and k&, and & are Winkler's and Pasternak’s coefficients
of the elastic foundation, respectively. v is Poisson’sratio and p and D are the mass density
and flexural rigidity of the plate, respectively:

hi2
1

1, .[E(z,r)zzdz (6)
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Substituting Eg. (4) into Egs. (6) and (7), leads to the following expressions:

D(r) = D* A(m)e " 8
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where

_3 YAV S 2 _ e” -1 * _ tho3
Alm) = @+ (my - 22)e™ - 4= (my + 22|, B(m,) [ o j D= i (10)

Since Eq. (5) is linear with respect to the time differentiation operators, the time dependency
of the solution may be expressed by an exponential function. Therefore, using a Kantorovich-
type approximation, solution of Eq. (5) may be expressed in the following form:

w=f(r)e'” (11)

where o is the natural frequency and i =(~/=1) is the imaginary number. Substituting Eg.
(11) into Eq. (5) yields:

Dd | d s d®f (@+v)D,+rD, \d?f (D,-rvD, \df
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To present amore general solution, the following dimensionless parameters are defined:

(12)

S c_ [
r= f . (13)

In the remaining part of the paper the bar symbol (—) will not be shown for the sake of

simplicity. Therefore, Eq. (12) may be rewritten in terms of the dimensionless parameters
defined in Eq. (13) as:

4 2 2 2 2
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and Q, K,, and K; are the dimensionless natural frequency, dimensionless Winkler’s normal
stiffness of the foundation and dimensionless Pasternak’s shear stiffness of the foundation,
respectively:

02— Pohob® 2 k b? k,b*

0l K =R g Kb (15)
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By substituting the bending rigidity D from Eq.(8) into Eq. (14), Eq. (13) becomes:

4 3
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In the above equation it is assumed that f is the dimensionless deflection and r is the
dimensionless radial coordinate.

Three type of the edge conditions are adopted in the present research: free, simply-
supported, and clamped edge conditions. According to the classical plate theory, these edge
conditions may be defined in terms of the dimensionless deflection function £(r) at the edge of
the circular plate (r=1) asfollows:

Free edge:
d’f  (1df
M| _ =-D =2 =0
rlr=1 |:dr2 +V(l” dl"j:| (17)
a*f 1d°f 1df d*f vdf
Vi _,=D ——s—-=—=|+D,|—5+——|=0
rir [dr3 +r dar® ¥ dr Mt dr? " rdr (18)
Simply-supported edge:
d*f 1df
=0, M,|,,=-D —5+v|==-||=0
r@=0, ). =-ol L[ 2L]) (19)
Clamped edge:
o ¥ g
f(l)_ ’ d r=1 = M (20)
r

where M, is the radial bending moment per unit length, and V, is the effective radia shear
force per unit length.

It is evident that since Eq. (16) is a fourth-order differential equation, then four boundary
conditions are required to obtain the relevant integration constants. One may obtain two of
those from the boundary conditions of the outer edge of the circular plate. However, the
remaining two conditions may be determined from the regularity conditions at the center of
the plate. In the case of an axisymmetric material distribution and axisymmetric boundary
conditions, one may express the regularity conditions at the center (»=0) of the circular plate
asfollows:

daf
dr

r=0 — 0’ Vr|r:0 = {D[daf +Eﬂ_i£J+D’r (de +1£j} r=0 — 0 (21)

ar® r ar* *dr dr® rdr

4 Employing the differential transform technique

4.1 A brief description of the differential transformation method

The differential transformation method (DTM), which was first proposed by Zhou [23] based
on the Taylor’'s series expansion, is a semi-analytical method that has been proposed mainly
for solving ordinary and partial differential equations.

In the DTM, certain transformation rules are applied and the governing differential
equations and the relevant boundary conditions of the system are transformed into a set of
algebraic equations in terms of the differential transforms of the original functions. Solution
of these algebraic equations gives the desired solution of the problem. The basic definitions
and the procedure of employing the method are introduced in the present section.

Consider afunction f{r) which is anaytic in adomain R and let »=r, represent any point in
R. It is intended to represent the function f(») by a power series whose center is located at
r=ry. The differential transform of the ith derivative of the function f{r) is given by



20 Iranian Journal of Mechanical Engineering Vol. 11, No. 2, Sep. 2010

1| d*
F, =E{—df f”} : (22)

where Fj is the transformed function. The inverse transformation of the function f(r) is
defined by

F0) =Y -1, (23)
Combining Egs. (22) and (23) leads to: _
o0 ( _ )k dk r
0-ZEH G &

According to Eg. (24), it may be noted that the concept of the differential transform is
derived from Taylor's series expansion. However, the method does not evaluate the
derivatives symbolically. In this method, the lower case letter represents the original function
and the upper case letter indicates the transformed function. In practical applications, the
function f(r) is usually expressed by afinite series. Therefore, Eq. (24) may be rewritten as

r—r, d* f(r
Z( _){ f()] 5

which implies that i(r—ro)ka has to be negligibly small. In the present research, the N

k=N+1
value is so chosen that the cal culated natural frequencies converge.
In table 1, the basic mathematical expressions that are frequently subjected to the
mentioned transformation in the practical problems, are listed along with their transformed
EXPressions.

4.2 Transformation of the present governing equation

According to the basic transformation operations introduced in table 1, the transformed form
of the governing Eq. (16) around =0, may be obtained as:

k
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Eq. (26) may be simplified to be:
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4.3 Transformation of the boundary/regularity conditions

Applying the transformation rules mentioned in table 1 to the boundary conditions of the edge
(r = 1) of the circular plate, presented in Egs. (17-20), the following equations are obtained:
Free edge condition:

i[k(k ~1)+vk]F, =0, i[kz(k —2)+ (n, +3ny)k(k —1+V)]F, =0 (29)
Simply—suppgzlfted edge condition:. -
iFk =0, i[k(k—l) +VK]F, =0 (30)
Clamped edge condition: - -
ZFk =0, Zka =0 (31)

At the center of the circular plate (r=0), the regularity conditions (21) can be transformed
asfollows:
2(n, + 3n) @

F=0F=- 9

+V)F, (32

5 Determination of the natural frequencies and the modal stresses

The natural frequencies may be extracted from the characteristics equations when the
transformed boundary conditions (29-31) are incorporated. As it has been mentioned before,
three kinds of edge conditions are considered in the present research: free, simply-supported,
and clamped.

Obtaining the Taylor series expansion (F,, k> 4) from Eq. (28) and substituting it into the
boundary conditions (29-31), one may obtain the following expressions for each condition:
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Y (Q)F, + V3 (Q)F, =0

n n (33)
Y (QF, + Y5 (Q)F, =0

where ¥;;, V)2, ¥, and ¥,, are polynomials in terms of Q corresponding to nth term. It may
be readily seen that in EQ. (33), ¥;;, %1, ¥, and ¥, represent series expressions. Eq. (33)
can be expressed in the following matrix form:

Y@ Q) |[F] [0 2

v @ vP©)5l o 39
Existence condition of the non-trivia solutions yields the following characteristic
determinant:

=0 (35)

v Q) WY (Q)‘
YE(Q) Y8 (Q)

which may be used to calculate the dimensionless frequencies. To determine value of the jth
natural frequency, the following convergence criterion may be used:

‘an) _an—l)‘ '
S j=123.n (36)

J

where » is the iteration counter, Q, is the estimated value of the jth dimensionless natural

frequency, and ¢ is a sufficiently small number that is chosen as ¢ =0.0001 in the present
study.

On the other hand, according to the classical plate theory, the radial and circumferential
stresses may be related to the lateral deflection through the following equations:

o = E(r,z)z [WW +KW,)

To1-y? r 37
o _E(r2)z lw +vw e
o 1—V2 p N2 g

Therefore, the dimensionless radial modal stresses may be calculated based on the following
equation:

ml(z+%)+n1r

_ bo, e 1%
O, =— = | W, +—Ww,

h§E, 1-v r

() (39)
m(z+—)+mr

_ bo, e 2
0(9 = > = > z _WJ’ + VW,H’
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6 Resultsand discussions

Example 1: Asavalidation example, the first three natural frequencies of homogeneous plates
with uniform thickness and simply-supported, clamped, and free edge conditions aready
studied by Refs. [2] and [24] are reexamined. Leissa [24] used the series solution and Wu et
a. [2] employed the generalized differential quadrature method to extract the results.
Poisson’s ratio is assumed to be 0.3. Table 2, compares present results with results of Leissa
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[24] and Wu et d. [2] for the dimensionless natural frequencyﬂza)bﬂ/pDo—}ff. Based on the

results given in table 2, there is a good agreement among the results. Present results are
almost coincident with results obtained by Wu et al. [2]. Therefore, accuracy of the present
resultsis proven.

Example 2: To evaluate influence of each of the geometric and the through-the-thickness and
in-plane material parameters on the natural frequencies of the plate for various edge
conditions (simply-supported, clamped, and free edge conditions) clearly, effects of each
parameter are studied individually. To this end, the plates considered in the foregoing
example are considered again and their material properties or geometric specifications are
changed accordingly. Results are given in tables 3 to 7 for the first two natural frequencies.
As it has been mentioned earlier, the parameter n; describes variations of the thickness of the
plate in the radial direction. Since the natural frequencies are dimensionless, the results may
be used for any geometric aspect ratio. Initial values of the first two natural frequencies have
been given in table 2. Asit may be expected, while positive m; and n; parameters increase the
natural frequencies, positive values of the m, and n, parameters decrease the natural
frequencies. Therefore, if for example it is intended to change natural frequencies of the plate
to avoid coincidence with natural frequencies of the adjacent components or the excitation
frequency of the foundation, one may use a plate whose material properties are graded either
in the transverse or radial direction. According to Egs. (8) and (9), in contrast to the thickness
variation parameter n; which appears in both equations, »n; only appeared in Eg. (8) and thus
positive n; values lead to stiffer plate and subsequently, higher frequencies. Furthermore, the
mass density parameter n, is appeared in Eg. (9) only, and therefore its positive values
decrease the natural frequencies. While according to Eq. (9), effect of identical n, and n;
values on the mass moment of inertia is equivalent, effect of the n; parameter on the bending
rigidity is three time that of »n;. Therefore, controlling the natural frequencies with parameters
that have distinct effects (rn; and n;) is more desirable than using a single »n; parameter that
affects both the bending rigidity and mass moment of inertia of the plate.

Example 3: A sensitivity analysis is performed in the present example. In this regard, effects
of seven geometric, material, and foundation parameters (m;, m,, n;, n,, n3, K,,, and K;) on the
first two normalized natural frequencies of the two-directional functionaly graded plate are
investigated. Since various boundary conditions have been used in the present study, effects
of the transverse variations of the material properties (m-parameters) are evaluated for plates
with ssimply-supported edge conditions. Effects of the n-parameters are evaluated for clamped
plates, and effects of the elastic foundation parameters (K-parameters) are studied for plates
with free edges. Results are illustrated in Figs. 1 to 6. In each figure, variation of the
normalized natura frequency versus one of the aforementioned parameters is plotted, for
specific combinations of the other parameters. Moreover, in each figure, the baseline curve
corresponds to (m;=1, m,=1, n;=1, n,=1, n;=0.5, K,,=5, and K,=25) excluding the parameter
that is used for the relevant sensitivity analysis. In Figs. 1 to 5, in some cases, curves
associated with different parameters are coincident. On the other hand, some curves that may
seem to be completely or partially coincident with other curves in one vibration mode are not
coincident in the other vibration mode.

Results depicted in Figs. 1 to 5 revea that negative n, and m, values increase the natural
frequencies. This conclusion confirms the previous conclusions. Effect of the shear stiffness
of the elastic foundation (Pasternak’ s coefficient) on the fundamental natural frequency of the
plate is noticeable whereas it has somewhat ignorable effect on the second natural frequency.
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Influence of the shear stiffness of the elastic substrate is more remarkable for smaller m; and
m, parameters.

To investigate effect of the stiffness of the elastic foundation on the natural frequencies of
the plate more clearly, a plate with free edges is considered in the present sensitivity analysis.
Results shown in Fig. 6 reveal that while effects of the Winkler and Pasternak parameters of
the foundation (K,, and K;) on the fundamental natural frequency of the plate are remarkable,
effects of these parameters on the higher (second) vibration natural frequencies are smaller.
Effect of K,, on the second natural frequency is amost ignorable.

Example 4: For a circular plate subjected to smooth variations in the applied transverse
pressure, the maximum radial stress that is mainly larger than the maximum circumferential
stress usually occurs in the center or edge of the plate. To enable a proper conclusion, the
transverse distributions of the radial stress are plotted in Fig. 7 for sections correspond to
(r=0, and r=1) of a plate with uniform thickness and clamped edges. Therefore, influence of
the moment exerted by the boundary as well as effects of the elastic foundation are engaged.
Asis may be noticed from results appeared in Fig. 7, the maximum stresses of the mentioned
sections have relatively different signs. However, in amodal analysis, the absolute sign of the
mode shape itself is of no importance (the reversed mode shape denotes the same mode
shape). Results show that a proper choosing of the material properties may lead to smaller
stresses or somewhat more uniform stress distribution. For example, the case with (m;=-1,
n;=-1) has led to smaller stress gradient in both critical sections. Therefore, by a proper
adoption of the distribution of the material properties, a somewhat more uniform stress
distribution or strengthening of the sections of the plate may be attained without the need to
change the geometric parameters of the plate (taking into account the resulted allowable
stresses). Even though it may seem that traditional materials with higher Young's modulus
have generally higher mass densities, this is not a rule, e.g. in the composite materials,
Y oung’s modulus to mass density ratio is remarkably higher.

7 Conclusions

In the present paper, a semi-analytical solution is developed for free vibration and modal
stress analyses of circular plates made of two-directional functionally graded materials resting
on two-parameter elastic foundations. The differential transformation method is employed to
develop the solution. The thickness of the plate may vary in the radial direction. The solution
covers complex combinations of the material properties, edge conditions, and parameters of
the elastic foundation. Therefore, the resulted non-dimensiona solution may be used for a
wide range of the practical problems. Influence of monitoring variations of the material
properties on the natural frequencies and the through-the-thickness distribution of the modal
stress is also investigated. Results reveal that by a proper adoption of the distribution of the
material properties, a somewhat uniform stress distribution or strengthening of the sections of
the plate may be attained without the need to change the geometric parameters of the plate.
Many novelties are included in the present research. Comparisons made between the present
results and results reported by well-known references for special cases treated before, have
confirmed accuracy and efficiency of the present approach.
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Nomenclature

A B
b

D, D"
E E,
Fi

>
Nyl
S

7

~
STETH
S

compact expressions
outer radius of the plate
flexural rigidity, reference flexural rigidity
Y oung’s modulus, reference Y oung’ s modulus
transformed function
amplitude of the lateral deflection
thickness, thickness at the center of the plate
mass moment of inertia
the imaginary number and a counter
non-dimensional Winkler’s and Pasternak’s coefficients
counter
Winkler's and Pasternak’ s coefficients of the elastic foundation
counter
radial bending moment per unit length

m;, my, m3 Young's, density, and thickness exponents of the power law functions
N upper limit of the series counter

n iteration counter

ny, ny, n3  Young's, density, and thickness exponents of the power law functions
r radius

t time

Vv, effective shear force per unit length

w lateral deflection

z transverse coordinates

Greek symbols

0 Kronecker deltafunction

£ convergence tolerance

1% Poisson’sratio

Ps Po mass density, reference mass density

0,09 radial, circumferential stresses

0 dimensionless natural frequency

@ natural frequency

¥ polynomialsin terms of the natural frequencies

27
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Table 1 Some of the transformation rules of the one-dimensional DTM.

Original function

Transformed function

f(r)=g(r) £ h(r) Fy =Gyt H,
S (r)=2g(r) F, =G,
f(r)zg(r)-h(r) Fk:Zf:OGl Hy_,
f(}")— d;fgr) Fk - (k Zln)| Gk+n
1 k=
1)=r Aialk-n)={g 1"
1(r)=exp(r) 2
k!
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Table 2 Thefirst three natural frequencies of isotropic plates with uniform thickness (m,, m,,n;, K , K, = 0).

n, =-0.5 n =0 n, =1

n,=-05 1| n,=0 n,=1 |n,=-05| n,=0 | n,=1 |n,=-08 n,=0| n,=1

Q,| Ppresent 4.9674 44630 | 35491 | 54854 | 4.9351 | 3.9330 |7.0874 | 6.3903 | 5.1187
Ref[3] 4.8363 43455 | 3.4540 | 54854 | 49351 | 3.9330 |7.0874 | 6.3917 | 5.1187

‘g Q, present 20.5661 | 26.1629 20.f79 33.4691 29.gZO 23.7293 43.0951 | 38.5045 | 30.5755
g Ref[3] 29.4088 | 26.0326 20.2276 33.4691 29.gZO 23.7293 43.0951 | 38.5132| 30.5755
1;35- Q,| present 73.9182 | 65.2549 50.?48 83.7329 74.;.56 57.;66 107.172 | 95.4506 | 75.2496
Ref[3] 73.7511 | 65.1256 | 50.438 | 83.7329 | 74.156 | 57.766 |107.172 | 95.4730 | 75.2496

Q, present 9.56842 8.7401 7.22250 11.1468 10.:216 8.45;48 15.3?791 14.1597| 11.8597
Ref[3] 9.5005 8.6879 | 7.1733 | 11.1464 | 10.215 | 8.4746 |(15.3791 | 14.1597 | 11.8597

% Qz present 39.0448 | 34.7307 27.568 44.5765 39.j773 31.;1112 58.2294 | 52.2669 | 41.7754
S Ref[3] 38.9153 | 34.6170 | 27.179 | 445753 | 39.771 | 31411 |58.2294 | 52.2669 |41.7754
Qs present 88.3185 | 78.1659 60.}65 100.389 89.2.08 69.2563 1292334 115é455 91.2929
Ref[3] 88.1704 | 78.0372 | 60.664 (100.3867 | 89.104 | 69.661 |129.334 | 115.455|91.2929

Ql present 9.36847 | 8.10603 6.065?64 10.3964 9.0]631 6.73390 13.]?162 11.2019 8.5971
Ref[3] 9.2861 8.0258 | 5.9841 | 10.3962 | 9.0031 | 6.7388 |13.1162 | 11.4019| 8.5971

Q, present 38.7155 | 34.0272 26.j:-L71 43.6095 38.;143 29.8751 55.3258 | 49.0768 | 38.4637

g Ref[3] 38.5853 | 33.9100 | 26.079 | 43.6084 | 38.443 | 29.751 |55.3258 | 49.0768 | 38.4637
Q,| present 87.9651 | 77.4500 59.2373 99.3810 87.2750 68.3)05 126%287 112(.)163 87.9488
Ref[3] 87.8164 | 77.3162 59.';370 99.3786 87.2750 68.803 126%287 112(.)163 87.9488
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Table 3 Influence of the parameter m, that describes transverse variations of Young's modulus, on the
first two natural frequencies of the plate (m,=n,;=n,=n;=K,=K,,=0).

my Simply support clamp free
Ql Q 2 Ql Q 2 Ql Q 2

-2 3.436 20.697 7.114 27.697 6.269 26.772
-1.75 3.548 21.370 7.345 28.598 6.473 27.643
-1.5 3.675 22.136 7.609 29.623 6.705 28.634
-1.25 3.821 23.010 7.909 30.792 6.970 29.764
-1 3.987 24.010 8.253 32131 7.273 31.058
-0.75 4177 25.157 8.647 33.665 7.620 32.541
-0.5 4.396 26.473 9.099 35.426 8.019 34.243
-0.25 4.647 27.984 9.619 37.449 8.477 36.198
-0.1 4.815 28.997 9.967 38.803 8.784 37.508
0.1 5.061 30.483 10.478 40.793 9.234 30.431
0.25 5.265 31710 10.900 42.435 9.606 41.018
0.5 5.644 33.992 11.684 45.488 10297 | 43.969
0.75 6.078 36.603 12.582 48.983 11.088 | 47.347
1 6.573 39.587 13.607 52.975 11992 | 51.206
1.25 7.138 42.989 14.777 57.528 13.022 | 55.607
15 7.781 46.863 16.108 62.712 14196 | 60.618
1.75 8.512 51.265 17.621 68.603 15530 | 66.312
2 9.342 56.261 19.338 75.288 17.043 | 72.774

Table 4 Influence of the parameter m, that describes transverse variations of the mass density, on the

first two natural frequencies of the plate (m;=n;=n,=n;=K,=K,,=0).

my Simply support clamp free
Ql Q 2 Ql Q 2 Ql QZ

-2 7.505 45200 | 15536 60.486 13.692 58.467
-1.75 7.182 43.253 | 14.867 57.881 13.102 55.948
-1.5 6.857 41.297 | 14.195 55.263 12510 53.418
-1.25 6.532 30337 | 13521 52.641 11.916 50.883
-1 6.207 37.380 | 12.849 50.022 11.323 48.352
-0.75 5.883 35433 | 12179 47.416 10.733 45.833
-0.5 5.563 33502 | 11516 44.833 10.149 43.336
-0.25 5.246 31595 | 10.860 42.281 9.571 40.869
-0.1 5.059 30466 | 10472 40.769 9.229 39.408
0.1 4.812 28.980 9.961 38.781 8.779 37.486
0.25 4.630 27.883 9.584 37312 8.446 36.067
0.5 4332 26.091 8.968 34.916 7.904 33.750
0.75 4.043 24.353 8.371 32.589 7.377 31.500
1 3.764 22.672 7.793 30.340 6.868 29.327
1.25 3.496 21.055 7.237 28.176 6.378 27.236
15 3.239 19.507 6.705 26.104 5.909 25.233
1.75 2.994 18.030 6.197 24.128 5.462 23.322
2 2.761 16.628 5.715 22.251 5.037 21508
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Table 5 Influence of the parameter n, that describes radial variations of the Young's modulus, on the
first two natural frequencies of the plate (m; =m,=n,=n;=K,=K,,=0).

Ny Simply support clamp free
Ql Q 2 Ql Q 2 Ql Q 2

-1 438640 | 234060 | 7.74010 | 30.6430 7.55643 30.4005
-0.75 437316 | 246857 | 818267 | 32.5661 7.78380 32.1107
-0.25 465628 | 27.8517 | 9.43227 | 37.1361 8.51600 36.1410
-0.1 481455 | 289515 | 9.89106 | 38.6902 8.79993 37.5008
0.1 5.06595 | 305151 | 105548 | 40.8868 9.21634 39.4128
0.25 5.27744 | 317537 | 110883 | 42.6229 9.55260 40.9151
0.5 5.65504 | 339240 | 120396 | 456727 10.1477 43,5329
0.75 6.03732 | 361932 | 13.0635 | 48.8968 10.7705 46.2661
1.25 6.68258 | 40.8237 | 153354 | 55.7498 12.0220 51.9187
15 6.86945 | 43.0492 | 16.6087 | 59.3075 12.6088 54.7352

Table 6 Influence of the parameter n,that describes radial variations of the mass density, on the first two

natural frequencies of the plate (m; =m,=n;=n;=K,=K,,=0).

ny Simply support clamp free
Q, Q, Q, Q, Q, Q,

-1.5 6.675 42.184 13.115 55.551 13.858 55.889
-1.25 6.367 30.844 12.610 52.629 12.896 52.553

-1 6.066 37.614 12.113 49.827 12.002 49.401
-0.75 5.772 35.490 11.625 47.144 11.170 46.422
-0.25 5.206 31.546 10.676 42118 9.675 40.951
-0.1 5.042 30.439 10.398 40.697 9.266 39.429

0.1 4.828 29.015 10.034 38.862 8.747 37.479
0.25 4.672 27.984 9.765 37.529 8.376 36.076

0.5 4.417 26.337 9.324 35.391 7.792 33.843
0.75 4.170 24.775 8.894 33.353 7.247 31.736
1.25 3.703 21.889 8.065 29.563 6.263 27.879

15 3.483 20.559 7.668 27.806 5.819 26.115

Table 7 Influence of the parameter n; that describes variations of the thickness of the plate in the radial

direction, on the first two natural frequencies of the plate (m; =m,=n;=n,=K,=K,,=0).

N3 Simply support clamp free
Ql QZ Ql Q 2 Ql QZ

-0.5 5.218 24.3834 7.955 31110 8.457 31552
-0.4 4.872 24.934 8.057 32.267 8.326 32.456
-0.3 4.663 25.756 8.350 33.726 8.321 33.613
-0.2 4611 26.843 8.824 35.478 8.440 35.011
-0.1 4711 28.176 9.456 37.503 8.675 36.631
0.1 5.236 31426 11.075 42.245 9.39 40.405
0.2 5.564 33.237 12.014 44.881 9.822 42.468
0.3 5.864 35.083 13.021 47.630 10.247 44574
0.4 6.083 36.883 14.098 50.441 10.635 46.658
0.5 6.164 38.542 15.265 53.255 10.949 48.642
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Figure 1 Effects of m; on the first two normalized natural frequencies of the plate for various combinations of
the parameters. The base line correspondsto (m,=1, n,=1, n,=1, n;=0.5, K,,=5, K,=25) and the other curves are
plotted based on changing one of the mentioned parameters.
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Figure 2 Effects of m, on the first two normalized natural frequencies of the plate for various combinations of
the parameters. The base line correspondsto (m,=1, n,=1, n,=1, n;=0.5, K,,=5, K,=25) and the other curves are
plotted based on changing one of the baseline parameters.
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Figure 3 Influence of »; on the first two normalized natural frequencies of the plate for various combinations of
the parameters. The base line corresponds to (m;=1, m,=1, n,=1, n;=0.5, K,,=5, K,=25) and the other curves are
plotted based on changing one of the baseline parameters.
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Figure 4 Influence of n, on the first two normalized natural frequencies of the plate for various combinations of
the parameters. The base line correspondsto (m,;=1, m,=1, n,=1, n;=0.5, K,,=5, K;=25) and the other curves are
plotted based on changing one of the baseline parameters.
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Figure 6 Effects of the parameters of the elastic foundation on the first two normalized natural frequencies of the
plate with free edges for various combinations of the parameters (m;=1, m,=1, n;=1, n,=1, n;=0.5).
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