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1 Introduction  
 
Many engineering components may be modeled directly or through employing some 
simplifications, to circular plates with variable or constant thickness. Due to offering the 
capability to monitor the material properties to meet the strength, toughness, heat transfer, and 
other design requirements, plates made of functionally graded materials resting on simple, 
elastic, or complex foundations, have recently drawn attention of numerous researchers. The 
main advantage of using the functionally graded materials is the capability to accurately 
monitor variations of the material properties of the mixture of the constituent materials at the 
microstructure or continuum level. Therefore, e.g. one may achieve the strength requirements 
by means of increasing the material strength at the more critical sections instead of increasing 
the cross section at the mentioned regions. Two or three-directional functionally graded 
materials enable a more accurate monitoring of the material properties.  
    Free vibration and modal stress characteristics of the functionally graded plates, affect their 
transient dynamic responses significantly. Indeed, the transient response of the plate may be 
determined through a mode superposition technique. Majority of the modal analyses of the 
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Based on the differential transformation method, a semi-
analytical solution is developed for free vibration and modal 
stress analyses of variable thickness two-directional functionally 
graded circular plates with restrained edges, resting on elastic 
foundations. Variations of the material and geometry 
parameters are monitored by five distinct exponential functions. 
The presented non-dimensional solution covers complex 
combinations of the material properties, edge conditions, and 
parameters of the elastic foundation. Results reveal that by a 
proper adoption of the distribution of the material properties, a 
somewhat uniform strength may be attained for the cross 
sections without the need to change the geometric parameters of 
the plate.  
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circular plates have been accomplished for the isotropic ones [1,2]. Gupta et al. [3] analyzed 
free axisymmetric vibrations of non-homogeneous isotropic circular plates with nonlinear 
thickness variations on the basis of the classical plate theory employing the differential 
quadrature method (DQM). 
  Some researchers have studied free vibration of functionally graded circular plates whose 
material properties vary in the transverse or radial directions according to a power law or 
exponential functions (one-directional functionally graded materials). Using the finite element 
procedure, Prakash and Ganapathi [4] investigated asymmetric free vibration characteristics 
of the functionally graded circular plates. Nie and Zhong [5] proposed a semi-analytical 
method which uses the state space method and the one-dimensional differential quadrature 
method, for three-dimensional free and forced vibration analyses of functionally graded 
circular plates with various boundary conditions. Allahverdizadeh et al. [6] developed a semi-
analytical approach for nonlinear free and forced axisymmetric vibrations of a thin circular 
functionally graded plate, using a time averaging technique. Hosseini-Hashemi et al. [7] 
studied free vibration of radially FGM sectorial plates of variable thickness  on elastic 
foundations, using the classical plate theory. Dong [8] investigated three-dimensional free 
vibration of functionally graded annular plates with different boundary conditions, using the 
Chebyshev–Ritz method. A free vibration analysis of thick functionally graded plates 
supported by two-parameter elastic foundations was presented by Malekzadeh [9], using the 
three-dimensional theory of elasticity. A semi-analytical approach composed of DQM and a 
series solution was adopted to solve the governing equations. 
    The differential transform method (DTM) is a semi-analytical technique the uses Taylor’s 
series expansion. Employing DTM, it is possible to obtain highly convergent and accurate 
results and exact solutions for differential or integro-differential equations [10]. By using this 
method, the governing differential equations can be reduced to recurrence relations and the 
boundary conditions may be transformed into a set of algebraic equations. Some researchers 
have successfully used the DTM in solving the eigenvalue problems [11–13]. Yeh et al. [14] 
analyzed free vibration of the rectangular thin plates, using a hybrid method which combines 
the finite difference and the differential transformation methods. Yeh et al. [15] studied large 
deflections of the orthotropic rectangular thin plates, employing a similar hybrid method. Shin 
et al. [16] applied the generalized differential quadrature method and the DTM for vibration 
analysis of circular arches with variable cross-section. Yalcin [17] analyzed free vibration of 
thin circular plates with various boundary conditions, using the differential transform method.  
    In the present paper, a semi-analytical solution for free vibration and modal stress analyses 
of two-directional functionally graded circular plates with restrained edges, resting on two-
parameter elastic foundations is developed based on the differential transformation method. 
Thickness of the plate may vary in the radial direction. Although it is known that the exact 
and analytical solutions are generally restricted to some specific geometry, boundary, or 
loading conditions, present solution may be used for complex combinations of the material 
properties, boundary conditions, and foundation stiffnesses. Plates with free, simply-
supported, and clamped edge conditions resting on two-parameter foundations are considered 
in the present semi-analytical solution.  
 
2 Description of the two-directional variations of the material properties 
 
Consider a circular plate with an outer radius b made of a two-directional functionally graded 
material supported by an elastic foundation with Winkler’s (normal) and Pasternak’s (shear) 
coefficients.  The external edge of the plate may experience free, simply-supported, or 
clamped axisymmetric boundary conditions.  Variations of the material properties of the plate 
are considered to be exponential in both radial and transverse directions. It is assumed that the 
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material properties at any arbitrary point of the thickness located at a distance z from the mid-
plane of the plate, may be determined based on the following equations:   
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    Therefore, each of Young’s modulus E and mass density ρ functions is defined based on 
multiplication of two exponential functions with dimensionless exponents. 0E  and 0ρ are the 
reference Young’s modulus and mass density, respectively. The exponents 1m , 2m , 1n , and 

2n may be positive or negative. Variations of Poisson’s ratio are negligibly small and 
therefore may be ignored [18-21]. Therefore, this coefficient may be considered to be constant 
all over.    
    Thickness of the plate may increase or decrease in the radial direction according to a 
prescribed function such as the following one: 
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Therefore, in Eqs. (1) and (2), h that is appeared in the exponents, itself is a function of the 
radial coordinate r: 
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3 The governing equations  

 
Usually, the classical plate theory leads to sufficiently accurate results for the thin plates [22]. 
Since is intended to derive governing equations suitable for modal or a free vibration analysis 
purpose, it is implicitly assumed that values of the externally applied forces (including the 
body forces) are zero.  Furthermore, the rigid-body modes are of no concern in the present 
study. Therefore, since the material properties are dependent on the radial coordinate r, the 
equation of motion of the plate may be written as [3]:
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where w is the transverse deflection and wk and sk are Winkler’s and  Pasternak’s coefficients 
of the elastic foundation, respectively. ν  is Poisson’s ratio and ρ and D  are the mass density 
and flexural rigidity of the plate, respectively: 
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Substituting Eq. (4) into Eqs. (6) and (7), leads to the following expressions: 
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where 
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Since Eq. (5) is linear with respect to the time differentiation operators, the time dependency 
of the solution may be expressed by an exponential function. Therefore, using a Kantorovich-
type approximation, solution of Eq. (5) may be expressed in the following form:  
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where ω  is the natural frequency and i =( 1− ) is the imaginary number. Substituting Eq. 
(11) into Eq. (5) yields: 
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     To present a more general solution, the following dimensionless parameters are defined: 
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    In the remaining part of the paper the bar symbol ( __ ) will not be shown for the sake of 
simplicity. Therefore, Eq. (12) may be rewritten in terms of the dimensionless parameters 
defined in Eq. (13) as: 
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and Ω , Kw and Ks are the dimensionless natural frequency, dimensionless Winkler’s normal 
stiffness of the foundation and dimensionless Pasternak’s shear stiffness of the foundation, 
respectively: 
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By substituting the bending rigidity D from Eq.(8) into Eq. (14), Eq. (13) becomes: 
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 In the above equation it is assumed that f is the dimensionless deflection and r is the 
dimensionless radial coordinate. 
    Three type of the edge conditions are adopted in the present research: free, simply-
supported, and clamped edge conditions. According to the classical plate theory, these edge 
conditions may be defined in terms of the dimensionless deflection function f(r) at the edge of 
the circular plate (r=1) as follows: 
Free edge: 
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Simply-supported edge: 
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Clamped edge: 
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where Mr is the radial bending moment per unit length, and Vr is the effective radial shear 
force per unit length. 
     It is evident that since Eq. (16) is a fourth-order differential equation, then four boundary 
conditions are required to obtain the relevant integration constants. One may obtain two of 
those from the boundary conditions of the outer edge of the circular plate. However, the 
remaining two conditions may be determined from the regularity conditions at the center of 
the plate. In the case of an axisymmetric material distribution and axisymmetric boundary 
conditions, one may express the regularity conditions at the center (r=0) of the circular plate 
as follows:  
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4  Employing the differential transform technique  
 
4.1   A brief description of the differential transformation method 

 
 The differential transformation method (DTM), which was first proposed by Zhou [23] based 
on the Taylor’s series expansion, is a semi-analytical method that has been proposed mainly 
for solving ordinary and partial differential equations.  
    In the DTM, certain transformation rules are applied and the governing differential 
equations and the relevant boundary conditions of the system are transformed into a set of 
algebraic equations in terms of the differential transforms of the original functions. Solution 
of these algebraic equations gives the desired solution of the problem. The basic definitions 
and the procedure of employing the method are introduced in the present section. 
    Consider a function f(r) which is analytic in a domain R and let r=r0 represent any point in 
R. It is intended to represent the function f(r) by a power series whose center is located at 
r=r0. The differential transform of the kth derivative of the function f(r) is given by 
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where Fk is the transformed function. The inverse transformation of the function f(r) is 
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   According to Eq. (24), it may be noted that the concept of the differential transform is 
derived from Taylor’s series expansion. However, the method does not evaluate the 
derivatives symbolically. In this method, the lower case letter represents the original function 
and the upper case letter indicates the transformed function. In practical applications, the 
function f(r) is usually expressed by a finite series. Therefore, Eq. (24) may be rewritten as 
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value is so chosen that the calculated natural frequencies converge. 
    In table 1, the basic mathematical expressions that are frequently subjected to the 
mentioned transformation in the practical problems, are listed along with their transformed 
expressions. 
 
4.2    Transformation of the present governing equation 
  
According to the basic transformation operations introduced in table 1, the transformed form 
of the governing Eq. (16) around r0=0, may be obtained as:  
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Eq. (26) may be simplified to be: 
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    Therefore, the following equation can be obtained for k=4, 5, 6, . . ., n : 
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4.3    Transformation of the boundary/regularity conditions 

 
Applying the transformation rules mentioned in table 1 to the boundary conditions of the edge 
(r = 1) of the circular plate, presented in Eqs. (17-20), the following equations are obtained: 
Free edge condition: 
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Simply-supported edge condition: 
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Clamped edge condition: 
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    At the center of the circular plate (r = 0), the regularity conditions (21) can be transformed 
as follows: 
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5 Determination of the natural frequencies and the modal stresses 
  
The natural frequencies may be extracted from the characteristics equations when the 
transformed boundary conditions (29-31) are incorporated. As it has been mentioned before, 
three kinds of edge conditions are considered in the present research: free, simply-supported, 
and clamped.  
    Obtaining the Taylor series expansion ( 4, ≥kFk ) from Eq. (28) and substituting it into the 
boundary conditions (29-31), one may obtain the following expressions for each condition: 
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where Ψ11, Ψ12, Ψ21 and Ψ22 are polynomials in terms of Ω corresponding to nth term. It may 
be readily seen that in Eq. (33), Ψ11, Ψ12, Ψ21 and Ψ22 represent series expressions. Eq. (33) 
can be expressed in the following matrix form: 
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Existence condition of the non-trivial solutions yields the following characteristic 
determinant:  
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which may be used to calculate the dimensionless frequencies. To determine value of the jth 
natural frequency, the following convergence criterion may be used: 
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where n is the iteration counter, jΩ  is the estimated value of the jth dimensionless natural 
frequency, and ε  is a sufficiently small number that is chosen as ε =0.0001 in the present 
study.  
    On the other hand, according to the classical plate theory, the radial and circumferential 
stresses may be related to the lateral deflection through the following equations: 
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Therefore, the dimensionless radial modal stresses may be calculated based on the following 
equation: 
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6 Results and discussions 

 
Example 1: As a validation example, the first three natural frequencies of homogeneous plates 
with uniform thickness and simply-supported, clamped, and free edge conditions already 
studied by Refs. [2] and [24] are reexamined. Leissa [24] used the series solution and Wu et 
al. [2] employed the generalized differential quadrature method to extract the results. 
Poisson’s ratio is assumed to be 0.3. Table 2, compares present results with results of Leissa 



A Differential Transform Approach for Modal Analysis of …   
 

23

[24] and Wu et al. [2] for the dimensionless natural frequency
*
002

D
hb ρω=Ω . Based on the 

results given in table 2, there is a good agreement among the results. Present results are 
almost coincident with results obtained by Wu et al. [2]. Therefore, accuracy of the present 
results is proven.  
 
Example 2: To evaluate influence of each of the geometric and the through-the-thickness and 
in-plane material parameters on the natural frequencies of the plate for various edge 
conditions (simply-supported, clamped, and free edge conditions) clearly, effects of each 
parameter are studied individually. To this end, the plates considered in the foregoing 
example are considered again and their material properties or geometric specifications are 
changed accordingly. Results are given in tables 3 to 7 for the first two natural frequencies.     
As it has been mentioned earlier, the parameter n3 describes variations of the thickness of the 
plate in the radial direction. Since the natural frequencies are dimensionless, the results may 
be used for any geometric aspect ratio. Initial values of the first two natural frequencies have 
been given in table 2. As it may be expected, while positive m1 and n1 parameters increase the 
natural frequencies, positive values of the m2 and n2 parameters decrease the natural 
frequencies. Therefore, if for example it is intended to change natural frequencies of the plate 
to avoid coincidence with natural frequencies of the adjacent components or the excitation 
frequency of the foundation, one may use a plate whose material properties are graded either 
in the transverse or radial direction. According to Eqs. (8) and (9), in contrast to the thickness 
variation parameter n3 which appears in both equations, n1 only appeared in Eq. (8) and thus 
positive n1 values lead to stiffer plate and subsequently, higher frequencies. Furthermore, the 
mass density parameter n2 is appeared in Eq. (9) only, and therefore its positive values 
decrease the natural frequencies. While according to Eq. (9), effect of identical n2 and n3 
values on the mass moment of inertia is equivalent, effect of the n3 parameter on the bending 
rigidity is three time that of n1. Therefore, controlling the natural frequencies with parameters 
that have distinct effects (n1 and n3) is more desirable than using a single n3 parameter that 
affects both the bending rigidity and mass moment of inertia of the plate.  
 
Example 3: A sensitivity analysis is performed in the present example. In this regard, effects 
of seven geometric, material, and foundation parameters (m1, m2, n1, n2, n3, Kw, and Ks) on the 
first two normalized natural frequencies of the two-directional functionally graded plate are 
investigated. Since various boundary conditions have been used in the present study, effects 
of the transverse variations of the material properties (m-parameters) are evaluated for plates 
with simply-supported edge conditions. Effects of the n-parameters are evaluated for clamped 
plates, and effects of the elastic foundation parameters (K-parameters) are studied for plates 
with free edges. Results are illustrated in Figs. 1 to 6. In each figure, variation of the 
normalized natural frequency versus one of the aforementioned parameters is plotted, for 
specific combinations of the other parameters. Moreover, in each figure, the baseline curve 
corresponds to (m1=1, m2=1, n1=1, n2=1, n3=0.5, Kw=5, and Ks=25) excluding the parameter 
that is used for the relevant sensitivity analysis. In Figs. 1 to 5, in some cases, curves 
associated with different parameters are coincident. On the other hand, some curves that may 
seem to be completely or partially coincident with other curves in one vibration mode are not 
coincident in the other vibration mode.  
    Results depicted in Figs. 1 to 5 reveal that negative n2 and m2 values increase the natural 
frequencies. This conclusion confirms the previous conclusions. Effect of the shear stiffness 
of the elastic foundation (Pasternak’s coefficient) on the fundamental natural frequency of the 
plate is noticeable whereas it has somewhat ignorable effect on the second natural frequency. 
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Influence of the shear stiffness of the elastic substrate is more remarkable for smaller m1 and 
m2 parameters.           
    To investigate effect of the stiffness of the elastic foundation on the natural frequencies of 
the plate more clearly, a plate with free edges is considered in the present sensitivity analysis. 
Results shown in Fig. 6 reveal that while effects of the Winkler and Pasternak parameters of 
the foundation (Kw and Ks) on the fundamental natural frequency of the plate are remarkable, 
effects of these parameters on the higher (second) vibration natural frequencies are smaller. 
Effect of Kw on the second natural frequency is almost ignorable.   
 
Example 4: For a circular plate subjected to smooth variations in the applied transverse 
pressure, the maximum radial stress that is mainly larger than the maximum circumferential 
stress usually occurs in the center or edge of the plate. To enable a proper conclusion, the 
transverse distributions of the radial stress are plotted in Fig. 7 for sections correspond to 
(r=0, and r=1) of a plate with uniform thickness and clamped edges. Therefore, influence of 
the moment exerted by the boundary as well as effects of the elastic foundation are engaged.  
As is may be noticed from results appeared in Fig. 7, the maximum stresses of the mentioned 
sections have relatively different signs. However, in a modal analysis, the absolute sign of the 
mode shape itself is of no importance (the reversed mode shape denotes the same mode 
shape). Results show that a proper choosing of the material properties may lead to smaller 
stresses or somewhat more uniform stress distribution. For example, the case with (m1=-1, 
n1=-1) has led to smaller stress gradient in both critical sections. Therefore, by a proper 
adoption of the distribution of the material properties, a somewhat more uniform stress 
distribution or strengthening of the sections of the plate may be attained without the need to 
change the geometric parameters of the plate (taking into account the resulted allowable 
stresses). Even though it may seem that traditional materials with higher Young’s modulus 
have generally higher mass densities, this is not a rule, e.g. in the composite materials, 
Young’s modulus to mass density ratio is remarkably higher.   
 
7 Conclusions 
 In the present paper, a semi-analytical solution is developed for free vibration and modal 
stress analyses of circular plates made of two-directional functionally graded materials resting 
on two-parameter elastic foundations. The differential transformation method is employed to 
develop the solution. The thickness of the plate may vary in the radial direction. The solution 
covers complex combinations of the material properties, edge conditions, and parameters of 
the elastic foundation. Therefore, the resulted non-dimensional solution may be used for a 
wide range of the practical problems. Influence of monitoring variations of the material 
properties on the natural frequencies and the through-the-thickness distribution of the modal 
stress is also investigated. Results reveal that by a proper adoption of the distribution of the 
material properties, a somewhat uniform stress distribution or strengthening of the sections of 
the plate may be attained without the need to change the geometric parameters of the plate. 
Many novelties are included in the present research. Comparisons made between the present 
results and results reported by well-known references for special cases treated before, have 
confirmed accuracy and efficiency of the present approach.  
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Nomenclature 
 
A, B               compact expressions 
b                    outer radius of the plate 
D, D*             flexural rigidity, reference flexural rigidity 
E, E0             Young’s modulus, reference Young’s modulus 
Fk                  transformed function 
f                    amplitude of the lateral deflection 
h, h0              thickness, thickness at the center of the plate 
I                    mass moment of inertia  
i                    the imaginary number and a counter   
Kw, KS           non-dimensional Winkler’s and Pasternak’s coefficients 
k                    counter 
kw, ks            Winkler’s and Pasternak’s coefficients of the elastic foundation 
l                    counter 
Mr                 radial bending moment per unit length 
m1, m2, m3     Young’s, density, and thickness exponents of the power law functions 
N                  upper limit of the series counter  
n                   iteration counter 
n1, n2, n3       Young’s, density, and thickness exponents of the power law functions 
r                    radius 
t                    time 
Vr                  effective shear force per unit length 
w                   lateral deflection 
z                    transverse coordinates 
 
Greek symbols 
 
δ                    Kronecker delta function 
ε                    convergence tolerance 
ν                    Poisson’s ratio 
ρ, ρ0               mass density, reference mass density 
σr,σθ               radial, circumferential stresses 
Ω                   dimensionless natural frequency 
ω                    natural frequency 
Ψ                   polynomials in terms of the natural frequencies  
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                                Table 1 Some of the transformation rules of the one-dimensional DTM. 
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Table 2 The first three natural frequencies of isotropic plates with uniform thickness ( 0,,,, 321 =ws KKnmm ). 
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              Table 3 Influence of the parameter m1 that describes transverse variations of Young’s modulus, on the 
first two natural frequencies of the plate (m2=n1=n2=n3=Ks=Kw=0). 

 
m1 Simply support clamp free 

1Ω   2Ω  1Ω   2Ω  1Ω   2Ω  
-2 3.436 20.697 7.114 27.697 6.269 26.772 

-1.75 3.548 21.370 7.345 28.598 6.473 27.643 
-1.5 3.675 22.136 7.609 29.623 6.705 28.634 

-1.25 3.821 23.010 7.909 30.792 6.970 29.764 
-1 3.987 24.010 8.253 32.131 7.273 31.058 

-0.75 4.177 25.157 8.647 33.665 7.620 32.541 
-0.5 4.396 26.473 9.099 35.426 8.019 34.243 

-0.25 4.647 27.984 9.619 37.449 8.477 36.198 
-0.1 4.815 28.997 9.967 38.803 8.784 37.508 
 0.1 5.061 30.483 10.478 40.793 9.234 39.431 

 0.25 5.265 31.710 10.900 42.435 9.606 41.018 
 0.5 5.644 33.992 11.684 45.488 10.297 43.969 

 0.75 6.078 36.603 12.582 48.983 11.088 47.347 
 1 6.573 39.587 13.607 52.975 11.992 51.206 

 1.25 7.138 42.989 14.777 57.528 13.022 55.607 
 1.5 7.781 46.863 16.108 62.712 14.196 60.618 

 1.75 8.512 51.265 17.621 68.603 15.530 66.312 
 2 9.342 56.261 19.338 75.288 17.043 72.774 

 
 

Table 4 Influence of the parameter m2 that describes transverse variations of the mass density, on the 
first two natural frequencies of the plate (m1=n1=n2=n3=Ks=Kw=0). 

 
m2 Simply support clamp free 

1Ω   2Ω  1Ω   2Ω  1Ω   2Ω  
-2 7.505 45.200 15.536 60.486 13.692 58.467 

-1.75 7.182 43.253 14.867 57.881 13.102 55.948 
-1.5 6.857 41.297 14.195 55.263 12.510 53.418 
-1.25 6.532 39.337 13.521 52.641 11.916 50.883 

-1 6.207 37.380 12.849 50.022 11.323 48.352 
-0.75 5.883 35.433 12.179 47.416 10.733 45.833 
-0.5 5.563 33.502 11.516 44.833 10.149 43.336 
-0.25 5.246 31.595 10.860 42.281 9.571 40.869 
-0.1 5.059 30.466 10.472 40.769 9.229 39.408 
 0.1 4.812 28.980 9.961 38.781 8.779 37.486 
 0.25 4.630 27.883 9.584 37.312 8.446 36.067 
 0.5 4.332 26.091 8.968 34.916 7.904 33.750 
 0.75 4.043 24.353 8.371 32.589 7.377 31.500 

 1 3.764 22.672 7.793 30.340 6.868 29.327 
 1.25 3.496 21.055 7.237 28.176 6.378 27.236 
 1.5 3.239 19.507 6.705 26.104 5.909 25.233 
 1.75 2.994 18.030 6.197 24.128 5.462 23.322 

 2 2.761 16.628 5.715 22.251 5.037 21.508 
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Table 5 Influence of the parameter n1 that describes radial variations of the Young’s modulus, on the 
first two natural frequencies of the plate (m1 =m2=n2=n3=Ks=Kw=0). 

 
n1 Simply support clamp free 

1Ω   2Ω  1Ω   2Ω  1Ω   2Ω  
-1 4.38640 23.4060 7.74010 30.6430 7.55643 30.4005 

-0.75 4.37316 24.6857 8.18267 32.5661 7.78380 32.1107 
-0.25 4.65628 27.8517 9.43227 37.1361 8.51600 36.1410 
-0.1 4.81455 28.9515 9.89106 38.6902 8.79993 37.5008 
 0.1 5.06595 30.5151 10.5548 40.8868 9.21634 39.4128 

 0.25 5.27744 31.7537 11.0883 42.6229 9.55260 40.9151 
 0.5 5.65504 33.9240 12.0396 45.6727 10.1477 43.5329 

 0.75 6.03732 36.1932 13.0635 48.8968 10.7705 46.2661 
 1.25 6.68258 40.8237 15.3354 55.7498 12.0220 51.9187 
 1.5 6.86945 43.0492 16.6087 59.3075 12.6088 54.7352 

 
Table 6 Influence of the parameter n2 that describes radial variations of the mass density, on the first two 
natural frequencies of the plate (m1 =m2=n1=n3=Ks=Kw=0). 

 
n2 Simply support clamp free 

1Ω   2Ω  1Ω   2Ω  1Ω   2Ω  
-1.5 6.675 42.184 13.115 55.551 13.858 55.889 
-1.25 6.367 39.844 12.610 52.629 12.896 52.553 

-1 6.066 37.614 12.113 49.827 12.002 49.401 
-0.75 5.772 35.490 11.625 47.144 11.170 46.422 
-0.25 5.206 31.546 10.676 42.118 9.675 40.951 
-0.1 5.042 30.439 10.398 40.697 9.266 39.429 
 0.1 4.828 29.015 10.034 38.862 8.747 37.479 
 0.25 4.672 27.984 9.765 37.529 8.376 36.076 
 0.5 4.417 26.337 9.324 35.391 7.792 33.843 
 0.75 4.170 24.775 8.894 33.353 7.247 31.736 
 1.25 3.703 21.889 8.065 29.563 6.263 27.879 
 1.5 3.483 20.559 7.668 27.806 5.819 26.115 

 
Table 7 Influence of the parameter n3 that describes variations of the thickness of the plate in the radial 
direction, on the first two natural frequencies of the plate (m1 =m2=n1=n2=Ks=Kw=0). 

 
n3 Simply support clamp free 

1Ω   2Ω  1Ω   2Ω  1Ω   2Ω  
-0.5 5.218 24.3834 7.955 31.110 8.457 31.552 
-0.4 4.872 24.934 8.057 32.267 8.326 32.456 
-0.3 4.663 25.756 8.350 33.726 8.321 33.613 
-0.2 4.611 26.843 8.824 35.478 8.440 35.011 
-0.1 4.711 28.176 9.456 37.503 8.675 36.631 
0.1 5.236 31.426 11.075 42.245 9.396 40.405 
0.2 5.564 33.237 12.014 44.881 9.822 42.468 
0.3 5.864 35.083 13.021 47.630 10.247 44.574 
0.4 6.083 36.883 14.098 50.441 10.635 46.658 
0.5 6.164 38.542 15.265 53.255 10.949 48.642 
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(a) 

 
(b) 

Figure 1 Effects of m1 on the first two normalized natural frequencies of the plate for various combinations of 
the parameters. The base line corresponds to (m2=1, n1=1, n2=1, n3=0.5, Kw=5, Ks=25) and the other curves are 

plotted based on changing one of the mentioned parameters. 
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(a) 

 
(b) 

Figure 2 Effects of m2 on the first two normalized natural frequencies of the plate for various combinations of 
the parameters. The base line corresponds to (m1=1, n1=1, n2=1, n3=0.5, Kw=5, Ks=25) and the other curves are 

plotted based on changing one of the baseline parameters. 
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(b) 

Figure 3 Influence of n1 on the first two normalized natural frequencies of the plate for various combinations of 
the parameters. The base line corresponds to (m1=1, m2=1, n2=1, n3=0.5, Kw=5, Ks=25) and the other curves are 

plotted based on changing one of the baseline parameters. 
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(b) 

Figure 4 Influence of n2 on the first two normalized natural frequencies of the plate for various combinations of 
the parameters. The base line corresponds to (m1=1, m2=1, n1=1, n3=0.5, Kw=5, Ks=25) and the other curves are 

plotted based on changing one of the baseline parameters. 
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(b) 

Figure 5 Effects of n3 on the first two normalized natural frequencies of the plate for various combinations of the 
parameters. The base line corresponds to (m1=1, m2=1, n1=1, n2=1, Kw=5, Ks=25) and the other curves are plotted 

based on changing one of the baseline parameters. 
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(a) 

 
(b) 

Figure 6 Effects of the parameters of the elastic foundation on the first two normalized natural frequencies of the 
plate with free edges for various combinations of the parameters (m1=1, m2=1, n1=1, n2=1, n3=0.5). 
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(b) 

Figure 7 Through-the-thickness distribution of the modal radial stress at: (a) r=0 and (b) r=1. 
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  چكيده
در مقاله كنوني، بر پايه روش تبديل ديفرانسيلي، حلي نيمه تحليلي براي تحليل ارتعاش آزاد و تنشهاي 

گاه هاي مقيد و تكيهمودال ورقهاي گرد ضخامت متغيير ساخته شده از مواد هدفمند دو جهته با لبه
. اندابع نمايي متفاوت كنترل شدهتغييرات پارامترهاي هندسي و مواد، توسط پنج ت. الاستيك ارائه شده است

اي و  اي از ويژگيهاي مواد، شرايط لبهتواند تركيبهاي پيچيدهحل ارائه شده بر حسب پارامترهاي بي بعد، مي
سازند كه با انتخاب مناسب توزيع ويژگيهاي مواد، نتايج آشكار مي. گاه الاستيك را پوشش دهدضرائب تكيه

ا براي مقاطع تامين نمود؛ بدون آنكه نيازي به تغيير پارامترهاي هندسي ورق توان استحكام يكنواختي رمي
  .   باشد

  


