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Optimization of Thermal Instability Re-
sistance of FG Flat Structures using
an Improved Multi-objective Harmony
Search Algorithm
This paper presents a clear monograph on the optimization of thermal
instability resistance of the FG (functionally graded) flat structures.
For this aim, two FG flat structures, namely an FG beam and an FG
circular plate, are considered. These structures are assumed to obey
the first-order shear deformation theory, three-parameters power-law
distribution of the constituents, and clamped boundary conditions.
The objectives of the optimization problem are considered to be maxi-
mizing the critical buckling temperature and minimizing the structural
mass. Also, the problems are confined to the range of elastic stabil-
ity by considering an appropriate constraint criterion. This paper
proposes the IMHSA algorithm (improved multi-objective harmony
search algorithm) to deal with the stated problem. The capability of
the proposed algorithm is examined by solving a benchmark problem.
Results are shown as optimal pareto-points for the problems intro-
duced in the paper and some pareto-points are tabulated in detail.
Results reveal that the un-symmetric material distribution is not suit-
able to postpone the buckling temperature of the flat structures.

Keywords: Functionally graded material, Multi-objective optimization, Improved harmony search
algorithm, Critical buckling temperature

1 Introduction

The classical composite structures suffer from discontinuity of material properties at the inter-
face of the layers and constituents of the composite. From this point of view, the stress field in
these regions creates an interface problem and thermal stress concentration at high temperature
environments. Furthermore, large plastic deformation of the interface may trigger the initiation
and propagation of cracks in the material. These shortcomings may be decreased by gradually
changing the volume fraction of constituent materials. In fact, the FGMs (functionally graded
materials) are advanced materials, which have a smooth spatial variation of volume fraction of
constituent materials. Due to this spatial variation, mechanical properties of the FG structures
in gradation direction have an interesting change. The mentioned characteristic allows the de-
signer to control the critical design aspects, such as maximum effective stress, natural frequency,
and structural instability resistance.

Most of real-world engineering optimization problems are multi-objective in nature. This
feature exists since for design purposes several objectives may be optimized (minimized or
maximized) simultaneously. Usually, these objectives are in conflict with each other, therefore,
improving one of them may worsen others. The structural optimization of components made of
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the FGMs is not a distinct matter, but it may be considered as a mono-objective optimization
problem based on design considerations.

Design of the FG structures as multi-objective/mono-objective optimization problem has
been investigated by many researchers. Using direct sensitivity analysis, Tanaka et al. [1] have
proposed a macroscopic material tailoring in order to reduce the thermal stresses induced in
the FGMs. In this work, a multi-objective optimization without pareto-optimality concepts in
conjunction with the FEM have been used for the volume fraction optimization. Ootao et al.
[2] have used a neural network for minimizing the thermal stresses in hollow cylindrical vessel.
Functionally graded medium in this work has been considered as a sequence of finite numbers
of homogeneous layers, then the optimum sequence for reducing the objective function has
been obtained. Turteltaub [3], by the Lagrange Multiplier Method, has obtained the optimum
material properties for control and/or optimization of a functionally graded composite under a
time-dependent thermo-mechanical loading. Cho and Choi [4] have introduced a yield-criteria
optimization of the volume fraction distribution. In this study, the objective function has been
defined by linearly combining the total strain energy and the peak effective stress scaled by the
spatial-varying yield stress. Goupee and Vel [5, 6, 7] have performed a set of works based on
the element-free Galerkin method and mono/multi objective real code genetic algorithm. In
these works, optimal volume fractions for nodal points have been obtained based on the Mori-
Tanaka and self-consistent homogenization schemes. Similarly, self-consistent homogenization
scheme and non-dominated sorting multi-objective genetic algorithm have been used by Vel and
Pelletier [8]. This paper addresses the optimal nodal volume fractions for functionally graded
cylindrical shells under steady thermo-mechanical processes, where the candidate designs have
been evaluated by using an analytical power-series solution. Stump et al. [9] have presented
a topology optimization framework for minimizing the volumetric density of a material phase
subjected to a global stress constraint at micro-level. This work has presented a continuous
distribution of the design variable inside the finite element. Xia and Wang [10] have studied the
simultaneous optimization of the material properties (via the material volume fractions) and the
topology (via the the structural boundaries) of functionally graded structures by using a level-
set-based method. Almeida et al. [11], by means of continuous topology optimization and finite
element method, have optimized the overall stiffness behavior of functionally graded structures
with respect to symmetry and pattern repetition constraints which include material gradation
effects at both global and local levels. Vatanabe et al. [13] have proposed a methodology
for optimizing energy harvesting applications of functionally graded piezocomposite materials,
which is based on topology optimization and homogenization. First natural frequency of three-
parameter functionally graded beams have been optimized by Yas et al. [14]. In this work,
beam’s governing equations have been solved by generalized differential quadrature method,
and then nodal volume fractions have been optimized by using an artificial neural network
and the imperialist competitive algorithm. Taheri et al. [15] have presented an isogeometrical
procedure for optimization of material composition of functionally graded structures in thermo-
mechanical processes. In this paper, employing the standard isogeometric analysis method
together with the sequential quadratic programming, optimum surfaces of volume fractions as
design variables are obtained. Finally, Birman and Byrd [16] presented an interesting literature
review about the modeling and optimizing the FGMs.

In literature, the optimization of structures made of FGMs has been preformed in different
methodologies and by different solution procedures. One of the main discrepancies between
preformed works is modeling of the material distribution thorough the FGM medium and its
associated decision variable.
Most of investigations are preformed based on optimizing the volume fraction. This manner
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extensively has been used for problems that have no closed-form objective functions. In this
manner, point-wise volume fractions, in finite numbers, are decision variables. A wide range of
optimization methods are utilized to volume fraction optimization. These optimization methods
are powerful to achieve optimal material distributions in the FG structures. However, because
of weaknesses in manufacturing process, the optimal material tailoring has not been achieved
in practice. To deal with this uncertainty, Noh et al. [17] have preformed a reliable design
optimization. In their work, the FGM medium is supposed to consist of a finite number of
homogeneous layers which have certain volume fractions, and the material properties of those
homogeneous layers are considered as decision variables.

Despite of volume fraction optimization, in cases which the core optimizing problem is
soluble in an analytical manner, the parameters of FGM models may be selected as decision
variables. There are few investigations in this manner. For instance, Loja [18] has studied
the application of particle swarm optimization technique in conjunction with a re-initialization
strategy for the maximization of bending stiffness of a functionally graded sandwich beam.

Optimization algorithms are another source of discrepancy between preformed works on
the optimization of the FG structures. The optimization methods can be divided into two main
classes; gradient based optimization algorithms and stochastic optimization algorithms. The
gradient based optimization algorithms give a directional search in feasible domain of solu-
tion vectors and are appropriate for local searching of optimal pareto-points. On the contrary,
stochastic optimization algorithms search the whole solution domain for desirable solution vec-
tors. In other words, these algorithms are suitable for global searching of optimal pareto-points.

Each of these main classes and their combinations have been used for optimization of the
FG structures. There are some advantages as well as disadvantages in the usage of every class of
optimization algorithms. In this condition, efficiency and accuracy of optimization algorithms
highly depend on the type and status of optimization problems.

The HS (Harmony Search) is a relatively new meta-heuristic optimization algorithm and it
has been firstly developed by Geem et al. [19]. The HS is a stochastic random search algorithm,
and it does not need an accurate initial value for converging into the global optimum. Since
introducing, this algorithm has been utilized for various design and decision making problems
such as structural engineering. Firstly, Lee and Geem [20] have introduced the HS as an algo-
rithm for structural optimization. In most practical structural applications, decision variables
must be selected among a set of discrete data. An application and details of the HS for discrete
structural optimization have been presented by Lee et al. [21]. The HS was emerged as a mono-
objective optimization algorithm. There are many papers in which the mono-objective HS has
been employed in order to deal with engineering applications. Among them, Degertekin [22]
has used the discrete HS algorithm for minimizing the weight of steel frames with respect to
strength and displacement constraints.

Just like all phenomenon-mimicking algorithms, the HS has a set of tuning parameters which
are helpful for well-dealing with various engineering problems. Many studies have debated on
the setting those parameters with the aim of decreasing in the parameter-dependency and in-
creasing in the accuracy and convergence of the HS algorithm [23, 24]. Applications of different
modified HS algorithms have been investigated by Degertekin [25], Gholizadeh and Barzegar
[26], and Maheri [27].

Earliest work on the MHS (Multi-objective Harmony Search) was developed by Geem and
Hwangbo [28]. In this work, multi-objective optimization for satellite heat pipe design have
been studied based on two main steps; 1- each single objective function is optimized, 2- sum of
errors between the current function value and the optimal value in terms of single objectives is
defined as multi-objective function, then this function is minimized. In a similar manner, Geem
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Figure 1 Schematic view of the functionally graded beam and its associated co-ordinate
system.

[29] has studied the multi-objective optimization of time-cost trade-off using HS. It should be
noted that in the later works, multi-objective optimization have been performed without using
pareto-dominance concept. For the first time, Ricart et al. [30], by using the pareto-dominance
concept, have proposed the MHS algorithm. This paper investigates capabilities of the HS to
deal with multi-objective problems in comparison with non-dominated sorting genetic algorithm
II. Researches on applications of the MHS based on pareto-optimality concept are not mature
and literature on this topic seems to be pure.

The second author has numerous works on the buckling and post-buckling of FG structures
under thermal and mechanical loading [31]-[38]. Interesting design facts of the FGMs in con-
junction with the capability of the MHS algorithm have motivated the authors to utilize the
MHS for optimizing the thermal instability resistance of the FG flat structures. Present study
addresses application of the IMHSA to optimize the thermal instability resistance of the FG flat
structures. For this purpose, the IMHSA is developed. The accuracy of the IMHSA has been
examined by solving the FON test function.

2 Optimizing Structure

Two cases of the FG flat structures are considered in this paper: an FG beam, Fig. (1), and an FG
circular plate, Fig. (2). In both model problems, the critical buckling temperature is maximized
along with minimizing the structural mass. The solution vectors consist of the power-law index
and the thickness of structures. An appropriate constraint function is imposed on the effective
stress thorough the structures, so the problems have been confined to the range of elastic sta-
bility. The defined optimization problems are solved by the developed IMHSA and illustrative
results are presented as the pareto-fronts. Also, some of the pareto-points and their associated
solution vectors are tabulated for more details.

3 Core problem

3.1 Modeling of material distribution

The FGMs used herein are assumed to obey the power-law distribution of material properties
in one direction. Furthermore, the FGMs are assumed to be composed of two phases, namely;
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Figure 2 Schematic view of the functionally circular plate and its associated co-ordinate
system.

metal phase (subscribe m) and ceramic phase (subscribe c). Now, the volume fraction of con-
stituents may be expressed as Eq. (1).

Vc =

(
1

2
+
z

h

)k
Vm = 1− Vc (1)

where k is the power-law index, z is the coordinate in the gradation direction, and h denotes
the thickness in the gradation direction. The material properties of the FGM medium may be
defined based on the Voigt rule of mixture and thus the typical material property is

P (z) = VmPm + VcPc (2)

Substituting Eq. (1) into Eq. (2) results in Eq. (3) as the distribution of material properties
thorough the FGMs.

P (z) = Pm + (Pc − Pm)

(
1

2
+
z

h

)k
(3)

It is known that the precise modeling of FGMs require a deep knowledge at micro-mechanical
level and an advanced rule of mixture. Apparently, the Voigt rule presents a rudimentary approx-
imation of material distribution. In this model, the influence of micro-mechanical constraints
such as particles shape, particles orientation, particles volume fraction, and so forth are not
taken into account. However, the Voigt rule of mixture is broadly used in obtaining the global
response of FG structures.

In this work, the thermal buckling analysis of FG structures is performed according to the
Voigt rule of mixture but the constraint function imposing on the effective stress of FGMs is
derived by another method. The method could be described as follows. Since ceramics are
brittle, they have no yield stress at all. Also, the ultimate strength of ceramics is much higher
than the yield stress of metals. Therefore, it is assumed that in the ceramic-metal FG medium,
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Figure 3 Schematic stress-strain curve for a FGM and its constituents.

the metals reach the yield stress while the ceramics are in the elastic regime. Consequently, for
the FGM medium an effective yield strength may be defined. This effective yield strength is a
function of the yield stress of the metal phase at each material point, Fig.(3).

Tamura et al. [39] have presented a modified rule of mixture for two-phase alloys. If this
rule is adopted for ceramic-metal FG composite [4, 40, 41], the effective yield strength may be
obtained as Eq. (4).

Ym < σy < Ym

(
Ec
Em
− Vm

(
Ec − Em
Em

))
(4)

where Ym is the yield stress of metallic phase and σy is the effective yield stress of ceramic-
metal FG composite. It must be noted that the lower and upper bounds of the range correspond
to the iso-stress and iso-strain conditions, respectively. In other words, the value of effective
yield stress could be placed in this range but its exact value is not known. Therefore, in this
paper the effective yield stress is assumed to be obtain by Eq. (5).

σy[Mpa] = Ym

(
Ec(50000 + Em)

Em(50000 + Ec)
− Vm

(
Ec(50000 + Em)

Em(50000 + Ec)
− 1

))
(5)

3.2 Objective functions

In this section, the objective functions are derived. The specific mass and the critical buckling
temperature of the FG structures are considered as objective functions.

3.2.1 Specific structural mass

According to the power-law distribution of material properties, density of the FGMs at an arbi-
trary point can be written in the form

ρ(z) = ρm + (ρc − ρm)

(
1

2
+
z

h

)k
(6)
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Integrating Eq. (6) across the thickness direction leads to Eq. (7) as the specific mass of struc-
tures per unit area of their mid surface.

ρunit =

∫ h
2

−h
2

(
ρm + (ρc − ρm)

(
1

2
+
z

h

)k)
dz = h

(
ρm +

ρcm
k + 1

)
(7)

Consequently, for the FG beams the specific mass is

mbL = h

(
ρm +

ρcm
k + 1

)
(8)

It is obvious that the total mass of the FG beams may be written as

mB
tot = b L mbL (9)

where b is the width and L is the length of the beam. Also, for the FG circular plates the specific
mass is

mR = h

(
ρm +

ρcm
k + 1

)
(10)

The total mass of the FG circular plates can be defined as Eq. (11).

mP
tot = π R2 mr (11)

where R is the radius of FG circular plates.

3.2.2 Critical buckling temperature

Some basic assumptions have been considered in deriving the governing equations of the struc-
tures at the buckling configuration. These assumptions are:

• The displacement field of the structures has been assumed according to the first-order
shear deformation hypotheses.

• The three-parameters power-law is employed for modeling the distribution of material
properties.

• The boundary conditions of the structures are assumed to be clamped.

Based on these assumptions, closed form expressions for the critical buckling temperatures of
the considered structures are obtained in previous works [42, 43]. The expressions for the criti-
cal buckling temperature of structures are given subsequently.

Model problem 1: FG beams

Consider an FG beam with thickness h, width b, and length L. The critical buckling temperature
of the beam subjected to a uniform temperature rise is obtained [42] as

∆Tcrit =
r(E1E3 − (E2)

2)

L2Eα

(
E1 −

s(E1E3 − (E2)
2)(1 + ν)

KsL2E1

) (12)
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where

Eα =

∫ h
2

−h
2

E(z)α(z)dz = h

(
Emαm +

Emαcm + αmEcm
k + 1

+
Ecmαcm
2k + 1

)
E1 =
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−h
2
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(
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)
E2 =

∫ h
2

−h
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1
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)
E3 =

∫ h
2

−h
2

E(z) z2 dz = h3
(
Em
12

+ Ecm

(
1

k + 3
− 1

k + 2
+

1

4k + 4

))
(13)

where E(z) and α(z) are the modulus of elasticity and the coefficient of thermal expansion,
respectively. In Eq. (12), parameters r and s specify the boundary conditions of FG beams. For
the clamped-clamped boundary conditions these constants are r = 39.47842 and s = 78.95684.
Also, Ks indicates the shear-correction factor associated with the first-order shear deformation
assumptions. At the pre-buckling stage, the effective stress at each material point of FG beams
can be defined as Eq. (14).

σeff = −E(z)α(z)(T (z)− T0) (14)

Model problem 2: FG circular plates

In the second case, consider an FG circular plate of thickness h and radius R. For uniform tem-
perature distribution, the critical buckling temperature of the fully clamped FG circular plate is
reported in [43] as

∆Tcrit =
14.68(E1E3 − (E2)

2)

Eα(1 + ν)E1R2
(15)

where E1, E2, E3, and E,α are previously introduced. For the pre-buckling configuration, the
effective stress thorough an FG circular plate may be written as Eq. (16). It should be noted that
the plate is under a symmetric thermal loading.

σeff = −
√

2
1

1− ν
E(z)α(z)(T (z)− T0) (16)

4 Optimization problem

The general form of a multi-objective optimization problem is specified as follows

F (X) = (f1(X), f2(X), f3(X), ..., fI(X))

Gj(X) = 0 j = 1, 2, 3, ..., J

Hm(X) ≤ 0 m = 1, 2, 3, ...,M

Ln ≤ xn ≤ Un n = 1, 2, 3, ..., N (17)

where I is the number of objective functions, J is the number of equality constraints, and M is
the number of inequality constraints. Here,X is the solution vector that is composed of decision
variables xn and N is the number of decision variables. The lower- and upper-bounds of each
decision variables are Ln and Un, respectively. The optimization problems in this article could
be defined as
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Model problem 1

f1(X) = mbL

f2(X) =
1

∆Tcrit
σeff (z)

σY
− 1 ≤ 0

0 ≤ k ≤ 20

8 ≤ L

h
≤ 80 (18)

Model problem 2

f1(X) = mr

f2(X) =
1

∆Tcrit
σeff (z)

σY
− 1 ≤ 0

0 ≤ k ≤ 20

8 ≤ R

h
≤ 80 (19)

In these problems, the specific mass of structures is minimized in conjunction with maximizing
the critical buckling temperature. As a constraint function, at the pre-buckling configuration,
effective stress thorough the structures must remain at the elastic range. Moreover, decision
variables are assumed to be power-law index and thinness of structures. The power-law index is
considered to vary between 0 and 20. Extension of the upper-bound limit beyond the 20 seems
to be unnecessary. On the other hand, the thinness of the structures is considered to alter from
8 to 80. This range is selected based on the engineering experience and the numerical data in
literature.

5 Multi-Objective Improved Harmony Search Algorithm

The standard HS algorithm is conceptualized by using the musical process of searching for a
perfect state of harmony. Literary, the HS is classified in a main category of optimization al-
gorithms and a subcategory; meta-heuristic algorithms; and evolutionary algorithms. Briefly,
meta-heuristics are advanced search methods for converging to the global optimum. Meta-
heuristics encompass all of higher-level optimization algorithms, including the EA (evolution-
ary algorithms). The EAs typically mimic some natural phenomena. The core idea of EAs is
the concept of evolution. In this way, the fittest and the most elite solution vectors are survivors.
Since the HS uses a stochastic search instead of a gradient search, the derivative information is
unnecessary. Similar to the other EAs, the HS has a set of tune parameters which are useful to
deal with different decision making problems. The HS algorithm parameters are as follow:

• HM (Harmony Mmemory): The HM is a memory location where all the solution vectors
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are stored as

HM =



x11 x12 x13 ... x1N

x21 x22 x23 ... x2N

x31 x32 x33 ... x3N
...

...
...

...
...

xHMS
1 xHMS

2 xHMS
3 ... xHMS

N


where xen is the nth decision variable from eth solution vector.

• HMS (Harmony Memory Size): The HMS is the number of solution vectors in the HM.

• HMCR (Harmony Memory Considering Rate): The HMCR is the parameter that deter-
mines the rate of selecting new variables from stored solutions in the HM. The value of
HMCR is between 0 and 1. Therefore, (1-HMCR) determines the possibility of selecting
new random variables from out of HM (entire possible range of decision variables). So,
if x′n is a new decision variable, it will be selected by the following procedure:

HMCR ⇒ x
′

n ∈
{
x1n, x

2
n, x

3
n, ..., x

HMS
n

}
(1−HMCR) ⇒ x

′

n ∈ {xn | Ln ≤ xn ≤ Un}

The usage of HM is important because it ensures that good decision variables stored in the
HM are considered as elements of new solution vectors. If this rate is too low, only few
elite variables are selected, and the algorithm may converge slowly. On the other hand, if
this rate is extremely high (near 1), the decision variables in the HM are mostly used, and
the other possible variables are not explored well. This condition does not lead to good
solutions.

• PAR (Pitch Adjusting Rate): After choosing one of the stored decision variables (HMCR)
for generating a new one, PAR determines that the selected variable is adjusted or not. The
pitch adjusting means generating a new solution variable with slight changes in solution
variables that are randomly selected from the HM. Therefore, if x′n is a new selected deci-
sion variable before adjusting and x′′n is the decision variable after adjusting, the adjusting
process could be indicated as

PAR ⇒ x
′′

n = x
′

n + A

(1− PAR) ⇒ x
′′

n = x
′

n

Here, A could be defined as A = bw × c where bw is an arbitrary band width and c is a
randomly generated value that is between −1 and 1.

• NI (Number of Improvisations): The NI determines how many times the process of im-
provisation should be repeated. Literary, the NI is one of the usual termination criteria in
the HS algorithm.

Now, the implementation strategy of the MHS is described as follows:
1− Initialize the problem, setting the algorithm parameters, i.e. HMS, HMCR, PAR and bw.
2− Initialize the HM, the HM matrix is filled with randomly generated solution vectors.
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3− Improvise a new harmony (solution vector), improvisation in the HS algorithm is based
on three fundamental concepts; usage of harmony memory (HMCR), pitch adjusting (PAR), and
randomization (1-HMCR) [24]. The role of randomization in the HS algorithm is increasing the
diversity of solutions. Although the pitch adjustment has a similar role, it corresponds to a local
search. It is worth mentioning that the use of randomization can drive the system further in
order to explore diverse solutions and to attain the global optimality.

4− Update the harmony memory, If the new solution vector is better than the worst solution
vector in the HM in terms of the objective functions (new solution dominates the worst solution),
the new solution is included in the HM, and the worst is discarded. This step is the main
discrepancy between mono-objective and multi-objective HS algorithm. Although the sorting of
solution vectors in mono-objective HS is simply performed based on one objective function, the
sorting procedure in the multi-objective HS must be performed based on the pareto-optimality
concept. In the same manner, obtaining the worst solution in the HM and replacing the worst
solution by the new improvised solution are performed based on the pareto-optimality concept.

5− Check the stopping criterion, In this paper, obtaining a set of non-dominated solution
vectors is the stopping criterion. As the consequence, when the developed algorithm reaches
the stopping criterion, none of the solution vectors may be dominated by others. In other words,
it is impossible to find the worst solution vector.

It must be noted that the mentioned steps are related to the standard MHS algorithm. In
special cases the parameters of algorithm could be defined in other ways. Since the evolutionary
algorithms (such as HSA) are relatively poor at yielding a precise optimum solution in a region
at which the algorithm converges, the auxiliary methods such as improving, combining, and
hybridizing are necessary to enhance the local search ability of evolutionary algorithms. For
instance, Fesanghary et al. [45] have proposed a hybrid harmony search algorithm (HHSA) to
solve mono-objective engineering optimization problems with continuous design variables.

In the present work, to enhance the local search ability of the standard harmony search
algorithm, the improvisation coefficients (HMCR, PAR, and bw) have been defined dynamically
[23]. Followings are the description of dynamic adjusting of improvisation coefficients. This is
known that the increase in HMCR confines choosing the new solution vectors in the HM. Thus,
this is equal to the increase in ability of the local search of the algorithm. Similarly, decreasing
in the PAR and bw could result in rise of the local search ability for the HS algorithm. In this
paper, with the increase in NI, the bw is decreased through an exponential function, PAR is
decreased through a linear function, and HMCR is increased through a multiple step function.
These functions are efficiently obtained based on a trial-and-error procedure which obviously
is problem dependent. This means that in the process of finding the optimal pareto-points, the
power of convergence is increased as the process approaches to the final iterations.

6 Results and Discussions

6.1 Validation study

In this section, the FON test function is considered for examination of the accuracy and effi-
ciency of the proposed algorithm. The results of this study are compared with those given in
reference [46]. The FON test function is defined as
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Figure 4 Pareto optimal points for FON test function.

f1(x1, x2, x3) = 1− exp

(
−

3∑
i=1

(xi − 3−0.5)2

)

f2(x1, x2, x3) = 1− exp

(
−

3∑
i=1

(xi + 3−0.5)2

)
− 4 ≤ x1, x2, x3 ≤ 4

The developed IMHSA is adopted to solve the FON test function and results are given in
Fig. (4). As seen, optimal pareto-points obtained by the IMHSA are in good agreement with the
results presented in reference [46]. Thus the capability of the developed algorithm is justified.

6.2 Parametric study

Consider an FG beam of length L = 2m and an FG circular plate of radius R = 2m at initial
temperature of 300K. Material constituents of the structures are aluminum AL and alumina
AL2O3. The thermo-mechanical properties of constituents are given in table (1). In table (1),
Ym = 250Mpa is the yield strength of aluminum and Yc = 1200Mpa is the ultimate strength of
alumina. Since these constituents have different types (Al have different alloys, and Alumina
exist with different oxidation percent), the numerical values for the later properties are approx-
imately selected based on data in material handbooks. According to Eq. (5) and table (1) the
effective yield stress thorough the FGM medium is obtained as Eq. (20)

σy = 380.2− 0.52Vm (20)

According to the section 4, Eq.(20) participates in the constraint functions of optimization
problems. In other words, it provides the upper bound for the effective stress at each material
point of the FG structures.
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Table 1 Thermo-mechanical properties of constituents [42],[43].

E [Gpa] α [1/K] k [W/mK] ρ [kg/m3] Ym [Mpa]/Uc [Mpa]
Al 70 23.4× 10−6 233 2707 250

Al2O3 393 7.4× 10−6 30 3960 1200

The paper presents the illustrative results in the form of pareto-fronts. A pareto-front is com-
posed of a number of solution vectors which are not dominated by each other. The number of
these solution vectors is determined by the tuning parameters of the optimization algorithm. In
this work, the number of solution vectors which construct the pareto-fronts is equal to the HMS.
The pareto-fronts inherit the basic characteristic of the multi-objective optimization problems,
improving one of the objective functions worsens others. This feature could be tracked through
Fig. (4). As seen, solution vectors on the pareto-front are located based on their associated
objective values. For the solution vectors placed on the pareto-front there may be various com-
binations of the objective values. In this paper the optimization problems have two objective
functions, thus their associated pareto-fronts have two end-points. At these end-points the so-
lution vectors are in their extreme conditions in the sense of objective values. That is, at the
end-points of the pareto-front one of the objective functions is in its best situation and the other
is in its worst situation. Moving along the pareto-front from one end-point to another one these
extreme situations are reversed. For the points located between two end-points values of the
objective functions are in a trade-off. This event could be clearly understood through Fig. (4).
In this figure, the lower end-point belong to the maximum value of the first objective function.
In this point the value of the second objective function is identically zero. Moving from this
point to the upper end-point, the value of the first objective function decreases while the value
of the second objective function increases. This process is continued until the value of the first
objective function reaches to zero and the value of the second one reaches its maximum value.
The above explanations are valid for all the pareto-fronts in general, but the arguments on the
characteristic of pareto-fronts could be more extended in depth [46]. Now the results of the
paper may be easily analyzed.

Figures (5) and (6), respectively, illustrate the obtained optimal pareto-points for the model
problems 1 and 2. Both pareto-fronts have end-points associated with the extreme situations.
Also, in both figures the horizontal axis belongs to the inverse of the critical buckling tempera-
ture and the vertical axis belongs to the specific mass of the structures. So, the lower end-point
associates with the minimum buckling temperature and the minimum specific mass. As seen,
moving from the lower end-point to the upper one the critical buckling temperature increases
(improves) and the specific mass increases (worsens) too. These results partially satisfy the
expectations; lighter structures have lower thermal buckling resistance.

In both model problems, some of the pareto-points have been selected for detailed consider-
ations. These selected pareto-points have been shown in tables (2) and (3) for model problems
1 and 2, respectively.

In Tables (2) and (3), solution vectors have been sorted based on the objective values. It
is obvious that an improving in one of the objective functions worsens another one. That is,
the structures with higher buckling temperature have higher specific mass, and structures with
lower specific mass have lower thermal buckling resistance.

Referring to the section 2, objective values have a nonlinear dependency to the decision
variables. Also, decision variables affect the objective values in a non-proportional way. For in-
stance, consider the condition in which the volume fraction of the metal phase (Al) is increased.
This leads to the reduction of specific mass of the structure, at the same time the equivalent ther-
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Figure 5 Pareto optimal points, optimizing FGM beams for maximum critical buckling
temperature against minimum mass.

Table 2 Selective pareto optimal points and
their associated objective values for model
problem 1.

K L/h ∆Tcrit mbL

1 9.26e− 04 53.84 152.47 147.05
2 0.0574 79.92 61.49 97.39
3 0.1088 79.92 56.37 96.01
4 10.47 59.74 53.47 94.27
5 12.95 61.24 50.53 91.32
6 12.51 63.899 46.51 87.62
7 11.78 70.31 38.52 79.78
8 14.91 75.01 33.43 74.26
9 19.22 76.704 31.301 72.198
10 15.21 78.78 30.275 70.68

mal expansion of the structure increase too. The closed-form expression for the critical buckling
temperature of the FG beam and the FG circular plate indicates that increasing the equivalent
thermal expansion of the structures results into decrease in the critical buckling temperature.
Consequently, it could be mentioned that the increasing in the vfolume fraction of the metal
phase causes a preferred reduction in the specific mass and a non-preferred reduction in the crit-
ical buckling temperature. The later discussion hint that for a continues change in the objective
values there is not a unique monotone path for changing in the decision variables. This means
that for certain values of objective functions there is not exist a unique solution vector. That is,
different distributions of the constituents and different structural thinness may be chosen for a
desirable structural design.
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Figure 6 Pareto optimal points, optimizing FGM circular plates for maximum critical buckling
temperature against minimum mass.

In this paper, based on the stochastic nature of the MHS algorithm, the pareto-optimal solutions
cover a wide variety of decision variables. This property of the pareto-optimal solutions is very
important in the sense of higher decision making. This is why for a certain values of objective
functions, the possible solution vectors provide a selection range for decision variables. Thus,
designers will be in a better position to make a choice when they face the higher level decision
constraints.

Also, having a look on Tables (2) and (3), it is seen that the distribution of decision variables
for the optimal pareto-points is not uniform in their possible range. This behavior for both
decision variables is explainable as follows:

Power-law index: Typically, the power-law index for optimal pareto-points are in the vicin-
ity of lower and upper bounds of possible range. These two boundary states belong to the
homogeneous material distribution thorough the structures. When the power-law index is iden-
tically zero the material distribution is exactly homogeneous, and when the power-law index is
equal to 20 the material distribution is almost homogeneous. For the homogeneous state of ma-
terial distribution thorough the flat structures the stretching-bending coupling effect vanishes.
This causes a significant reduction in thermal moment produced in the pre-buckling state. Re-
duction of thermal moment at pre-buckling stage results in higher buckling temperature for the
flat structures. Since the higher buckling temperature is desirable for the present optimization
problem, the optimal pareto-solutions are willing to have a homogeneous material distribution.
For this reason the power-law indexes associated to the pareto-optimal solutions are closed to
the upper/lower bound of their possible range.

Structural thinness: Although the lower structural thinness is appropriate for making further
delay in thermal buckling of flat structures, the pareto-optimal solutions accept the structural
thinness located in the neighborhood of its upper bound. In fact, this contradiction is due to
the stress constraint of optimization problems. When the structural thinness is decreased, the
thermal buckling resistance of FG flat structures is enhanced.
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Table 3 Selective pareto optimal points and
their associated objective values for model
problem 2.

K L/h ∆Tcrit mr

1 0.0128 33.79 109.79 224.13
2 0.0011 42.19 72.38 180.10
3 0.0031 51.62 48.11 147.11
4 7.33e− 06 55.50 41.93 136.94
5 0.1607 80 15.22 91.22
6 13.0025 66.19 12.61 84.15
7 10.73 66.76 12.48 83.88
8 15.2899 66.80 12.26 83.07
9 19.74 75.59 9.36 73.02
10 17.92 77.97 8.88 70.92

This is equal to the higher pre-buckling effective stress for the thicker structures. The elevation
of the pre-buckling effective stress may causes the initiation of the plastic flow at pre-buckling
stage. Since the present work is confined to the range of elastic stability, the solution vectors
that cause such a mentioned condition are dominated by the stress constraint function. For this
reason, the pareto-optimal solutions have to accept the structural thinness near its upper bound.

7 Conclusions

This paper presents a clear monograph on the multi-objective optimization of thermal instability
resistance of the FG flat structures using an IMHSA. Two model problems have been considered
for this purpose. The closed-form expressions of the critical buckling temperature for the model
problems have proposed in [42] and [43]. These expressions are obtained using the first-order
shear deformation kinematical model, the three-parameter power-law function for material dis-
tribution, and the clamped boundary conditions. The problems have been assumed to be in the
range of elastic stability. Power-law index and structural thinness have been assumed to be the
decision variables. The optimization problems are defined to be the minimization of the spe-
cific mass of the structures meanwhile the maximization of the critical buckling temperature.
Also, the constraint function of the problems have been defined based on the equivalent yield
strength at each material point of the FGM medium. An IMHSA is developed for solving the
optimization problems. The accuracy of prepared algorithm has been examined by solving the
FON test function. The developed algorithm is adjusted to solve both model problems. The
results have been presented in the form of pareto-optimal points for the FG beam as well as the
FG circular plate. Moreover, some of the pareto-optimal solutions and their associated decision
variables are tabulated. The pareto-optimal points provide a wide range of possible solutions
that are useful from the design point of view. As expected, results unveil that the thinness is
the crucial factor for design in the sense of elastic stability. Also, it has been found that the
non-symmetric distribution of constituents are not suitable to postpone the thermal buckling of
the flat FG structures.

At the end, it is worth nothing that this paper has successfully used the developed IMHSA for
optimizing the thermal buckling resistance of the FG flat structures. The developed algorithm
has been found a simple and accurate algorithm for optimizing the multi-objective constraint
problems with continuous decision variables. The developed algorithm will be employed for
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more complex optimization problems through the next works.
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 چکیده

های مسط  ساخته نده از مراد هدفمهد سازی مقاشمت سازهبه صررت  تشن  ش ص ح  به بینههمقاله حاضر  

اند ب ای اح  مهظرت دش نمرنه سازه دت نظ  گ فته نده پ دازد.ای تحت بات ح اتتی میدت مقابل ناپاحداتی سازه

ف ض نده که عباتتهد از: حک تن  ساخته نده از مراد هدفمهد ش حک شتق گ د ساخته نده از مراد هدفمهد. 

اند، از مدل ب نی م تبه اشل ن ه سراخته نرردهاد هدفمهد با ترابع ترزحع سره مت ها از مراسرت که اح  سرازه

ازی سازی حاض  حداکث  سترابع هدف ب ای مسئله بینهه بانهد.گاه گن دات میش داتای تکنه نماحهدتبعنت می

ها دت نظ  گ فته نده است. همچهن  با دت نظ  گ فت  دمای بح انی کمانش دت حن  حداقل سازی شزن سازه

حاض  ب ای مسئله مقاله  ها محدشد نده است.ترابع قند مهاسر،، مسرئله به محدشده پاحداتی الاستنک سازه

اناحی تر .کهدچهد هدفه بیبرد حافته پنشهیاد می جسرتوری هاتمرنی بینهه سرازی مط ح نرده حک الورتحت 

نقاط  نتاحج گ افنکی دت غال، گ دد.سازی نهاخته نده تاحند میالورتحت  اتائه نرده با حل حک مسئله بینهه

نررررند ش تعدادی از اح  نقاط با جائنا  کامل دت نماحش داده می ب ای مسرررائرل مط ح نرررده بینهره پ تر

های تخت دههد که ترزحع نامتقاتن مراد دت تاستای ضخامت سازهنتاحج نشان می گ دند.هاحی اتائه میجدشل

 باند.ها مهاس، نمیب ای افااحش دمای بح انی اح  سازه
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