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1 Introduction 
  
The failure of composites and coated materials, are associated with the cracks occurring near 
the interface between bonded dissimilar materials. The Functionally graded materials are 
composite materials with nonhomogeneous micromechanical structure. These materials have 
been widely offered in the environments with extremely high temperature. The distinguishing 
feature of these materials is that the material constants are continuous and have differentiable 
functions. The stress analysis of FGM layers sandwiched between two isotropic layers with 
interface cracks deals with the design of safe structures due to the fact that the application of 
nonhomogeneous materials has increased in industries recently. 
Sills and Benveniste [1] considered the steady state propagation of a semi-infinite crack 
between two dissimilar viscoelastic solids. The stress intensity factor was found to be a 
function of the crack tip velocity and the material parameters by means of the Weiner-Hopf 
technique. The basic crack problem which is essential for the study of subcritical crack 
propagation and fracture layered of structural materials was considered by Erdogan [2].  
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Fracture Analysis of a FGM Strip 
Containing Multiple Interface Cracks 
Sandwiched between Two Homogeneous 
Layers 
A FGM layer sandwiched between two isotropic layers 
weakened by several interface cracks under antiplane loading 
is studied. This paper examines the modelling of cracks by 
distribution of strain nuclei along crack lines. In this 
investigation, the Volterra-type screw dislocation employed 
between FGM and an elastic layer. To solve the dislocation 
problem, the complex Fourier transform is applied. One merit 
of this technique is the possibility to determination of the stress 
intensity factors for multiple cracks. The system of equations is 
derived by considering the distribution of line dislocation on 
the crack. These equations are of Cauchy singular type at the 
location of dislocation, which can be solved numerically to 
obtain the dislocation density on the faces of the cracks. 
Several examples are solved and the stress intensity factors are 
obtained. The effect of the properties and cracks geometries on 
the mode III stress intensity factor are studied and the validity 
of analysis is checked.  
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The problem was formulated in terms of integral equations and the singular behavior of the 
solution near and at the ends of intersection of the cracks was investigated. Furthermore, a 
numerical method for solving the problem was described and stress intensity factors obtained 
from the solution for various crack geometry were presented by Erdogan [3]. The problem 
was intended to approximate the cracks perpendicular to and on the interface of the two layers 
in a composite beam or a plate. Erdogan [4] investigated the singular nature of the crack-tip 
stress field in a nonhomogeneous medium having a shear modulus with a discontinuous 
derivative. In this work, the problem was considered in the antiplane shear loading of two 
bonded half spaces in which the crack is perpendicular to the interface.  
Delale and Erdogan [5] reconsidered the linear elasticity problem for an interface crack 
between two bonded homogeneous and nonhomogeneous half planes. The problem was 
solved for various values of the nonhomogeneous parameter. Chiang [6] determined the 
asymptotic stress and displacement fields of a propagation interface crack under mode III 
conditions by employing the eigen-function expansion technique. The dynamic energy release 
rate was found to be related to the dynamic stress intensity factor. Suo et al. [7] considered a 
semi-infinite interface crack between two infinite isotropic elastic layers under general edge 
loading condition. Champion and Atkinson [8] considered the stress singularity at the tip of a 
crack at the interface between two different power-law materials under mode III loading. 
Erdogan et al. [9] considered the mode III crack problem for two bonded homogeneous half 
planes. The problem was solved for various crack locations in and around the nominal 
interfacial region. Chung and Robinson [10] considered a transient solution of the problem of 
a mode III crack propagating along the interface between two different media. In this paper, 
the method of self-similar potentials was introduced to solve the self-similar problem. 
Erdogan and Wu [11] investigated the influence of the structure and thickness of the 
interfacial regions on the strain energy release rate in bonded isotropic or orthotropic 
materials containing collinear interface cracks.  
They formulated the problem in terms of a system of singular integral equations of second 
kind which was solved by using a relatively simple and efficient technique. Ozturk and 
Erdogan [12] investigated the influence of the thickness and the properties of the interfacial 
region on such fracture related parameters as the strain energy release rates, the stress 
intensity factors, and the crack opening displacements. Jin and Batra [13] studied the interface 
cracking between ceramic and/or functionally graded coatings and a substrate under antiplane 
shear. It was noted that large modulus gradients in thin coatings might seriously restrict the 
application of stress intensity factors as the stress intensity factors dominant zone fell into the 
crack tip nonlinear deformation and damage zone.  
Li et al. [14] considered a moving mode III crack at the interface between two dissimilar 
piezoelectric materials. In this paper, the integral representation of a general solution was 
given in terms of Fourier cosine integrals. The elastic and electric fields were obtained for a 
moving impermeable crack and for a moving crack where the electric displacement was 
continuous across the crack surfaces. Chan et al. [15] presented a displacement based integral 
equation formulation for the mode III crack problem in a nonhomogeneous medium, with a 
continuously differentiable shear modulus assumed to be an exponential function. They 
solved the problem for a finite crack. Dag et al. [16] considered interface crack problems in 
graded orthotropic media. An interface crack between a graded orthotropic coating and a 
homogeneous orthotropic substrate was considered. It was noted that under normal loading of 
the crack faces energy release rate decreased the function of the normalized nonhomogeneity 
parameter and increased the function of the shear parameter under uniform normal loading. 
Chen and Chue [17] dealed with the anti-plane problem of two bonded functionally graded 
finite strips. A system of singular integral equations was derived and then solved numerically 
by utilizing Gauss-Chebyshev integral formula. 
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Bagheri et al. [18] investigated the linear steady state problem of several moving cracks in a 
functionally graded magneto-electro-elastic strip subjected to anti-plane mechanical and in-
plane electric and magnetic loading. They obtained exact solution in closed form to this 
problem by combining the dislocation method and integral transform technique. Bagheri et al. 
[19] in another work investigated the behaviors of several moving cracks in a functionally 
graded piezoelectric strip subjected to anti-plane mechanical loading and in-plane electrical 
loading. It was observed that the stress fields in the functionally graded piezoelectric layer 
increased when the crack velocity increased. Bagheri et al. [20] studied the fracture problem 
for a medium composed of a cracked piezoelectric strip with functionally graded orthotropic 
coating. The layer was subjected to anti-plane mechanical and in-plane electrical loading. 
They addressed the problem of a screw dislocation located in a substrate imperfectly bonded 
to the coating and then constructed integral equations for the layer in order to model the 
cracked piezoelectric layer with the help of the dislocation solution.  
In this work, we study the multiple cracks along the interface between FGM and elastic 
layers, using the distributed dislocation technique. also the complex Fourier transform is 
employed to evaluate the stress fields. 
The solutions are then used to obtain singular integral equations for the dislocation density on 
the face of multiple cracks. These equations are solved numerically and the solutions are 
employed to designate SIF for cracks tip. Different examples are given to display the effects 
of the properties, cracks length, and thickness of coat on the stress intensity factor of cracks to 
demonstrate the advantage of this method. 
 
2 Formulation of the problem 
 
The stress analysis in a medium made up of a FGM layer with thickness 2h , bonded to 
isotropic layers under anti-plane loading, is plotted in Figure (1). A dislocation may be 
created by first making a slit in a medium, from the core of the dislocation in the origin of 
Cartesian coordinates (x,y,z) to any infinitely remote point. A cut has made along the positive 
x-axis, pull the material apart in the z-direction, and insert a thin strip of thichness zb , before 
re-joining. For a medium under anti-plane deformation, the only nonzero displacement 
component is the out of plane component ),( yxw . Consequently, the constitutive equations 
for all three layers in a Cartesian coordinate system are: 
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where, ),( yxwi , zki  and ),;3,2,1( yxkii   are the z -component of the displacement 
vector, the stresses and the shear modulus of the material i , respectively. To simulate the 
problem of FGM layer bonded between two homogeneous layers, it should be supposed that 

1  and 3  are known constants and )(22 y   is a given function satisfying Figure (1). 

32212 )(,)0(   h     (2) 
In order to simplify the complexity of mathematics, we will focus this study on a special class 
of FGMs in which the variations of the elastic shear modulus has the same material gradient 
parameter. Therefore, we assume: 
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yey  2
12 )(       (3) 

 
where   is the inhomogeneity parameter. 
From (2) and (3) it may be seen that 
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From Eqs.(1) , and using the equilibrium equations, the governing equations for layers can be 
expressed in the following form: 
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where 2  is the two dimentional Laplace operator. Note that body forces are not considered 
in the present work.  
For this dislocation problem, the upper and lower surfaces of structure are stress free and can 
be described by: 

0),( 11 hxzy  
0))(,( 323  hhxzy           (6) 

 
The stress and displacement continuity conditions are expressed as: 
 

),(),( 2322
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Let a Volterra-type screw dislocation with Burgers vector zb be situated in the interface 
functionally graded layer and isotropic layer at a point with coordinates )0,0( . it should be 
Noted that, a sudden jump, or discontinuity, in the displacements in the z-direction has 
experienced by traversing a path from the negative to the positive side of the cut, around the 
dislocation core. Therefore, The conditions representing the screw dislocation are: 
 

)0,()0,( 21
  xx zyzy   

)()0,()0,( 12 xHbxwxw z      x    (8) 
 
where ( )H x  is the Heaviside-step function,  0y and  0y  designate upper and lower 
edges of the cut, respectively. The former relation, denotes the traction continuity condition  
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Figure 1 Schematic view of the medium with screw dislocation. 
 
while the latter implies the multivaluedness of displacement, In above conditions. It is 
noteworthy that the above conditions for screw dislocation were employed by several 
investigators, e. g., Weertman [21]. By means of the complex Fourier transforms, the general 
solution of Eqs.(5) is obtained as follows: 
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            (9)  
where 22 s   and the functions 6,5,4,3,2,1),( isAi  are unknown. The application of 
conditions (6-8) gives the unknown coefficients. After determining coefficients, referring to 
(9) and using the constitutive equations with the aid of inverse Fourier transform, the stress 
field associated with a single dislocation in the interface functionally graded layer and 
homogeneous layer can be written as: 
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where
)sinh()sinh()cosh()sinh()cosh()))[sinh((sinh()( 23233211 hshhshsshhhyssK    
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Considering the asymptotic behavior of the integral in Eq. (10) for s , one may prove that 

1yz has the following relation: 
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The singular parts can be evaluated by the use of the following identities: 
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After performing the appropriate asymptotic analysis using a symbolic manipulator and 
separating the singular parts of the kernels, we obtain: 
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There may be observed that stress componenty exhibit the familiar Cauchy type singularity at 
the dislocation location. 
 
3 Cracks formulation 
 
In this section, the basic concepts of the technique is introduced, such as the dislocation 
density and the fundamental function. In this part, the method will be expanded to deal with 
multiple interface cracks by considering a FGM layer bonded between two isotropic layers 
weakened by N  interface cracks. The cracks configuration are presented in parametric form 
as: 
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Two orthogonal coordinate systems s-n are chosen on the i-th crack such that their origin is 
located on the crack while the s-axis remains tangent to the crack surface. The anti-plane 
traction on the surface of the i-th crack in terms of stress become: 

zyiizn yx  ),(      (16) 
Suppose dislocations with unknown dislocation density )(tBzj  are distributed on the 

infinitesimal segment dttytx jj
22 )]([)]([   on the surface of the j-th crack. The traction 

components on the surface of the i-th crack in the presence of dislocations distribution on the 
surfaces of all N cracks mentioned above, yield: 
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The kernel of integral equations (17) takes the fllowing form 
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            (18) 
The left hand side of the Eqs. (17) represent stress component at the presumed location of the 
cracks with negative sign. Employing the definition of dislocation density functions, the 
equations for the crack opening displacement across jth crack become: 
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The singled-value conditions of displacement field can be determined by closure 
requirements: 
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The singular integral equations (17) are solved numerically using (19) and an appropriate 
collocation technique to determine the dislocation density functions [22]. The stress fields 
near a crack tips having square-root singularity, can be expressed as: 
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The function )(tg jz  are obtained via solution of the system of equations. The stress intensity 
factors for the i-th interface crack can be calculated as: 
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The details of the derivation of fields intensity factors to reach (22) are not given here. 
 
 
4 Results and discussions 
 
The analysis developed in latter section, allows the FGM strip bonded between two isotropic 
layers with multiple interface cracks subjected to constant anti-plane load, to be analysed. In 
the following examples, the length of straight crack is L2 . The quantities of interest are the 
absolute values of non-dimensional stress intensity factors, 0KK III , where we take 

.00 LK    
   The first example deals with a strip weakened by an interface crack. The problem is 
symmetric with respect to the y -axis. In this case 1h  and 3h  are infinite. Figure (2) shows the 
effect of modulus ratio 13   on 0/ KK III  for various values of Lh2 . It is clearly seen that 

0/ KK III  monotonically decrease as that the stiffness ratio 13   increases. In this example, 
by asumming  that 1h  and 3h , excellent agreement is observed with the results 
presented by Ozturk and Erdogan [12]. 
In the second example, we consider a strip weakened by an interface crack with different 
modulus ratio 22/1,22,3/1,313  . The absolute value of dimensionless stress intensity 
factor 0KK III , versus 2hL  is depicted in Figure (3). In this case, by asumming that 1h  
and 3h , excellent agreement is observed with the results presented by Ozturk and 
Erdogan [12]. 
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Figure 2 Variations of normalized stress intensity factors of crack tips versus the modulus ratio. 
 
 
 

Figure 3 Variations of normalized stress intensity factors with 2hL for different modulus ratio 13  . 
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Figure 4 Variations of dimensionless stress intensity factor with 21 hh for different modulus ratio 13  . 

 

Figure 5 Dimensionless stress intensity factors of two interface cracks with 13   for different values of 
the Lh2 . 
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Figure 6 Dimensionless stress intensity factors of two interface cracks with 2hL . 
 

 
 
Figure (4) illustrate the effects of the 21 hh  on the dimensionless stress intensity factors. We 
can see that the stress intensity factors decrease as the 21 hh  increases. And the values of 
stress intensity factors decrease with the increasing of the modulus ratio. 
The next example deals with the interaction of a stationary two interface crack with a fixed 
center. Figure (5) shows the influence of the 13   on the 0KK III  for different values of the 

Lh2 . It is apparent that the stress field around crack tip can be intensified by the interaction 
of cracks. Similar phenomena can be observed for variation of the stress intensity factors. 
In Figure (6), we present the results of the identical growing interface cracks with fixed 
centers placed on the interface. The modulus ratio 13  is chosen as 3/1,313  . The 
dimensionless stress intensity factors for  31 hh  with 2hL , are shown in Figure (6). As 
expected, the variations of stress intensity factors for the two approaching crack tips change 
rapidly. 
As the last example, the variation of the normalized stress intensity factors of crack tips 
against 21 hh  is depicted in Figure (7), where a2  is the distance between two approaching 
crack tips. As it may be observed, with increasing thickness of underneath coat the stress 
intensity factors decrease. 
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Figure 7 Variation of the normalized stress intensity factors of two interface cracks tips against 21 hh . 
 
 
 

5 Conclusion 
 
The fracture problem of a functionally graded strip bonded between two isotropic layers 
weakened by multiple interface cracks under anti-plane mechanical loading is investigated. 
The solution of screw dislocation between FGM and an elastic layer is obtained by using the 
integral transform technique. The dislocation solution leads to Cauchy singular integral 
equations with unknown dislocation density function which can be solved by numerical 
method. The solutions are obtained in integral forms which may be considered as Green’s 
functions for the medium with multiple interface cracks. The effects of crack geometry, 
material properties, interaction of cracks on the stress intensity factor are studied. Results 
from the present work can be reported as follows: 
The stress intensity factors decrease with increasing the modulus ratio 13  . It is observed 
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i
, the problem reduces to the dislocation solution 

of infinite isotropic plane and for 0.113  , the stress intensity factors increase with 
increasing the functionally graded thickness. It was also observed that for 0.113  , the 
stress intensity factors decrease with increasing the functionally graded thickness. In 
summary, the stress intensity factor decrease with increasing thickness of underneath coat and 
can be intensified by the interaction of cracks. 
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Nomenclature 
 

6,...,2,1),( isAi   :   unknowns coefficients 

zb    :                             Burgers vector 
)(tBzj    :                       dislocation density 
)(tg zj    :                      regular terms of dislocation density 

1h    :                             thickness of homogeneous lower layer 
2h    :                             thickness of FGM strip 
3h    :                             thickness of homogeneous upper layer 

)(xH    :                        Heaviside step function 
M
LjK    :                          stress intensity factor of left side of crack 
M
RjK    :                          stress intensity factor of right side of crack 

0K    :                            stress intensity factor of a crack in infinite plane 
),( tsKij    :                    kernels of integral equations 

L    :                              half lengths of straight crack 
N    :                             total number of cracks 
s   :                               Fourier varible 

3,2,1),,( iyxwi    :     out of plane displacement component 
)(),( sysx ii    :              functions describing the geometry of cracks 

    :                            FGM exponent 

31 ,    :                     elastic shear modulus 

nz    :                         traction vector 
zyzx  ,    :                   out of plane stress components 
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  چكيده
  

 باريكه سـاخته شـده از مـواد تـابعي     در از روش توزيع نابجايي براي حل مساله مكانيك شكست در اين مقاله
رفتـار محـيط الاسـتيك     .شده اسـت بار خارج صفحه ايي استفاده  تحت لايه الاستيكمحدود شده توسط دو 

يـن روش، تعيـين ضـرايب    يكـي از مزيـت هـاي ا   . خطي است و سطوح تركها هموار در نظر گرفته شده است
و حـل معادلـه حـاكم بـا     مخـتلط  با استفاده از تبديل فوريه باشد. شدت تنش براي مجموعه ايي از تركها مي

 تـابعي و لايـه الاسـتيك    رفتارباريكه با  فصل مشترك در ميدان تنش ناشي از نابجاييتوجه به شرايط مرزي، 
نتگرالي براي تحليل مساله چندين ترك هموار بدسـت  سپس با داشتن اين حل، معادلات ا. گرددمحاسبه مي

گردند تا تـابع  آيد. اين معادلات داراي تكينگي از نوع كوشي هستند كه با استفاده از روش عددي حل ميمي
را  هـا يب شدت تنش در نوك تركاتوان ضرها بدست آيد. بعد از بدست آوردن توزيع نابجايي ميتوزيع نابجايي

مقايسه شـده و تطـابق خـوبي     مناسبيست آورد. براي نشان دادن صحت روابط بدست آمده، نتايج با منبع بد
  مشاهده شده است.

  
 


