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Fracture Analysis of a FGM Strip
Containing Multiple Interface Cracks
Sandwiched between Two Homogeneous

H. Lak"jLayers

MSc. Studentl A FGM layer sandwiched between two isotropic layers
weakened by several interface cracks under antiplane loading
is studied. This paper examines the modelling of cracks by
distribution of strain nuclei along crack lines. In this
investigation, the Volterra-type screw dislocation employed
between FGM and an elastic layer. To solve the dislocation
problem, the complex Fourier transform is applied. One merit
of this technique is the possibility to determination of the stress
intensity factors for multiple cracks. The system of equations is
R. Bagheri'  derived by considering the distribution of line dislocation on
Assistant Professor @ the crack. These equations are of Cauchy singular type at the
location of dislocation, which can be solved numerically to
obtain the dislocation density on the faces of the cracks.
Several examples are solved and the stress intensity factors are
obtained. The effect of the properties and cracks geometries on
the mode 111 stress intensity factor are studied and the validity

of analysis is checked.

Keywords: Multiple interface cracks, Functionallay graded layer, Singular integral equations,
Stress intensity factors, Distributed dislocation tecchnique

1 Introduction

The failure of composites and coated materials, are associated with the cracks occurring near
the interface between bonded dissimilar materials. The Functionally graded materials are
composite materials with nonhomogeneous micromechanical structure. These materials have
been widely offered in the environments with extremely high temperature. The distinguishing
feature of these materials is that the material constants are continuous and have differentiable
functions. The stress analysis of FGM layers sandwiched between two isotropic layers with
interface cracks deals with the design of safe structures due to the fact that the application of
nonhomogeneous materials has increased in industries recently.

Sills and Benveniste [1] considered the steady state propagation of a semi-infinite crack
between two dissimilar viscoelastic solids. The stress intensity factor was found to be a
function of the crack tip velocity and the material parameters by means of the Weiner-Hopf
technique. The basic crack problem which is essential for the study of subcritical crack
propagation and fracture layered of structural materials was considered by Erdogan [2].
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The problem was formulated in terms of integral equations and the singular behavior of the
solution near and at the ends of intersection of the cracks was investigated. Furthermore, a
numerical method for solving the problem was described and stress intensity factors obtained
from the solution for various crack geometry were presented by Erdogan [3]. The problem
was intended to approximate the cracks perpendicular to and on the interface of the two layers
in a composite beam or a plate. Erdogan [4] investigated the singular nature of the crack-tip
stress field in a nonhomogeneous medium having a shear modulus with a discontinuous
derivative. In this work, the problem was considered in the antiplane shear loading of two
bonded half spacesin which the crack is perpendicular to the interface.

Delale and Erdogan [5] reconsidered the linear elasticity problem for an interface crack
between two bonded homogeneous and nonhomogeneous half planes. The problem was
solved for various values of the nonhomogeneous parameter. Chiang [6] determined the
asymptotic stress and displacement fields of a propagation interface crack under mode 111
conditions by employing the eigen-function expansion technique. The dynamic energy release
rate was found to be related to the dynamic stress intensity factor. Suo et al. [7] considered a
semi-infinite interface crack between two infinite isotropic elastic layers under general edge
loading condition. Champion and Atkinson [8] considered the stress singularity at the tip of a
crack at the interface between two different power-law materials under mode |11 loading.
Erdogan et a. [9] considered the mode 11 crack problem for two bonded homogeneous half
planes. The problem was solved for various crack locations in and around the nominal
interfacial region. Chung and Robinson [10] considered a transient solution of the problem of
amode Il crack propagating along the interface between two different media. In this paper,
the method of self-similar potentials was introduced to solve the self-similar problem.
Erdogan and Wu [11] investigated the influence of the structure and thickness of the
interfacial regions on the strain energy release rate in bonded isotropic or orthotropic
materials containing collinear interface cracks.

They formulated the problem in terms of a system of singular integral equations of second
kind which was solved by using a relatively ssimple and efficient technique. Ozturk and
Erdogan [12] investigated the influence of the thickness and the properties of the interfacial
region on such fracture related parameters as the strain energy release rates, the stress
intensity factors, and the crack opening displacements. Jin and Batra[13] studied the interface
cracking between ceramic and/or functionally graded coatings and a substrate under antiplane
shear. It was noted that large modulus gradients in thin coatings might seriously restrict the
application of stress intensity factors as the stress intensity factors dominant zone fell into the
crack tip nonlinear deformation and damage zone.

Li et al. [14] considered a moving mode |1l crack at the interface between two dissimilar
piezoelectric materials. In this paper, the integral representation of a general solution was
given in terms of Fourier cosine integrals. The elastic and electric fields were obtained for a
moving impermeable crack and for a moving crack where the electric displacement was
continuous across the crack surfaces. Chan et al. [15] presented a displacement based integral
equation formulation for the mode 111 crack problem in a nonhomogeneous medium, with a
continuously differentiable shear modulus assumed to be an exponential function. They
solved the problem for a finite crack. Dag et al. [16] considered interface crack problems in
graded orthotropic media. An interface crack between a graded orthotropic coating and a
homogeneous orthotropic substrate was considered. It was noted that under normal loading of
the crack faces energy release rate decreased the function of the normalized nonhomogeneity
parameter and increased the function of the shear parameter under uniform normal loading.
Chen and Chue [17] dealed with the anti-plane problem of two bonded functionally graded
finite strips. A system of singular integral equations was derived and then solved numerically
by utilizing Gauss-Chebyshev integral formula.



Fracture Analysis of a FGM Strip Containing Multiple Interface... 79

Bagheri et al. [18] investigated the linear steady state problem of several moving cracks in a
functionally graded magneto-electro-elastic strip subjected to anti-plane mechanical and in-
plane electric and magnetic loading. They obtained exact solution in closed form to this
problem by combining the dislocation method and integral transform technique. Bagheri et al.
[19] in another work investigated the behaviors of several moving cracks in a functionally
graded piezoelectric strip subjected to anti-plane mechanical loading and in-plane electrical
loading. It was observed that the stress fields in the functionally graded piezoelectric layer
increased when the crack velocity increased. Bagheri et a. [20] studied the fracture problem
for a medium composed of a cracked piezoelectric strip with functionally graded orthotropic
coating. The layer was subjected to anti-plane mechanical and in-plane electrical loading.
They addressed the problem of a screw dislocation located in a substrate imperfectly bonded
to the coating and then constructed integral equations for the layer in order to model the
cracked piezoelectric layer with the help of the dislocation solution.

In this work, we study the multiple cracks along the interface between FGM and elastic
layers, using the distributed dislocation technique. also the complex Fourier transform is
employed to evaluate the stress fields.

The solutions are then used to obtain singular integral equations for the dislocation density on
the face of multiple cracks. These equations are solved numericaly and the solutions are
employed to designate SIF for cracks tip. Different examples are given to display the effects
of the properties, cracks length, and thickness of coat on the stress intensity factor of cracksto
demonstrate the advantage of this method.

2 Formulation of the problem

The stress analysis in a medium made up of a FGM layer with thickness h,, bonded to

isotropic layers under anti-plane loading, is plotted in Figure (1). A dislocation may be
created by first making a dlit in a medium, from the core of the dislocation in the origin of
Cartesian coordinates (X,y,z) to any infinitely remote point. A cut has made along the positive
x-axis, pull the material apart in the z-direction, and insert a thin strip of thichness b, , before
re-joining. For a medium under anti-plane deformation, the only nonzero displacement
component is the out of plane component w(x, y) . Consequently, the constitutive equations
for all three layersin a Cartesian coordinate system are:

ow, (X, Y) , oW, (X, Y) ’

O (X, Y) =14y ox O-zyl(xi y) =1y oy h <y<0
ow, (X, oW, (X,
O'zxz(XJ/):,uz(Y)%! Gzyz(xay):ﬂz(y)#1 O<y<h,
ow;, (X, oW, (X,
0 3(X,Y) :ﬂs%’ Gzys(x’ y) :ﬂa%’ h, <y<h,
()

where, w,(X,y), o, and g (i=123k =Xx,y) are the z-component of the displacement
vector, the stresses and the shear modulus of the material i, respectively. To simulate the
problem of FGM layer bonded between two homogeneous layers, it should be supposed that
4, and p, are known constantsand u, = 1, (y) isagiven function satisfying Figure (1).

15(0) = w1y (Ny) = g )
In order to simplify the complexity of mathematics, we will focus this study on a special class
of FGMs in which the variations of the elastic shear modulus has the same material gradient
parameter. Therefore, we assume:
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w1y (y) = ﬂlezw )

where £ isthe inhomogeneity parameter.
From (2) and (3) it may be seen that
1

_ L
f= g ) @

From Egs.(1) , and using the equilibrium equations, the governing equations for layers can be
expressed in the following form:

V2w, (x,Y) =0, -h <y<0
Vzwz(x,y)+2ﬂM:O, 0<y<h,
V2w, (x,y) =0, h, <y<(h,+h,)

)
where V? is the two dimentional Laplace operator. Note that body forces are not considered
in the present work.

For this dislocation problem, the upper and lower surfaces of structure are stress free and can
be described by:

Gzyl(xi_hl) =0
&5 (% (N, +y)) = 0 6)

The stress and displacement continuity conditions are expressed as.

Gzy2 (X’ h2_) = O-zyS(X’ h;)
W, (x,h;) = w,(x,h;) |X| <o (7)

Let a Volterratype screw dislocation with Burgers vector b, be situated in the interface
functionally graded layer and isotropic layer at a point with coordinates (0,0) . it should be

Noted that, a sudden jump, or discontinuity, in the displacements in the z-direction has
experienced by traversing a path from the negative to the positive side of the cut, around the
dislocation core. Therefore, The conditions representing the screw dislocation are:

O-zyl(Xioi) = O-zy2 (X1O+)

W, (X,07) —w, (x,07) =b,H(X) X < o0 (8)

where H(x) is the Heaviside-step function, y=0"and y =0" designate upper and lower
edges of the cut, respectively. The former relation, denotes the traction continuity condition
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Figure 1 Schematic view of the medium with screw dislocation.

while the latter implies the multivaluedness of displacement, In above conditions. It is
noteworthy that the above conditions for screw dislocation were employed by severa
investigators, e. g., Weertman [21]. By means of the complex Fourier transforms, the general
solution of Eqgs.(5) is obtained as follows:

w, (s, y) = A (s)sinh(sy) + A, (s) cosh(sy) —-h <y<0
W, (s, y) = A (s)e7 Y + A, (s)e VY 0<y<h,
W (8, y) = As(s)sinh(sy) + A (s) cosh(sy) h, <y<(h,+h,)

(9)
where A =./3%+s* and the functions A (s),i =12,3,4,56 are unknown. The application of
conditions (6-8) gives the unknown coefficients. After determining coefficients, referring to
(9) and using the constitutive equations with the aid of inverse Fourier transform, the stress
field associated with a single dislocation in the interface functionally graded layer and
homogeneous layer can be written as:

———=gin(sx)ds (10)

ﬂlbz J'°° Kl(s)
° Ky(s)

O_zyl(xi y) =

where

K,(s) = sinh(s(y + h,))[sinh(h,) cosh(sh,)s + A sinh(sh,) cosh(h,) + £ sinh(sh,) sinh(h,)

and

K, (s) = sinh(h,) cosh(s(h, + h;))s + #sinh(1h,)sinh(s(h, —h,)) + A cosh(4h,) sinh(s(h, + h,))
(11)

Considering the asymptotic behavior of theintegral in Eq. (10) fors — o, one may prove that
0,1, has the following relation:

. b, (~e¥ .
Oase (X, Y) =limor(x,y) = = 272 [7=sin(sx)ds (12)

The singular parts can be evaluated by the use of the following identities:
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jwesygn(sx)ds= RN y<0
0 X“+y
y (13)
0 sy _
J'O e¥ cos(sx)ds = ey y<O0

After performing the appropriate asymptotic analysis using a symbolic manipulator and
separating the singular parts of the kernels, we obtain:

wh, = K (s) e¥, . X
X,y) = ——)sin(sx)ds + ———— 14
(0 y) = 2, (kg 2 Se0ds o ] (14)
There may be observed that stress componenty exhibit the familiar Cauchy type singularity at
the dislocation location.

3 Cracks formulation

In this section, the basic concepts of the technique is introduced, such as the dislocation
density and the fundamental function. In this part, the method will be expanded to deal with
multiple interface cracks by considering a FGM layer bonded between two isotropic layers
weakened by N interface cracks. The cracks configuration are presented in parametric form
as.

X; =X (8)

=Y. iefl2..N} ~lss=<l (15)

Two orthogonal coordinate systems s-n are chosen on the i-th crack such that their origin is
located on the crack while the s-axis remains tangent to the crack surface. The anti-plane
traction on the surface of thei-th crack in terms of stress become:

o0 (XisYi) = Oy (16)
Suppose dislocations with unknown dislocation density B, (t) are distributed on the

infinitesimal segment \/[x} (t)]2+[y} (H)]?dt on the surface of the j-th crack. The traction

components on the surface of the i-th crack in the presence of dislocations distribution on the
surfaces of all N cracks mentioned above, yield:

00 (6(9), 3 (5 = 2. [ Ky (5.0 B (/D (OF +1y; 0] e (17)
The kernel of integral equations (17) takes the fllowing form

K, = #abs ¢ [ (sinh(2h,) cosh(shy)s + 2 sinh(sh,) cosh(2h,) + Bsinh(sh,) sinh(h,)]
T J0

y sinh(s((y; —y;)+h,)) ) Sy
K, (s) 2

(Xi —X;)
2 (x; _Xj)2+(yi _yj')z]

ysin(s(x; —x;))ds +

}

(18)
The left hand side of the Egs. (17) represent stress component at the presumed location of the
cracks with negative sign. Employing the definition of dislocation density functions, the
equations for the crack opening displacement across jth crack become:
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Wi (s) - wj (s) = [ By (O[X; 017 +Iy; O°dt  j=12..N  (19)

The singled-value conditions of displacement field can be determined by closure
requirements:

[ By O O +Ty; 1 dt =0, j=12..N (20)

The singular integral equations (17) are solved numerically using (19) and an appropriate
collocation technique to determine the dislocation density functions [22]. The stress fields
near a crack tips having sguare-root singularity, can be expressed as:

B, (t)=——, -1<t<1 j=12..,N (22)
U1t
The function g, ;(t) are obtained via solution of the system of equations. The stress intensity

factors for the i-th interface crack can be calculated as;
1
KW :—%[[x;(l)lz+[y;-(1)]2]4gz,-(1)

Kl =221 017 +1y; (-9 F g, (-1 j=12..N  (22)

The details of the derivation of fieldsintensity factors to reach (22) are not given here.

4 Results and discussions

The analysis developed in latter section, allows the FGM strip bonded between two isotropic
layers with multiple interface cracks subjected to constant anti-plane load, to be analysed. In
the following examples, the length of straight crack is 2L . The quantities of interest are the
absolute values of non-dimensional stress intensity factors, K,,/K,, where we take

Koy =7, / JL.
The first example deals with a strip weakened by an interface crack. The problem is
symmetric with respect to the y -axis. In thiscase h, and h, areinfinite. Figure (2) shows the

effect of modulus ratio u,/u, on K, /K, for various values of h, /L. It isclearly seen that
K / K, monotonically decrease as that the stiffness ratio /4, increases. In this example,
by asumming that h, - and h, — «, excellent agreement is observed with the results

presented by Ozturk and Erdogan [12].
In the second example, we consider a strip weakened by an interface crack with different
modulus ratio u,/u, =31/3221/22. The absolute value of dimensionless stress intensity

factorK,, /K, , versus L/h, isdepicted in Figure (3). In this case, by asumming thath, —
and h; — oo, excellent agreement is observed with the results presented by Ozturk and
Erdogan [12].
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Figure 6 Dimensionless stress intensity factors of two interface cracks with L/ h2 .

Figure (4) illustrate the effects of the h, /h, on the dimensionless stress intensity factors. We
can see that the stress intensity factors decrease as the h, /h, increases. And the values of

stress intensity factors decrease with the increasing of the modulus ratio.
The next example deals with the interaction of a stationary two interface crack with a fixed
center. Figure (5) shows the influence of the u,/u, ontheK,, /K, for different values of the

h,/L . It is apparent that the stress field around crack tip can be intensified by the interaction

of cracks. Similar phenomena can be observed for variation of the stress intensity factors.
In Figure (6), we present the results of the identical growing interface cracks with fixed
centers placed on the interface. The modulus ratio s,/ is chosen as u,/u, =3,1/3. The

dimensionless stress intensity factors for h, = h, = oo with L/h, , are shown in Figure (6). As

expected, the variations of stress intensity factors for the two approaching crack tips change
rapidly.

As the last example, the variation of the normalized stress intensity factors of crack tips
against h,/h, is depicted in Figure (7), where 2a is the distance between two approaching
crack tips. As it may be observed, with increasing thickness of underneath coat the stress
intensity factors decrease.
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Figure 7 Variation of the normalized stress intensity factors of two interface crackstips against h, /h,, .

5 Conclusion

The fracture problem of a functionally graded strip bonded between two isotropic layers
weakened by multiple interface cracks under anti-plane mechanical loading is investigated.
The solution of screw dislocation between FGM and an elastic layer is obtained by using the
integral transform technique. The dislocation solution leads to Cauchy singular integra
equations with unknown dislocation density function which can be solved by numerical
method. The solutions are obtained in integral forms which may be considered as Green’s
functions for the medium with multiple interface cracks. The effects of crack geometry,
material properties, interaction of cracks on the stress intensity factor are studied. Results
from the present work can be reported as follows:

The stress intensity factors decrease with increasing the modulus ratio z,/u, . It is observed

that for /4, =1.0 or for h —o0,(i=12.3), the problem reduces to the dislocation solution
of infinite isotropic plane and for s,/ >1.0, the stress intensity factors increase with
increasing the functionally graded thickness. It was also observed that for s,/ <1.0, the

stress intensity factors decrease with increasing the functionally graded thickness. In
summary, the stress intensity factor decrease with increasing thickness of underneath coat and
can be intensified by the interaction of cracks.
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Nomenclature

A(s), 1=12..6 . unknowns coefficients

b, : Burgers vector

B, : dislocation density

g, regular terms of dislocation density

hy thickness of homogeneous lower layer

h, thickness of FGM strip

hy : thickness of homogeneous upper layer
H(x) : Heaviside step function

K ﬁf : stress intensity factor of left side of crack

K Fﬁf : stress intensity factor of right side of crack
Ko stressintensity factor of a crack ininfinite plane
Ki(s,t) kernels of integral equations

L : half lengths of straight crack

N total number of cracks
S : Fourier varible

w,(X,y),i=123 : out of plane displacement component

X, (8),Y:(s) : functions describing the geometry of cracks
g FGM exponent

Hils elastic shear modulus

o, - traction vector

OOy - out of plane stress components
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