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1 Introduction 

 

The porous material are made of two elements; one of which is solid (body) and the other 

element is either liquid or gas which are frequently found in nature. Problems of deflection and 

buckling of the porous plates have been developed by many authors. The buckling of a fluid-

saturated porous slab under axial compression is reported by Biot [1]. He investigated the pore 

compressibility effect on critical buckling load and expressed that the critical load is 

proportional to the pore compressibility. He showed lower and upper critical value for a 

rectangular plate. Buckling of porous beams with varying properties were described by 

Magnucki and Stasiewicz [2]. They used shear deformation theory to determine the critical 

load. In this work, the effect of porosity on the strength and buckling load of the beam is 

investigated too. Magnucki et al. [3] investigated on the bending and buckling of rectangular 

plate made of foam material which have nonlinear mechanical properties in thickness direction 

with its material properties being non-symmetric with respect to middle of the plate 

(porous/nonlinear symmetric distribution plate).  
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Mechanical Buckling of FG Saturated 

Porous Rectangular Plate under 

Temperature Field 
In this study buckling analysis of solid rectangular plate 

made of porous material in undrained condition is 

investigated. The mechanical properties of plate are 

assumed to vary through the thickness direction. 

Distributing of the pores through the plate thickness are 

assumed to be the nonlinear nonsymmetric, nonlinear 

symmetric, and monotonous distribution. The effect of pores 

and pores distribution on critical buckling load of porous 

plate are studied. Effect of fluid compressibility on critical 

buckling load is investigated in the undrained condition. 

Also, effect of temperature on fluid compressibility for 

symmetric porous material plate, choosing a linear function, 

is examined. The results obtained for porous plates are 

verified with the known data in literature. 
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They obtained the result for a porous/nonlinear symmetric distribution plate. Magnucka-

Blandzi [4] obtained the critical buckling load for rectangular plate made of foam with two 

layers of perfect material. The core was made of a metal foam with properties varying across 

the thickness. Jasion et al. [5] derived the analytical, numerical, and experimental critical 

buckling load for plate and beam made of foam with two layers of perfect material. They 

obtained global and local buckling-wrinkling of the face sheets of sandwich beams and 

sandwich circular plates. They also compared values of the critical load obtained by the 

analytical, numerical (FEM), and experimental methods. Zimmerman [6] studied on the 

thermoelastic and poroelastic coupling parameters for a linear poroelastic saturated rock. He 

concluded that poroelastic coupling parameter has a stronger influence compared to the 

thermoelastic one. Ghassemi et al. [7] showed the effects of temperature gradients on pore 

pressure and stress distribution by using a non-isothermal poroelasticity theory.  

Thereafter, Ghassemi [8] investigated the influence of cooling on pore pressure and stresses 

distribution by displacement discontinuity method. Jabbari et al. [9,10] considered the 

poroelastic circular plate under the mechanical and thermal forces with classical plate theory 

(CPT). They studied the effects of distribution and properties of pores that are saturated by fluid 

on stability of plate. Jabbari et al. [11,12] considered the stability of sandwich plate with 

piezoelectric layers and poroelastic core under uniform thermal and electrical field. Also, they 

achieved their results based on the classical plate theory and first-order theory. They explored 

the effects of mechanical and thermal properties on stability of poroelastic plate too. Mojahedin 

et al. [13] studied the buckling of poroelastic plate with piezoelectric layers under electrical, 

thermal, and mechanical forces. Jabbari et al. [14] considered the buckling of circular porous 

plate under transverse magnetic field. They explained the effects of mechanical and magnetic 

properties on stability of porous-magnetic plate. Kumar et al. [15] analysed Interaction due to 

expanding surface loads in thermoporoelastic medium. 

Buckling analysis of porous plates with functional properties have similarities with the FGM 

plates to some extend. Javaheri et al. [16,17,18] presented the buckling of FGM rectangular 

plates under in-plane mechanical or thermal loads based on the classical and higher order shear 

deformation plate theories, respectively. The thermal buckling of simply-supported moderately 

thick rectangular FGM plates based on the FSDT under different types of temperature fields is 

investigated by Lanhe [19]. Shariat et al. [20] presented a closed-form solution for the buckling 

analysis of rectangular thick FGM plates based on the TSDT under mechanical and thermal 

loads. The buckling analysis of thin FG rectangular plates based on the classical or FSDT under 

various loads were done by Mohammadi et al. [21,22], respectively.  

Bodaghi et al. [23,24] used a Levy-type solution method to investigate the mechanical or 

thermoelastic buckling of thick FGM rectangular plates based on the TSDT, respectively. 

Bateni et al. [25] investigated the effect of temperature dependency of material properties on 

the critical buckling load. In this study, a four-variable refined plate theory is employed to 

derive the governing equations of equilibrium. A multi-term Galerkin solution is presented to 

derive the critical buckling loads/temperatures along with the buckled shape of the plate. 

Behravan Rad et al. [26] investigated three-dimensional magneto-elastic analysis of asymmetric 

variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic 

foundations. A comprehensive review of various analytical and numerical models to predict the 

bending and buckling under mechanical and thermal loads is done by Swaminathan et al. [27]. 

Chen et al. [28,29] presented the elastic buckling and static bending solutions based on 

Timoshenko beam theory also free and forced vibrations of shear deformable functionally 

graded porous beams.  

The aim of the present paper is to derive the general equilibrium and stability equations for 

rectangular plates made of porous material using the energy method along with the calculus of 

variations and based on the classical plate theory.  
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Then, closed form solutions for the rectangular plates subjected to mechanical loading is 

obtained. The critical buckling load of porous rectangular plates with simply supported 

boundary condition is obtained. The material property is taken as power law through the 

thickness of plate. The porous plate is assumed of the form where pores are saturated with fluid. 

The effect of poroelastic material, such as pores distribution and pores compressibility, on the 

critical buckling load is investigated. The porous distribution changes mechanical properties 

through the thickness and variation of fluid properties in porous material changes the 

compressibility of poroelastic plate. Finally, the results are compared with the buckling loads 

of rectangular plates obtained in the literature. 

 

2 Governing equations 

 

Consider a rectangular plate made of porous materials of thickness ℎ, length 𝑎, and width 𝑏, 

referred to the rectangular Cartesian coordinates (𝑥 , 𝑦, 𝑧), as shown in figure 1. 

 

The material properties are assumed to vary through the thickness according to the following 

power law distribution. The functional relationship between 𝐸 and 𝐺 with 𝑧 for plate is assume 

as (Magnucki et al. [2] and Magnucka-Blandzi [4]) 

 

𝐺(𝑧) = 𝐺0 [1 − 𝑒1 cos ((
𝜋

2ℎ
) (𝑧 +

ℎ

2
))] 

𝐸(𝑧) = 𝐸0 [1 − 𝑒1 cos ((
𝜋

2ℎ
) (𝑧 +

ℎ

2
))] 

𝑒1 = 1 −
𝐺1

𝐺0
= 1 −

𝐸1

𝐸0
 

 

where 𝑒1 is the coefficient of plate porosity 0 < 𝑒1 < 1, 𝐸1 and 𝐸0 are Young's modulus of 

elasticity at 𝑧 = −ℎ/2 and 𝑧 = ℎ/2, respectively, (𝐸0 ≥ 𝐸1) and 𝐺1 and 𝐺0 are the shear 

modulus at 𝑧 = −ℎ/2 and 𝑧 = ℎ/2, respectively, (𝐺0 ≥ 𝐺1). The relationship between the 

modulus of elasticity and shear modulus of elasticity for 𝑗 = 0 and 1 is 𝐸𝑗 = 2𝐺𝑗(1 + 𝜈) where 

𝜈 is Poisson's ratio, which is assumed to be constant across the plate thickness. 

 

2.1 Basic equations 

 

The non-linear strain-displacement relations according to the von-Karman assumption are by 

Brush and Almroth [30] 

 

𝜀𝑥𝑥 = 𝑢,𝑥 +
1

2
(𝑤,𝑥)

2
 

𝜀𝑦𝑦 = 𝑣,𝑦 +
1

2
(𝑤,𝑦)

2
 

𝛾𝑥𝑦 = 𝑢,𝑦 + 𝑣,𝑥 + 𝑤,𝑦𝑤,𝑥 

(1) 

(2) 
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Figure 1 Coordinate system and geometry of rectangular porous material plate 

 

 

Here, 𝜀𝑥𝑥 and 𝜀𝑦𝑦 are the normal strains and 𝛾𝑥𝑦 is the shear strain, where 𝑢, 𝑣, and 𝑤 denote 

the displacement components in the 𝑥, 𝑦, and 𝑧 directions, respectively, and comma indicates 

the partial derivative with respect to its afterwards. Note that transverse shear strains are zero 

as 𝛾𝑦𝑧 = 𝛾𝑥𝑧 = 0 in the Kirchhoff plate theory. 

The displacement field for the Kirchhoff plate theory is by Wang et al. [31] 

 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧𝑤0,𝑥 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧𝑤0,𝑦 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

Where  (𝑢0 , 𝑣0 , 𝑤0) represent the displacement on middle plate surface (𝑧 = 0). 

The linear poroelasticity theory of the Biot has two features by Detournay and Cheng [32] 

 

1. An increase of pore pressure induces a dilation of pore. 

 

2. Compression of the pore causes a rise of pore pressure. 

 

The stress-strain law for the thermo-poroelasticity is given by Ghassemi [7] 

 

𝜎𝑖𝑗 = 2𝐺𝜀𝑖𝑗 + 𝜆𝑢𝜀𝛿𝑖𝑗 − 𝑝𝛼𝛿𝑖𝑗 − 3𝐾𝑢𝛽𝑠
′𝑇𝛿𝑖𝑗   

 

Where 

 

𝜆𝑢 =
2𝐺𝜈𝑢

1 − 2𝜈𝑢
 

𝜈𝑢 =
𝜈 + 𝛼𝐵(1 − 2𝜈)/3

1 − 𝛼𝐵(1 − 2𝜈)/3
 

𝑝 = 𝑀[𝜁 − 𝛼𝜀 + 𝛼(𝛽𝑓 − 𝛽𝑠
′′)𝑇] 

𝑀 = 𝐵𝐾𝑢 

𝐾𝑢 =
(2𝐺 + 3𝜆)

3(1 − 𝛼𝐵)
 

(3) 

(4) 

(5) 
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Here, 𝑝 is pore fluid pressure, 𝜆𝑢 is the Lame parameters, 𝑀 is Biot's modulus, 𝜁 is variation of 

fluid volume content, 𝜈𝑢 is undrained Poisson's ratio ν < 𝜈𝑢 < 0.5, 𝐵 is the skempton 

coefficient, the pore fluid properties is introduced by the skempton coefficient. The values of 

the undrained Poisson ratio and the Skempton pore pressure coefficients depend on the pore 

fluid compressibility. Here, 𝛼 is the Biot coefficient of effective stress 0 < 𝛼 < 1. The Biot 

coefficient (𝛼 = 1 −
𝐺(𝑧)

𝐺0
) indicates the effect of porosity on the solid constituents of 

poroelastic plate and it shows the effect of generated stresses in the pores on the poroelastic 

material in undrained condition (𝜁 = 0) and (1 − 𝛼𝛽) is relation between drained bulk 

modulus and undrained bulk modulus.  

The term 𝛼𝛽 is coupling between pore fluid effects and macroscopic deformation Zimmerman 

[6], 𝛽𝑠
′ is the volumetric thermal expansion coefficient of the bulk solid under constant pore 

pressure and stress, 𝛽𝑠
′′ and 𝛽𝑓 represent volumetric thermal expansion coefficients of the solid 

matrix and the pore fluid, respectively. The value of 𝛽𝑠
′ may be considered equal to 𝛽𝑠

′′ if the 

change in temperature is not expected to change the porosity, Ghassemi [7], and 𝜀 is the 

volumetric strain. 

 

The two dimensional stress-strain law for plane-stress condition in the Cartesian coordinate for 

the undrained condition (𝜁 = 0) is given by 

 

𝜎𝑥𝑥 = 𝐴1(𝑧)𝜀𝑥𝑥 + 𝐵1(𝑧)𝜀𝑦𝑦  − 𝐶1(𝑧)𝑇             

𝜎𝑦𝑦 = 𝐴1(𝑧)𝜀𝑦𝑦 + 𝐵1(𝑧)𝜀𝑥𝑥 − 𝐶1(𝑧)𝑇                

𝜎𝑥𝑦 = 𝐺(𝑧)𝛾𝑥𝑦 

 

By substituting the third and fourth equations of (5) into Eq. (4), terms 𝐴1(𝑧), 𝐵1(𝑧), 𝐶1(𝑧) 

and 𝑅1(𝑧) become 

 

𝐴1(𝑧) = 2𝐺(𝑧) + (𝜆𝑢 + 𝑀𝛼2)𝑅(𝑧) 
 

𝐵1(𝑧) = (𝜆𝑢 + 𝑀𝛼2)𝑅(𝑧) 
 

𝐶1(𝑧) = (3𝐾𝑢𝛽𝑠
′  + 𝑀𝛼2(𝛽𝑓 − 𝛽𝑠

′′)) 𝑅(𝑧) 

 

𝑅(𝑧) = 1 −
𝜆𝑢 + 𝑀𝛼2

2𝐺(𝑧) + 𝜆𝑢 + 𝑀𝛼2
 

 
2.2 Strain energy 

 

The total virtual potential energy of the plate as the sum of total virtual strain energy and virtual 

potential energy of the applied loads is equal to 

𝛿𝑈 =
1

2
∫ ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑦𝑦𝛿𝜀𝑦𝑦 + 𝜎𝑥𝑦𝛿𝛾𝑥𝑦)𝑑𝑥𝑑𝑦𝑑𝑧

ℎ 2⁄

−ℎ 2⁄

𝑏

0

𝑎

0

 

 

Substituting the strain-displacement relations from Eqs. (2) and Eq. (3) into the above 

equations, and apply the Green-Gauss theorem to relieve the virtual displacements, result in the 

following three equilibrium equations by Eslami [33] 

(6) 

(7) 

(8) 
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𝛿𝑢0 ∶  𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 = 0 

𝛿𝑣0 ∶  𝑁𝑥𝑦,𝑥 + 𝑁𝑦𝑦,𝑦 = 0 

𝛿𝑤0 ∶  𝑀𝑥𝑥,𝑥𝑥 + 𝑀𝑦𝑦,𝑦𝑦 + 2𝑀𝑥𝑦,𝑥𝑦 + 𝑁𝑥𝑥𝑤0,𝑥𝑥 + 𝑁𝑦𝑦𝑤0,𝑦𝑦 + 2𝑁𝑥𝑦𝑤0,𝑥𝑦 = 0 

 

where 𝑁𝑖𝑗 and 𝑀𝑖𝑗 are the force and moment resultants defined by 

 

(𝑁𝑖𝑗 , 𝑀𝑖𝑗) = ∫ (1, 𝑧)𝜎𝑖𝑗𝑑𝑧
ℎ/2

−ℎ/2

         𝑖𝑗 = 𝑥𝑥, 𝑦𝑦, 𝑥𝑦 

 

3 Stability equations  

 

Consider an equilibrium position described by displacement components  𝑢0
0, 𝑣0

0, and 𝑤0
0. Each 

of these components is perturbed from the primary equilibrium state. An equilibrium state exists 

adjacent to the primary one, described by the displacement components as by Eslami [33] 

 

𝑢0 → 𝑢0
0 + 𝑢0

1 

𝑣0 → 𝑣0
0 + 𝑣0

1 

𝑤0 → 𝑤0
0 + 𝑤0

1 

 

Here, a superscript 1 indicates the magnitude of increment (perturbation). Accordingly, the 

stress resultants are divided into two terms representing the stable equilibrium and the 

neighboring state. The stress resultants with superscript 1 are linear functions of displacement 

with superscript 1. Considering this and using Eqs. (9) and Eqs. (11), the stability equations 

become 

 

𝛿𝑢0
1 ∶  𝑁𝑥𝑥,𝑥

1 + 𝑁𝑥𝑦,𝑦
1 = 0 

𝛿𝑣0
1 ∶  𝑁𝑥𝑦,𝑥

1 + 𝑁𝑦𝑦,𝑦
1 = 0 

𝛿𝑤0
1 ∶  𝑀𝑥𝑥,𝑥𝑥

1 + 𝑀𝑦𝑦,𝑦𝑦
1 + 2𝑀𝑥𝑦,𝑥𝑦

1 + 𝑁𝑥𝑥
0 𝑤0,𝑥𝑥

1 + 𝑁𝑦𝑦
0 𝑤0,𝑦𝑦

1 + 2𝑁𝑥𝑦
0 𝑤0,𝑥𝑦

1 = 0 

 

The stability equations in terms of the displacement components may be obtained by inserting 

Eqs. (10) into the above equations. Upon substitution, second and higher order terms of the 

incremental displacements may be omitted. Resulting equations are three stability equations 

based on the Kirchhoff plate theory for porous material plate. 

 
𝐴2𝑢0,𝑥𝑥

1 + 𝐶2𝑢0,𝑦𝑦
1 + (𝐵2 + 𝐶2)𝑣0,𝑥𝑦

1 − (𝐴3𝑤0,𝑥𝑥𝑥
1 + (𝐵3 + 2𝐶3)𝑤0,𝑥𝑦𝑦

1 ) = 0 

(𝐵2 + 𝐶2)𝑢0,𝑥𝑦
1 + 𝐴2𝑣0,𝑦𝑦

1 + 𝐶2𝑣0,𝑥𝑥
1 − (𝐴3𝑤0,𝑦𝑦𝑦

1 + (𝐵3 + 2𝐶3)𝑤0,𝑥𝑥𝑦
1 ) = 0 

−(𝐴3𝑢0,𝑥𝑥𝑥
1 + (𝐵3 + 2𝐶3)𝑢0,𝑥𝑦𝑦

1 ) − (𝐴3𝑣0,𝑦𝑦𝑦
1 + (𝐵3 + 2𝐶3)𝑣0,𝑥𝑥𝑦

1 )

+ (𝐴4(𝑤0,𝑥𝑥𝑥𝑥
1 + 𝑤0,𝑦𝑦𝑦𝑦

1 ) + 2(𝐵4 + 2𝐶4)𝑤0,𝑥𝑥𝑦𝑦
1 ) + 𝑁𝑥𝑥

0 𝑤0,𝑥𝑥
1

+ 𝑁𝑦𝑦
0 𝑤0,𝑦𝑦

1 = 0 
 

Where 
 

𝐴2, 𝐴3, 𝐴4 = ∫ 𝐴1(1, 𝑧, 𝑧2)𝑑𝑧

ℎ
2

−
ℎ
2

 

𝐵2, 𝐵3, 𝐵4 = ∫ 𝐵1(1, 𝑧, 𝑧2)𝑑𝑧
ℎ/2

−ℎ/2

 

 

(9) 

(10) 

 

(11) 

 

(12) 

 

(13) 

 



Mechanical Buckling of FG Saturated Porous Rectangular … 

 

 

67 

𝐶2, 𝐶3, 𝐶4 = ∫ 𝐺(1, 𝑧, 𝑧2)𝑑𝑧
ℎ/2

−ℎ/2

 

 

 

4 Boundary conditions 

 

As stated, only plates with all edges simply supported are consider in this work, Out-of-plane 

boundary conditions for simply supported edges are  

 

𝑥 = 0, 𝑎 ∶  𝑤0
1 = 𝑀𝑥𝑥

1 = 0 

𝑦 = 0, 𝑏 ∶  𝑤0
1 = 𝑀𝑦𝑦

1 = 0 

 

The in-plane boundary conditions of the simply supported edges may be of the free to move 

(FM) type. This is classified as follow  

 

𝑥 = 0, 𝑎 ∶  𝑢𝑜
1 = 𝑓𝑖𝑛𝑖𝑡,   𝑣𝑜

1 = 𝑓𝑖𝑛𝑖𝑡, 𝑁𝑥𝑦
0 = 0,                𝑁𝑥𝑥

0 = −
𝑃𝑥

𝑏
 (𝐹𝑀) 

𝑦 = 0, 𝑏 ∶  𝑢𝑜
1 = 𝑓𝑖𝑛𝑖𝑡,   𝑣𝑜

1 = 𝑓𝑖𝑛𝑖𝑡, 𝑁𝑥𝑦
0 = 0,                𝑁𝑦𝑦

0 = 0 (𝐹𝑀) 

 

where a bar over each parameter stands for the known external forces applied at boundaries. 

 

5 Mechanical buckling analysis 

 

The functions for displacements that satisfy the governing equations and boundary conditions 

are 

 

𝑢𝑜
1 = ∑ ∑ 𝑢𝑚𝑛

1 cos(𝛽𝑥) sin(𝛾𝑦)

𝑁

𝑛=1

𝑀

𝑚=1

 

𝑣𝑜
1 = ∑ ∑ 𝑣𝑚𝑛

1 sin(𝛽𝑥) cos(𝛾𝑦)

𝑁

𝑛=1

𝑀

𝑚=1

 

𝑤0
1 = ∑ ∑ 𝑤𝑚𝑛

1 sin(𝛽𝑥) sin(𝛾𝑦)

𝑁

𝑛=1

𝑀

𝑚=1

 

Where 

 

𝛽 =
𝑚𝜋

𝑎
,     𝛾 =

𝑛𝜋

𝑏
                𝑚, 𝑛 = 1,2,3, … 

 

Substitution of Eqs. (16) into Eqs. (13) yield 

 

𝐾11 = 𝐴2𝛽2 + 𝐶2𝛾2 

𝐾12 = 𝛽𝛾(𝐵2 + 𝐶2) 

𝐾13 = −(𝐴3𝛽3 + 𝛽𝛾2(𝐵3 + 2𝐶3)) 

𝐾22 = 𝐴2𝛾2 + 𝐶2𝛽2 

𝐾23 = −(𝐴3𝛾3 + 𝛽2𝛾(𝐵3 + 2𝐶3)) 

𝐾33 = 𝐴4(𝛽4 + 𝛾4) + 2𝛽2𝛾2(𝐵4 + 2𝐶4) + 𝑁𝑥𝑥
0 𝛽2 + 𝑁𝑦𝑦

0 𝛾2 

(14) 

 

(15) 

 

(16) 

 

(17) 
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For a nontrivial solution of these equations, the coefficients of functions must be set to zero. 

Setting |𝐾𝑖𝑗| = 0, the value of the 𝑁𝑥𝑥
0  is found as 

 

−𝑁𝑥𝑥
0 =

1

𝛽2
[
𝑃1

𝑃2
+ 𝐴4(𝛽4 + 𝛾4) + 2𝛽2𝛾2(𝐵4 + 2𝐶4)] + 𝑁𝑦𝑦

0 (
𝛾

𝛽
)

2

 

 

Where 

 

𝑃1 = 𝐾11𝐾23
2 − 2𝐾12𝐾23𝐾13 + 𝐾22𝐾13

2  

𝑃2 = 𝐾11𝐾22 − 𝐾12
2  

 

By substitution (𝑚 = 1, 𝑛 = 1), the critical mechanical load for thermo-porous-elastic plate 

buckling is obtained. Introducing the dimensionless form for 𝑃𝑥 as 𝑃∗ =
𝑃𝑥

𝐺0ℎ2
 and substitution 

of Eqs. (15) into Eq. (18) and solving for 𝑃∗ yields 

 

𝑃∗ =
𝑏

𝐺0𝛽2ℎ2
[
𝑃1

𝑃2
+ 𝐴4(𝛽4 + 𝛾4) + 2𝛽2𝛾2(𝐵4 + 2𝐶4)] 

 
6 Result and discussion  

 

The buckling of rectangular plates made of porous material with variable properties along the 

thickness under uniform outside compressive load is investigated in this paper. The effects of 

poroelastic parameters on critical buckling load 𝑃∗ are investigated and presented. 

Figure (2) shows the variations of shear modulus with porous distribution in thickness direction. 

The Biot coefficient (𝛼 = 1 −
𝐺(𝑧)

𝐺0
) indicates the effect of porosity on the solid constituents of 

poroelastic plate and it shows the effect of generated stresses in the pores on the poroelastic 

material in undrained condition (𝜁 = 0). This relation shows that the Biot coefficient depends 

on the porosity and its distribution. By substituting Eq. (1) into the Biot relation, this coefficient 

is obtained as 𝛼 = 𝑒1 cos ((
𝜋

2ℎ
) (𝑧 +

ℎ

2
))  at the bottom of the plate (−

ℎ

2
). It reduces across the 

thickness direction to zero at top of the plate. This figure shows variations of the shear modulus 

with porous distribution in thickness direction for the cases; 

a - porous/nonlinear nonsymmetric distribution with shear modulus                                                                     

𝐺(𝑧) = 𝐺0 [1 − 𝑒1 cos ((
𝜋

2ℎ
) (𝑧 +

ℎ

2
))], 

b- porous/nonlinear symmetric distribution with shear modulus 

𝐺(𝑧) = 𝐺0 [1 − 𝑒1cos (
𝜋

2ℎ
) 𝑧], 

c -porous/monotonous distribution with shear modulus 

𝐺(𝑧) = 𝐺0[1 − 𝑒1], 
d – and homogeneous/isotropic with shear modulus 𝐺0. 

 

Figure (3) shows the effect of dimension changes on the critical buckling load of the 

porous/nonlinear nonsymmetric distribution plate. By increasing the length to width ratio of the 

plate, the critical buckling load (𝑃∗) reduces. Also, by increasing the thickness of the plate, the 

critical buckling load (𝑃∗) increases. This results are the same for all types of materials 

investigated in this paper, such as porous/nonlinear symmetric distribution, porous/monotonous 

distribution, and the homogeneous/isotropic plates, but their critical buckling loads have 

difference values. 

(19) 

 

(18) 
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Figure (4) shows the effect of thickness change on the critical buckling load for porous/ 

nonlinear symmetric distribution, porous/monotonous distribution, and the homogeneous/ 

isotropic plates. By increasing the thickness of the plate, the critical buckling load (𝑃∗) 

increases. 

 

Figures (5) shows the effect of porous and thickness change on the critical buckling load for 

the porous/nonlinear nonsymmetric distribution plate. As seen in these figure, by increasing the 

thickness, the critical buckling load (𝑃∗) increases. By increasing the porosity, the free spaces 

within the plate increases and shear modulus decrease with respect to the first of Eqs. (1). Also, 

increasing the porosity of the plate decreases the critical buckling load. 

 

In Figure (6) the effect of pores distribution on critical buckling load for the undrained condition 

and for simply supported edges is presented. In these figures the critical buckling load for the 

homogeneous case is larger than the other cases and for the case of porous/nonlinear symmetric 

distribution the critical buckling load is also larger than the other cases of porous plate. As the 

figure indicates, the plate has lowest resistance to the critical buckling load when the pores 

distribute symmetrically in all directions. Also it is observed that the pores distribution and 𝑒1 

have significant effect on the critical buckling load. By substituting   𝑒1 = 0, 𝜈𝑢 = 𝜈, Eq. (19) 

is reduced to the buckling load of homogeneous/isotropic plates  

 

𝑃∗ =
𝜋2ℎ

6𝑏(1 − 𝜈)
(

(
𝑚𝑏
𝑎 )

2

+ (𝑛)2

𝑚𝑏
𝑎

)

2

 

 

The above equation is reported by Brush and Almroth [29]. 
 

Biot [1] investigated the pore compressibility effect on critical buckling load and expressed that 

the critical load is proportional to the pore fluid compressibility and in drained condition the 

critical buckling load is the least. In porous materials the Skempton pore pressure coefficient 

introduces the properties of the pore fluid. The values of the undrained Poisson ratio and the 

Skempton pore pressure coefficient depend upon the pore fluid compressibility. The relation 

between Skempton coefficient and undrained Poisson ratio for saturated case is as given by the 

second of Eqs. (5). 

 

If the compressibility of the pore fluid is high  (𝐵 ⟶ 0), the behavior of plate resembles that 

of a porous plate without fluid (drained). By setting this condition in the second of Eqs. (5), the 

least value of 𝜈𝑢 is obtained. In this case we have the least critical buckling load. When the 

compressibility of pore fluid is small  (𝐵 ⟶ 0), the behavior of plate resembles that of a rigid 

solid. Hence, with respect to the pore fluid compressibility, the Skempton coefficient changes 

between two values of 0 and 1, (0 < 𝐵 < 1). 

 

Figures (7) and 8 show the effect of pore fluid properties on the buckling load. The effect of 

compressibility and porous thickness for porous/nonlinear nonsymmetric distribution plate is 

showed in figure (7). This figure shows that by increasing the thickness, the critical buckling 

load (𝑃∗) of the plate is increased. Also, by increasing the pore compressibility of the plate, the 

critical buckling load (𝑃∗) decreases. This results are the same for all types of materials that 

are investigated here, but their critical buckling loads have difference values. Figure (8) shows 

that the pore compressibility depend linearly on temperature and its linear function with 
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temperature holds for special types of fluids  𝐵 = (
1

𝜔
)𝑇. Here, 𝜔 shows different values of fluid 

temperature between two points. For example, for special gas this function is convenient 

because for 𝑇 = 0℃ the behavior of plate resembles that of a porous plate without fluid (𝐵 ⟶
0) and for 𝑇 = 100℃ the behavior of plate resembles that of a rigid solid, (𝐵 ⟶ 0). Increasing 

the temperature tends to decrease the compressibility of the fluid within the pores, due to fluid 

trapped within the pores, where the critical buckling load is increased, except for the 

porous/nonlinear nonsymmetric distribution. 

 

 

 
Figure (𝟐 − 𝒂) Shear modulus variation associated with different coefficient of plate porosity for 

porous/nonlinear nonsymmetric distribution 
 

 

Figure (𝟐 − 𝒃) Shear modulus variation associated with different coefficient of plate porosity for 

porous/nonlinear symmetric distribution 
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Figure (𝟐 − 𝒄) Shear modulus variation associated with different coefficient of plate porosity for 

porous/monotonous distribution 
 

 

 
 

Figure 3 Critical buckling load (𝑃∗ × 10) vs. thickness to width ratio of the porous/nonlinear nonsymmetric 

distribution plate, for the cases of  [𝑎/𝑏 =  1, 1/2, 1/3, 1/4] , 𝐵 =  0.5 , 𝑒1 =  0.5 with 𝜈 =  0.3. 
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Figure 4 Critical buckling load (𝑃∗ × 10) vs. thickness to width ratio of the plate, for the cases of 

porous/nonlinear nonsymmetric distribution, porous/nonlinear symmetric distribution, porous/monotonous 

distribution, 𝐵 = 0.5, 𝑒1 =  0.5 with 𝑎/𝑏 =  1 , 𝜈 =  0.3 and homogenous/isotropic. 

 

 

 

 
 

Figure 5 Critical buckling load (𝑃∗ × 10) vs. thickness to width ratio of the  

porous/nonlinear nonsymmetric distribution plate, for the cases of coefficient of plate  

porosity [𝑒1 =  0.0,0.5,1],  =  0.5 ,  𝑎/𝑏 =  1 with 𝜈 =  0.3. 
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Figure 6 Critical force (𝑃∗ × 10) vs. coefficient of plate porosity, for the cases of  

porous/nonlinear nonsymmetric distribution, porous/nonlinear symmetric distribution,  

porous/monotonous distribution  =  0.5 , 𝑒1 =  0.5 with 

𝑎/𝑏 =  1 ,  ℎ/𝑏 =  0.01 , 𝜈 =  0.3  and homogenous/isotropic 

 

 

 

 
 

Figure 7 Critical force (𝑃∗ × 10) vs. the Skempton coefficient of porous plate, for the cases of  

porous/nonlinear nonsymmetric distribution, [𝐵 =  0.0,0.5,1] ,  
𝑒1 =  0.5 with /𝑏 =  1 ,  ℎ/𝑏 =  0.01 , 𝜈 =  0.3 and 

homogenous/isotropic 
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Figure 8 Critical buckling load (𝑃∗ × 10) vs. the Skempton coefficient of porous plate, for the cases of 

porous/nonlinear symmetric distribution, porous/monotonous distribution, 𝑒1 =  0.5 with /𝑏 =  1 ,  ℎ/𝑏 =
 0.01 , 𝜈 =  0.3  and homogenous/isotropic 

 

 

 

7 Conclusions 

 

In the present article, the energy method is used for the buckling analysis of plate made of pore 

material and derivation is based on the classical plate theory with the assumption of power law 

composition for the constituent materials. The boundary conditions of plate are assumed to be 

simply supported. Two edges of the plate is subjected to uniform compressive in-plane loads. 

Also, effect of temperature on fluid compressibility for symmetric porous material plate is 

investigated. It is concluded that: 

 

1. The buckling load (𝑃∗) decreases by increasing the length along the load direction to width 

ratio of plate 𝑎/𝑏. 

 

2. By increasing the thickness of the plate, the buckling load (𝑃∗) increases. 

 

3. By increasing the coefficient of porosity (𝑒1) the buckling load (𝑃∗) is reduced. 

 

4. The plate behavior tends to that of the homogeneous/ isotropic behavior by reducing the 

porosity. 

 

5. The monotonous porosity is lower buckling load (𝑃∗) compared to the anisotropic porosity. 

Location of the pores in porous materials has relevant effects on the critical buckling load. 

 

6. By increasing the Skempton coefficient, the compressibility of fluid within the pores decrease 

and the buckling load (𝑃∗) increases. 
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7. By increasing the temperature, thermal expansion of fluid in the pores is more than thermal 

expansion of solid. Therefore the compressibility of the fluid within the pores reduced and the 

critical buckling load is increased. 
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 چکیده
 

در این تحقیق تحلیل کمانش ورق مستطیلی جامد متشکل از مواد متخلخل در شرایط آندرین بررسی شده 

است. خواص مکانیکی ورق در امتداد ضخامت ورق متغیر فرض شده است. توزیع تخلخل در امتداد ضخامت 

 است. ورق به صورت نامتقارن غیر خطی، متقارن غیر خطی و توزیع یکنواخت در نظر گرفته شده 

اثر تخلخل و توزیع تخلخل بر بار بحرانی کمانش ورق متخلخل مورد مطالعه قرار گرفته است. تاثیر تراکم 

پذیری سیال بر بار کمانش بحرانی در شرایط آندرین ارزیابی شده است. همچنین، اثر دما بر تراکم پذیری 

می شود. نتایج بدست آمده برای ورق سیال در ورق پرو الاستیک متقارن با انتخاب یک تابع خطی بررسی 

 .های متخلخل، با داده موجود در تحقیقات پیشین تأیید شده است
 


