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An analytical solution is presented for the thermoelastic
problem of a half-plane with several cracks under

M. Ayatollahit thermomechanical loading using distributed dislocation
Professor B technique. ~ The  uncoupled  quasi-static  linear
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temperature, if any, due to deformations is neglected. The
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1 Introduction

Many advanced engineering structures are exposed to thermal loading during their life cycles.
Structural components such as advanced turbine systems, shuttles, combustion chambers and
ovens operate at high temperatures, which can give rise to intense thermal stresses in these
components. In particular, once a steady heat flow is disturbed by the presence of cracks,
thermal stresses concentration occurs in the neighborhood of the crack tips and may lead to
crack propagation. Consequently, the study of the thermal stresses in the vicinity of the crack
tipsisof great practical importance.
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As an important branch in solid mechanics, the structures weakened by defects and subjected
to various types of externa thermomechanical loadings have been studied extensively in the
literature. The thermal stresses alone or in combination with mechanical loadings can give rise
to cracks and rupture in components containing brittle materials [1].1nvestigations concerning
cracks under thermomechanical loading are briefly reviewed here. Sih [2]studied the
thermoel astic fracture problem where the temperature distribution is stationary. He showed that
the presence of heat flow produces no additional singularities. In other words, at the crack tip,

the singularities of the thermal stress and mechanical stresses are identical, i.e. 1/Vr .

In the past decades many researchers have studied aweakened infinite or semi-infinite plane
being generally under uniform heat flow. For instance, the thermal stresssingularities at thetips
of an arbitrarily oriented crack in a semi-infinite medium under uniform heat flow have been
analyzed by Sekine [3]. In thiswork, the problem of a half-plane weakened by insulated crack
under uniform heat flow was investigated and the stress intensity factors for modes | and Il
were obtained. Atkinson and Clements [4]solved two-dimensional Griffith crack obstructing a
uniform heat flux in ageneral anisotropic medium by the techniques of Fourier transforms and
multiple integrations. Sturla and Barber [5, 6]considered the same problem in a general
anisotropic infinite plane by using a Green’ sfunction and gave the exact solutions of the mixed-
mode thermal stress intensity factors
In some cases, the mediums were made of nonhomogeneous materials exposed to thermal
loading, which necessitated a thermomechanical analysis. As an illustration, a crack in a strip
of functionally graded material wasinvestigated by Nodaand Jin[7] and thermal stressintensity
factorswere obtained. Also, the analysis of asemi-infinite nonhomogeneousthermoelastic solid
containing a crack subjected to steady heat flux over the boundary was investigated by Jin and
Noda[8]. The problem of an edge crack in a semi-infinite nonhomogeneous plate under steady
state heat flux was also studied by Jin and Noda[9]. The problem of afunctionally graded layer
weakened by an embedded or surface crack perpendicular to its boundaries is investigated by
Erdogan and Wu [10]. Thermomechanical properties are assumed to be continuous and the
elastic layer is under statically self-equilibrating thermal or residual stresses. Borgi et al.
[11]investigated the problem of an infinite functionally graded medium with a partialy
insulated crack subjected to a steady-state heat flux applied away from the crack region as well
as mechanical stresses applied as crack surface tractions.

Coatings also play crucia role in the design of structures subjected to severe thermal
conditions. The plane strain thermal stress problem for an interface crack in a homogenous
substrate with a graded coating was studied by Lee and Erdogan [12]. Itou [13] solved the
thermal stress problem of an interfacial layer bonded between two dissimilar elastic half planes
weakened by a crack. The thermal fracture problem of a functionally graded coating-substrate
structure of finite thickness with a partially insulated interface crack is investigated by Zhou
and Lee [14]. Choi [15] examined the steady-state thermoelastic problem of a crack at an
arbitrary angleto the graded interfacial zone in bonded media. In practice, structuresare usually
weakened by multiple cracks which, in close distances, demonstrate considerable interaction.
The analysis of a periodic array of embedded and edge cracks in an infinite elastic strip are
investigated by Rizk [16, 17].

In this study, the cracked surface was heated and compressive stresses occurred near the
heated surface causing the crack surfaces to come into contact along a certain contact length.
L ater, the problem of two periodic edge cracks in an elastic infinite strip under thermal loading
was al so studied by Rizk and Fattah [18].

In the case of dynamic thermal loading and thermal shock, a transient thermomechanical
analysis should be performed. Nied [19]investigated the transient thermal stress problem for an
elastic strip weakened by an edge crack which was insulated on one face and cooled by surface
convection on the face containing the edge crack.
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Rizk et a.[20]studied the transient thermal stressin astrip with an edge crack. In another paper,
Rizk et al. [21]investigated the effects of a sudden thermal transient stresses for plate of finite
thickness containing an edge crack. In this study, the stress intensity factors for various crack
sizes and cooling rates have been investigated. The transient thermal stresses around acrack in
asemi-infinite thermoel astic body under athermal impact using the hyperbolic conduction was
determined by Chen and Hu[22]. Hu and Chen [23]also investigated the transient temperature
and thermal stresses around a crack in athermoelastic strip under atemperature impact loading.
Among different methods for the analysis of cracks, the distributed dislocation technique has
considerable advantages. Analysis of multiple cracks aswell as providing full field closed form
solutions are feasible using this technique. However, al the aforementioned investigations lack
this advantageous technique. The study of an insulated crack in an anisotropic half-plane under
a uniform heat flux using distributed dislocation technique was analyzed by Liu and
Kardomates [24].Ravandi and Fariborz [25] studied the cracked layer fixed at a boundary and
free of traction at the other boundary with specified temperature at the boundary using the
distributed dislocation technique.

As can be seen, there are only afew investigations in the last decade employed this technique
to solve the problem. This method, not only, provides a closed form solutions to the crack
problems, but also, is capable of analyzing multiple arbitrary cracks in a medium. Besides, the
majority of the problems were restricted to solve the problems being under auniform heat flow.
Therefore, the aim of this study is to present a closed-form solution for a half-plane with
multiple cracks which is subjected to the point load thermal and mechanical loadings. The
novelty of the current investigation lies in the introduction of a Volterra type thermoelastic
dislocation, applying the thermo-mechanical point loads on the boundary, and presenting a
Green solution with the help of distributed dislocation technique which is capable to determine
the stress intensity factors for various crack configuration.

In section 2, at first, a Volterra type thermoelastic dislocation is introduced in the half-plane
and the temperature distribution and stressfields are derived. Then, the stress and thermal fields
of a defect-less half-plane under external mechanical and thermal loadings are determined.
These subsections provide the required elements of the distributed dislocation technique. In
section 3, the distributed dislocation technique is utilized to model the half-plane weakened by
multiple cracksleading to aset of integral equations. In this study, only the case of the complete
opening of cracks is considered. The integral equations are numerically solved and the stress
intensity factors (SIFs) are determined. Several examples are presented including half-plane
with cracks of different geometries and the effect of the loading conditions on SIFs are
investigated.

2 Fundamentals

We intend to employ the distributed dislocation technique for the thermoelastic analysis of a
hal f-plane weakened by multiple cracks. For this purpose, it is required to study the problem of
a dislocation in the half-plane. Moreover, we shall determine the behavior of the uncracked
half-plane subjected to external thermal and mechanical loadings. These tasks are carried out
in this section.



22 Iranian Journal of Mechanical Engineering Vol. 17, No. 2, Sep. 2016

Y

Figure 1 Half-plane weakened by athermoelastic didocation.

2.1 Thermoelastic analysis of a half-plane weakened by a dislocation

Let us consider an elastic half-plane containing a thermoel astic dislocation located at origin of
coordinates as depicted in Figure (1). The dislocation line is considered to be in the positive
direction of the z-axis. Here, the effects of inertia and thermoelastic coupling are neglected
which leads to an uncoupled and quasi-static problem of thermoelasticity. By the use of
Fourier's heat conduction equation, governing equation for temperature field in Cartesian
coordinates and constant properties reads [ 26]

o°T o°T

v + 72 0 Q)

VAT (x,y) =

Where T(x,y) istemperature field and V? is the Laplacian operator. The heat equation (1)
should satisfy the following conditions

T(x,07)=T(x,07) =& H(x),

Qy(xvo+) =Qy(X,07), (2)
T(x,~h)=0.

InEq. (2), H (-.) isthe Heaviside step-function, Q, isthe heat flux in the y-direction, and

o; i1sthe temperature discontinuity aong the dislocation cut.

It should be mentioned that a crack with insulated faces perturbs a heat flux. Since a crack
can be represented as a dislocation array, it is reasonable to assume that the heat flux perturbs
across the dislocation cut. According to the second condition in Egs. (2), the continuity of the
heat flux along the dislocation cut requires that

aT(x,07) _aT(x,0) -
oy oy

This boundary value problem is solved by applying the complex Fourier transformation to
Eg. (1). Then, the solution to the temperature field reads
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Where §(..) isthe Dirac deltafunctlon.

In ahomogenous i sotropic medium, the heat flux Q, along the unit vector i=n,i +n, jisgiven
by [26]

T(x,y)=—-

e Vedg y>0 4)

Q =-KVTn (5)
Where K isthethermal conductivity. Once the temperature field from Eq. (4) is substituted in
Eqg. (5), the heat flux is obtained as
2h+y X X

O y
Qr (x.y) = [ (x2+y2+x2+(2h+y)2)+ny(x2+y2+x2+(2h+y)2)] (©)

It is observed that the heat flux Q. (x,y) is Cauchy singular at the dislocation core, i.e.

Q, #Yr,asr=,x*+y> —>0.
In order to determine the stress field, we can make use of the basic equations including
compatibility equation and the constitutive law given by[26]
%, 0O, 2825Xy

2 + 2 !
oy OX oxoy

&, :é(ax—vay)+aT, (7)

€, =é(ay —vo,)+aTl

The stress components in terms of Airy stress function ¢(x,y) may be expressed as
2 2 2
5. =2 (p(>§ ) o, - 0 (/>(>;, y) o, - _0°p(xY) ®
oy X X0y

The substitution of Eqg. (8) into the compatibility equation and considering the constitutive law
in uncoupled theory of thermoelasticity, we arrive at the following differential equation

V2(V2 +8““T) 0 (9)

Where x=3-4v and a =, /(1+v)for the plane strain, and x = (3-v)/1+v) and « =,

for generalized plane stress. Substituting the stress components (8) into the constitutive law, the
strain components read

a 1 2 2
Ex—a——s—[( )6y -(3- K) ]+OfT
_v_1 o9 o’
gy_(?y 8. [(x+1 w3 -(3- K) —]+al,
=M 109 (10

oy Ox L OX0y
While (u,v) are the displacement fields of the half-plane. The boundary value problem for the
elastic half-plane with thermoel astic disl ocations includes the conditions
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o, (X-h)=0,

o, (x,~h) =0,

o, (x,0)=0,(x,0),

0, (x,07) =0,(x,07),
u(x,0") —u(x,07) =b H(x),
v(x,0") = v(x,07) =b H(x)

(11)

Where b, and b, are the Burgers vectors for the glide and climb edge dislocations,
respectively. The general solution of the differential equation (9) is

p=¢" +¢" (12)
Where ¢ and ¢" are particular and homogenous solutions, respectively, and should satisfy
the following relations

Ve + S L,
K+1

V" =0 (13)

Employing the complex Fourier transform together with the ammption\i\iﬂ[qoﬂwﬂ —0, the

Eqgs (13) are rewritten as
d? o Suo .,
ST T ) =0,
y Kk+1
o 2\2 *h — 0
( ay? &)
Moreover, considering Egs. (8) and (10), Fourier transformation of conditions (11) reaches
. d .
¢ (£-h)=0, w7 (¢,~h)=0,
y

0 (0 =9 (C0), diy¢* (€0 = diy¢* €0,

il O (£,0) _F O (v ir oy s o
Akl v R G LA N CRDRTACRLp)

To g, N . - i
S0 T 0 )):bx(né(é)—z),

i{ (1+2’<)[6 ¢*(é;10+) _0 ¢*(§3107)]_(K+5)[5¢*(é',0+) _8(15*(4”107)]}

8u ¢ oy oy oy oy (15)
@ 87,0 aT'(£,0) b (S i

+§2( & & ) =D, (76(<) §)
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The differential equations (14) are solved considering the conditions (15). Then by employing

the Fourier inversion, the Airy stress function reads

oY) == [{i(a, &, +b, L,)Sin(&x) +b, L, cos(x}de
T 0

Where L,, L, and L, are

2" y(—y + @2y 4 20%E + 2hy€)

LT

(1+k)&?
Lo 2e~@E y_y 1 @MYy 4 Dh2E 4 2hyé)
X @+k)&E
L= 2ie” " (12 4 2hE + yE + XMy E 4 2hPEP 4 2hyE?)
(1+Kk)&?

By substituting the Airy function (16) into (8), the stress components read

50 (%Y) == [ DXL & +b, L )Sin(@x) +b, L, cos(e}d

7, (%Y == [ €¥{i(aLy &, +D, L,)Sin(éx) ~b, L, cos(&x)}d

7, () = [ Defifal, &, +b, L, )oos(20) ~b, L, sin(ex)}d

(16)

(17)

(18)

Here, D = 0/0y isthedifferential operator. Employing theintegral expressionsgivenin[27],

the stressfield (18) issimplified to

o ) . Q, + Xy(x* +y?) y(3x® +y?) X(x* - y?)
Oy = e | a6 —XY(X*+Yy?)  t+b g Yy —x®) t—b,x(3y® +x?)
r(l+x) | (X" +Y%) 2702 2 2 2 2 2

" Qy T Y (X +Y°) X(y* —x°) y(X“—y%)

1 PX MX NX
+ O0.<P ++b<M_++b <N

(X2+(y+2h)2)3 a T y X y y y
ny MXY NX)’

In the equations (19), Q, and Q,, are defined as

2 avaf €
Q. =20 +Y?) f?sm(éX)dé

2 a2 (€”
Qy ==+ Y| 5 oos(ends

(19)

(20)
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and functions P ,M and N aregiveninthe Appendix. It is noted that the stress components

(29) exhibit thefamiliar Cauchy type singularity at the dislocation core. The dislocation solution
in half-plane, cited for instance in [28], may readily be recovered by letting &, =0 inEq. (19).

2.2 Thermoelastic Analysis of a defect-less half-plane under external load

In order to employ the distributed dislocation technique, we need to know the behavior of a
half-plane (in the absence of defects) subjected to external thermal and mechanical loads. The
theory of linear thermoelasticity is based on linear addition of thermal strains to mechanical
strains. First, we assume that the temperature on the boundary of the half-plane is

T(x,—h):TOe"y‘X‘,%Iisfying‘li‘m[r(x,—h)]—>0. Hence, the thermal conditions may be

expressed as
T(x,~h)=T,e 7 (21)
Following a similar procedure as we followed in the previous section, it can be shown that

the solution of Eqg. (1) together with conditions (21) reads
g E(h+y)

T(x,y)= 2 j 7y QoS (22)

The heat flux Q; dueto above temperature distribution is

Ty =2 | ‘fei(;))sn@x)démj ol Pl GOL B

Next, we consider ahalf- planewhlch is subjected to an in-plane mechanical point force with
magnitude o,and 7,at coordinates(0,—h) on the boundary. Consequently, the boundary
conditions read

s(h+y)

&,,(x,—h) = 5,5(X) , 0, (X,~h) = 7,5(X) (24)

Following asimilar procedure as outlined in the previous section for the dislocation solution,
the stress field due this external mechanical loading can be derived.
Finally, the stress field due to the above-mentioned in-plane mechanical and thermal |oadings
reads

2x%(o,(y +h) - Z'OX) AuaTy T (yé—2)e <™y
S e e T e W e a
~ 2(h+ y)? (o,(y+h)—7,x%) _ AyuaTyy §e’5(“*y)
SN = ey xen) J (7 127 XeNe
_2X(y+h)(oo(y+h)—7,X)  AuaTy ¢ (yé - 1)e shey)
oy (X, Y) = 202+ (N1 V) s K)j v sn(Ex)dé

(25)
In the following section, the dislocation solution together with the solution to the defect-less
half-plane are employed to construct the integral equations representing the crack.

3 Thermoelastic analysis of half-plane with multiple cracks
The thermoelastic dislocation solutions accomplished in the previous section may be used to

analyze a half-plane with severa arbitrarily oriented cracks subjected to the thermomechanical
loading. The stress and heat flux components caused by the climb, glide, and thermal
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dislocationslocated at (x,, Y,) can be obtained by replacing(X,, Y,) with (X—X,,Y—Y,) in Egs.
(6) and (19). Consequently the stress and heat flux components read

7 (%, ) = K (%, Y)8; + ki (X, )b, + k' (x, y)b,
QX Y) =0 (X=X, V), {i,J}e{x v}

(26)
where k", me{t,x, y} arethe coefficients of 5, ,b, and b, and may be deduced from Eq. (19).

Let N be the number of cracksin the half-plane. A crack configuration with respect to the
Cartesian coordinate x —y may be described in parametric form as:
X; =a; (1)
yi =4 ) ~1<p<1, ie{12,..,N}
The moveable orthogonal coordinate systems(s, n) are chosen on the ith crack such that the

origins locate on the cracks while the s-axes remain tangent to the cracks surfaces. The stress
components and heat flux may be transformed to (s,n) coordinates as

N _
o - O, ZUW O 2‘7yy cos(26,)—o,, sin(26,),

(27)

GXX -0 g
o =_Tyysm(26?i)+aXy cos(26,),

Q, =Q, cos(d)-Q, sin(é,) (28)
The components of Burgers vectors b, and b, are transformed to the (s,n) coordinate on

the surface of jth crack. The relationships between components of Burgers vectors in two
coordinate systems are
b, =b, cos(8.)—b,sin(é,),
| (@) (6)) 29)
b, =b, sin(@;) +b, cos(0,)
where g, =tan (B (t)/a, (t)), k €{i, j} isthe angle between s- and x-axes.
Cracks can be modeled as a distribution of thermoelastic dislocations with the densities
B, me{T,s,n} aswell. The components of tractions vector and heat flux along the

cracks surfaces due to the dislocation distribution are

1

o, (x(17),y(m)) = ZI{ Koy (7:8) By (8) + Koy (17, 1) By (1) + Koy (7,1) By, (t)}\/[a} OF +[5;(O dt,

=1

o, (x(m),y(m)) = ZI{ K (17, 8) By (1) + Koy (17,1) By (1) + Koy (17,1) By, (t)}\/[a} OF +[4, O dt,

=1

Qm(X(ﬂ),y(ﬂ))=Z_fKt(ﬂ,t)BTj(t)\/[a](t)]Z+[ﬁ,—'(t)]2dt ie{1,2,.,N}, -1<7<1(30)

j=1_1

Where the kernelsin Eqg. (30) are given by
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Kyyy (7.1) = 1( ~ K2, )cos(28) ~ KL sin(20) + = (k1+k1)
Ko (7,1) :% (kjy - ki)cos(e,.) +(k5, - kfx)dn(e,ﬂcos(zei)
Kyz; (7,1) :é (kjy - kfx)oos(ej) +(k3x - kiy)sin(e,ﬂcos(zei)

k3, cos(6,) —kZ sin(é, )]sn(29)+ ~(K3 + ks, )cos(6;) - (k3+k3)sin(9j),
Ko (7.8) = == (K —K;, )Sin(26) + ki, cos(26)),
Koy (7,8) = 2( K2 )cos(8;) + (K, kj’y)sin(ej):sin(Zé’i)

Xy

( cos(9 )+(k2 kfX)Sin(é’j):Sin(zﬂ)

(
+[k cos(8,) + k2 sm(e)]cos(ze)
K23Ij (77 t) _%[

+k;

k5, cos(8;) — k2 sin(6;) |cos(20)),

Xy

:quOS(Hi)_qxsn(Hi) (31)

In thisanalysis, it is assumed that the problem is linear. So, the solution of the crack problem
isconsidered to be the sum of two sub-problems. Thefirst problem isthe thermoelastic analysis
of ahalf-plane in the absence of cracks under external thermomechanical loadings which yields
the traction and heat flux with opposite signs for a perfect conduction crack. The second
problem gives the corrective solution which is generated by continuously distributing the
dislocations along the crack faces. Accordingly, to satisfy the traction free condition of the
crack faces, the left-hand sides of EQ. (30) are the traction and heat flux with opposite sign
obtained from thermoelasticity problem of a half-plane under external thermomechanical
loadings.

Employing the definition of the dislocation density function, the equationsfor crack opening
displacement and temperature discontinuity across the ith crack become

U5, (7) = Uy (7) = [ [cos(6,(7) — 6,(1)) By (1) —sin(6,(7) — 6,(1)) By [/ (OF + [ B/0)] ct,

U5 ()~ () = [ [cos(6, () - 6,(1)) By (1) +Sin(6,(7) - 6,(1)) B, OWeOF +[BO) dt,

T ) -, () = | By OVl OF + 14O dt ~1<n<1, ie{l2,.,N}
(32)

Where u,, U, and T are displacement components in the normal and tangential directions

and temperature, respectively. For cracks embedded in the half-plane Eq. (30) should be
complimented with the following closure requirements:
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1
I [cos(6 (1) - 6 (1)) By (t) - Sin(& (1) - & (1)) Bs (O Lex (012 +[ B (D] 20t = O,
]

1
[ [cos(6,0-6,0) B 0+ 5in (6,0 - 6,0)) By Ol OF + (At =0,
21

1
[ Bri O\l 1 + (A ®Pdt =0 i €{1.2,...,N} (33)
-1

In studying the fracture of structural components due to the thermal stresses, it isimportant to
consider the thermal stress singularities at the tips of crack[2, 3]

The singularity of heat flux, in the vicinity of a crack tip, isthe same asthat of stressfields.
Therefore, the dislocation densities for an embedded crack are given by

gli (t) .
B,(t)=—= -1<t<1, le{xy, T}, ie{12,..,N} (34)
' V1-t?
Referring to the definitions of modes | and 11 stress intensity factors for embedded cracks
given by Fotuhi and Fariborz [29], the intensity factors lead to

KIL _ 2,U ' 2 ' 2711 gni(_l)
{K”L}——m([ai(—l)] +LACDF) {g (_1)},

KlR _ 2/” ' 2 ' 2\a gnl(l)
{K“R}—m([ai(l)] +1A@r) {g (1)} (35)

where the subscripts L and R designate the left and right crack tips respectively. Eq. (34) are
substituted into Egs. (30) and (33), and the resultant equations are solved via the technique
developed by Erdogan et a. [30] to determineg, (t)in whichie{12,..,N}.The values of

0, (+¥1 should be substituted into Eq. (35) to obtain SIFs.

4 Results and discussions

In this section the results of some examples for a half-plane weakened by arbitrary number of
parallel, collinear and oblique cracks under diverse loading conditions including mechanical,
thermal and thermo-mechanical loadings are presented. In al the following examples, the

thermoelastic and material constants arek =5L.9(W / mK),a, =253x10°(°'C™") and
v =0.29. Moreover, we are only concerned with the full opening of cracks. Note that, the
temperature distribution on the boundary of the half-plane wastaken asT (x,—h) = T,e 7™ , where

T,=100°C andy istaken to be5 and 10(1/ m) .To render the results dimensionless, unless

otherwise stated, stressintensity factors for straight cracks was normalized by K, = o, / Ja.

Table (1) depictsthe SIFs of an isotropic half-plane subjected to mechanical loadings which
isshown in Figure 2. The results have a great agreement with those reported by Ashbaugh [31].

4.1 Medium under in-plane mechanical loadings

Figures (3a) and (3b) show the effects of crack orientation on the mode | SIFs. In this case, the
half-plane is subjected to normal and shear point loads. It can be seen that the stress intensity
factorsare varying with respect to the angle of rotation. It isevident that the mode | SIF increase
dramatically and hitsits peak around 60 degree. Obvioudly, at & = z/2, thetraction on the crack

surface vanishes and the stress intensity factors are zero.
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Tablel Straight crack in an isotropic half-plane for right and left crack tips

Vol. 17, No. 2, Sep. 2016

o,=1 h
7,=0 0 4.0 1.0 0.4 0.1
K /K, 1 1.045 1511 2.905 14.01
Ashbaugh[31] 1 1.045 1511 2.905 14.01
K,/K, O 0.0055 0.1849 0.9940 8.812
0 -0.0055 -0.1849 -0.9940 -8.812
K, /KO 1 1.0451 1.5110 2.9056 14.01
Present study 1 1.0451 1.5510 2.9056 14.01
K,/K, O 0.0055 0.1849 0.9940 8.8133
0 -0.0055 -0.1849 -0.9940 -8.8133
0,=0 h
r =1 o 4.0 10 0.4 0.1
K,/K, O -0.0053 -0.1331 -0.3876 -0.8709
Ashbaugh[31] 0 0.0053 0.1331 0.3876 0.8709
K, /K, 1 1.014 1.087 1.133 1.384
1 1.014 1.087 1.133 1.384
K,/K, O -0.0053 -0.1331 -0.3876 -0.8710
Present 0 0.0053 0.1331 0.3876 0.8710
K, /K, 1 10141 10873 11329 13842
1 1.0141 1.0873 1.1329 1.3842

| » | »
i Goi

Figure 2 A weakened half-plane under uniform mechanical loading.
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Figure 3a Non-dimensional mode | stress intensity factors for an oblique crack under normal point load.
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Figure 3b Non-dimensional mode | stress intensity factors for an oblique crack
under normal and shear point loads.

In addition, the effect of shear traction on mode | can be seen in Figure (3b). According to the
provided results, the shear traction highly effects the stress intensity factors and declines the
SIFsvalues. In Figure (4), the effects of normal and shear loadings on the mode |1 can be seen.
It is clear that the lack of geometric symmetry of cracks produces mode Il SIFs even when
cracks are subjected to normal traction Figure (4a). As can be seen, the mode Il SIFs are
increased and then declined dramatically at the vertical position. The SIFs allocate the least
values at this position. It should be mentioned that as opposed to mode I, mode | is the
dominant mode when & =0 and stress intensity factor is far more than those of the mode 1.
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Figure 4a Non-dimensional mode Il stress intensity factors for an oblique crack under normal point load.
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Figure 4b Non-dimensional mode |1 stress intensity factors for an oblique crack
under normal and shear point loads.

In the second example, the interaction between two identical collinear cracks with the same
lengths (Figures 5 and 6) subjected to normal mechanical point load are studied. The centers of
cracks are fixed while the cracks lengths are changing with the same rate. As it was expected,
due to the symmetry of cracks, the counterpart crack tips have the same SIF values. Besides,
the values of mode | SIF increase as long as the length of the crack increases. The SIF for crack
tips R, and L,increases dramatically which roots in the intense interaction between them.

Furthermore, the mode |1 SIFs are considerably less than the mode | SIFs.
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Figure 6 Non-dimensional mode |1 stressintensity factors for two collinear cracks.

In the next example, we consider two offset equal-length cracks parallel to the boundary of
half-plane (see Figures 7 and 8). The variation of dimensionless stressintensity factors K, /K,

and K, /K, , are presented in Figures (7) and (8), respectively. Asit was expected, the highest
K, /K, occurs where the distance between the interacting crack tips R, and L, is minima

which indicates that the interaction between the crack tips increases. It is aso found that the
value of mode | and mode Il SIFs grow steadily as long as the dimensionless crack length
Increases.
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Figure 7 Non-dimensional mode | stress intensity factors for two paralléel cracks.
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Figure 8 Non-dimensional mode |1 stress intensity factors for two parallel cracks.

Next, the half-plane is assumed to be weakened by a horizontal and an inclined crack, shown
in Figures (9) and (10). It is assumed that the distance between the centers of the cracks is
2c =1.5h which are situated symmetrically with respect to y-axis. It can be seen that the angle
of crack orientation has a considerable effect on the mode | and mode 11 stressintensity factors;
the SIFs for the rotating crack decreases as 6 increases and then rises again. Furthermore, the
SIFs of the rotating crack have the same valueswhile & is 0 and 180 degree due to symmetry.
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Figure 9 Non-dimensional mode | stress intensity factors for a fixed and oblique crack.
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Figure 10 Non-dimensional mode Il stress intensity factors for afixed and oblique crack.
4.2 Medium under non-uniform thermal loading

In the following example, the effects of the non-uniform external thermal loading on the stress
intensity factors are investigated. Here, it is assumed that there are no externa in-plane

mechanical loadings. The SIFs are normalized by K, = /JaTO\/E and depicted in Figure (11).

It isnoticed that for mode I, the SIFs at tip L fluctuates as the crack length increases while the
SlFsat tip R grows gradually. Thisis due to the fact that the applied non-uniform temperature
at the boundary produces both normal and shear stresses to the medium which causes non-
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symmetrical results. Moreover, it is observed that by doubling the parameter y, the SIFs values
decline significantly. On the other hand, the results shown in Figure (12) depicts that the second
mode SIFs decrease steadily aslong as crack length increases. It can be seen that by increasing
the parameter y the average values of K, increases and then decreases as dimensionless crack
length rises above 0.6.
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Figure 11 Mode | stressintensity factor versus crack length under thermal loading.

0.01

NG

0.01
/i
KO

0.02

0.03

0802 03 04 05 06 07 08 09 1

a’h

Figure 12 Mode |1 stress intensity factor versus crack length under thermal 1oading.
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Furthermore, the effects of two collinear crack lengths on the stressintensity factors under non-
uniform thermal loading is studied. According to the Figures (13a) and (13b), the mode | SIFs
for two collinear cracks rises gradually as crack length increases. As expected, the interaction

between crack tips R, and L, isfar more than the two other crack tips.
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Figure 13a Mode | stress intensity factor for two collinear cracks under thermal loading for y = 5.
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Figure 13b Mode | stressintensity factor for two collinear cracks under thermal loading for ¥ =10.
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Also, the given resultsin Figures (14a) and (14b) show an upward trend for second mode SIFs
as crack length increases. It is noted that R, and L,possess considerably higher stress

concentrations as crack length increases and, as a result, the interaction between two cracks
rises significantly. In addition, the results depict that the effect of parameter » on the SIFsis

significant; by increasing the parameter 7, the amount of SIFs decreases.
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Figure 14b Mode | stressintensity factor for two collinear cracks under thermal loading for ¥ =10.
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4.3 Medium under thermo-mechanical loading

In this example the medium is considered to be under both in-plane mechanica and thermal
loadings in which T,=100°C and y =5(1/m). The effect of crack length on the SIFs are

demonstrated in Figures (15) and (16). The SIFs values rise as crack length increases.
Additionally, it can be seen that SIFsfor crack tips R and L is dlightly more than the other tip
for mode | and mode |1, respectively.
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Figure 18 Mode Il stress intensity factor for two collinear cracks under thermo-mechanical loading.
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For the same loading, the interactions of two collinear horizontal cracks are studied in Figures
(17) and (18). It can be seen that the first mode SIFs of both cracksrise steadily aslong as crack

length increases. The crack tip R, alocates considerably more SIF. Moreover, the Figure (18)
illustratesthat K|, increases by increasing the crackslength. It aso showsthat the SIFsfor crack
tips R, and L, increases considerably dueto the significant interaction occurring between these
two crack tips.

5 Conclusions

This paper investigates the steady state thermoelastic crack problem of a half-plane subjected
to thermomechanical loading. The analytical closed-form solution of thermoelastic dislocation
is obtained in the half-plane. For an arbitrarily located mechanical point load and external
temperature load, fundamental solutions are derived. Then, the obtained solutions are utilized
to obtain integral equations to formulate the behavior of cracks within the half-plane. These
equations are of Cauchy singular type and are numerically solved to obtain dislocation density
on the cracks surfaces. The crack surface is under traction-free conditions and the uniform heat
flow is given vertically to the crack from the boundary. Several examplesincluding single and
multiple cracks under thermomechanical loadings are studied. The obtained formulation
determines the cracks stress intensity factors of the weakened half-plane. This formulation can
successfully be employed to analyze and design the cracked half-planes.
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Nomenclature

h,,b Burgers vector
™y
B, Dislocation densities
9, (t) Regular terms of dislocation densities
I
h Distance of the origin from the edge
H(.) Heaviside step function
kM Kernels of integral equations
]
Ko Stressintensity factor of acrack ininfinite plane

K Thermal conductivity
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K Kig Mode | stressintensity factor of crack tips
K Kig Mode Il stress intensity factor of crack tips
N Total number of cracks
u,v The displacement fields
Q, Heat flux
T(x,Y) Temperature field
a.(1n), B (1) Functions describing the geometry of cracks
o, (X,Y) The in-plane stress components
o(..) Dirac delta function
6., k {i, j} The angle between s- and x-axes.
I Fourier variable
o(X,Y) Airy stress function
Appendix

The coefficients of Burgers vectorsin EQ. (19) are expressed as:

P, =f +32h° +64h*xy +28h°xy (x> +y?)+xy (x> +y?)?
+8h3X (BX 2+ 7y 2) +4hx (x * +3x 2y 2+ 2y %)
P, =32h°x +64h*xy +4h®xy (x > +y *)—4hxy *(x *+y ?)
—xy (x2+y?)?+8h (x > +5y ?)
P, =f, —32h°-96h°y —y ?(x*+y?)?-32h*(x *+4y ?)-32h°*(2x ?y +3y°)

—6h?(x*+8x %y *+7y ) —2h(3x "y +8x %y ®+5y°)

(A1)
f,=(C+(y+20))| @én(éx)dé
0
© e*i(Y+2h)
fy = (¢ +(y+20)%)| cos(&x)dé& (A2
0

M, =-32h°-96h*y —3x*y —4x%y®—y°-8h3(x *+13y ?)
—4h%(3x %y +13y %) —4h(2x * +3x %’y > +3y )
M, =32h° + 64h*y —8h*(3x* —5y?) + 4h?y(-9x* + y*) + y(x* — y*) —4h(3x*y* + y*)
M., = 32h*x+ x° +64h°xy — xy* — 4h*x(x* — 9y?) + hx(-4xy + 4y°)
N, = x> —32h%y — xy* + 4h*x(5x* — 9y?) + 12hxy(x* — y?)
N, =96h*x+X° +192n°xy + 4x°y? + 3xy* +12hxy (X* +3y*) + 127X (X +11y?)
N,, =—32h°—96h"y +8h°*(3x* —13y?) + 12hy*(x* — y*) + 4h*(9x*y —13y°) + y(x* — y*)
(A.3)
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