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1 Introduction 

 
Many advanced engineering structures are exposed to thermal loading during their life cycles. 
Structural components such as advanced turbine systems, shuttles, combustion chambers and 
ovens operate at high temperatures, which can give rise to intense thermal stresses in these 
components. In particular, once a steady heat flow is disturbed by the presence of cracks, 
thermal stresses concentration occurs in the neighborhood of the crack tips and may lead to 
crack propagation. Consequently, the study of the thermal stresses in the vicinity of the crack 
tips is of great practical importance. 
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Multiple Cracks in an Elastic Half-
plane Subjected to Thermo-
mechanical Loading  
An analytical solution is presented for the thermoelastic 
problem of a half-plane with several cracks under 
thermomechanical loading using distributed dislocation 
technique. The uncoupled quasi-static linear 
thermoelasticity theory is adopted in which the change in 
temperature, if any, due to deformations is neglected. The 
stress field in a half-plane containing thermoelastic 
dislocation is obtained by means of the complex Fourier 
transform. Then, the problem is reduced to the solution of a 
set of simultaneous integral equations with Cauchy type 
singularities for dislocation density functions. Numerical 
results for the modes I and II stress intensity are presented 
to illustrate the effects of crack geometry and loading 
conditions on the stress intensity factors. Finally, the 
different cases of crack configurations and arrangements 
are examined. 
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As an important branch in solid mechanics, the structures weakened by defects and subjected 
to various types of external thermomechanical loadings have been studied extensively in the 
literature. The thermal stresses alone or in combination with mechanical loadings can give rise 
to cracks and rupture in components containing brittle materials [1].Investigations concerning 
cracks under thermomechanical loading are briefly reviewed here. Sih [2]studied the 
thermoelastic fracture problem where the temperature distribution is stationary. He showed that 
the presence of heat flow produces no additional singularities. In other words, at the crack tip, 
the singularities of the thermal stress and mechanical stresses are identical, i.e. r1 . 

In the past decades many researchers have studied a weakened infinite or semi-infinite plane 
being generally under uniform heat flow. For instance, the thermal stress singularities at the tips 
of an arbitrarily oriented crack in a semi-infinite medium under uniform heat flow have been 
analyzed by Sekine [3]. In this work, the problem of a half-plane weakened by insulated crack 
under uniform heat flow was investigated and the stress intensity factors for modes I and II 
were obtained. Atkinson and Clements [4]solved two-dimensional Griffith crack obstructing a 
uniform heat flux in a general anisotropic medium by the techniques of Fourier transforms and 
multiple integrations. Sturla and Barber [5, 6]considered the same problem in a general 
anisotropic infinite plane by using a Green’s function and gave the exact solutions of the mixed-
mode thermal stress intensity factors 
In some cases, the mediums were made of nonhomogeneous materials exposed to thermal 
loading, which necessitated a thermomechanical analysis. As an illustration, a crack in a strip 
of functionally graded material was investigated by Noda and Jin[7] and thermal stress intensity 
factors were obtained. Also, the analysis of a semi-infinite nonhomogeneous thermoelastic solid 
containing a crack subjected to steady heat flux over the boundary was investigated by Jin and 
Noda [8]. The problem of an edge crack in a semi-infinite nonhomogeneous plate under steady 
state heat flux was also studied by Jin and Noda [9]. The problem of a functionally graded layer 
weakened by an embedded or surface crack perpendicular to its boundaries is investigated by 
Erdogan and Wu [10]. Thermomechanical properties are assumed to be continuous and the 
elastic layer is under statically self-equilibrating thermal or residual stresses. Borgi et al. 
[11]investigated the problem of an infinite functionally graded medium with a partially 
insulated crack subjected to a steady-state heat flux applied away from the crack region as well 
as mechanical stresses applied as crack surface tractions.  

Coatings also play crucial role in the design of structures subjected to severe thermal 
conditions. The plane strain thermal stress problem for an interface crack in a homogenous 
substrate with a graded coating was studied by Lee and Erdogan [12]. Itou [13] solved the 
thermal stress problem of an interfacial layer bonded between two dissimilar elastic half planes 
weakened by a crack. The thermal fracture problem of a functionally graded coating-substrate 
structure of finite thickness with a partially insulated interface crack is investigated by Zhou 
and Lee [14]. Choi [15] examined the steady-state thermoelastic problem of a crack at an 
arbitrary angle to the graded interfacial zone in bonded media. In practice, structures are usually 
weakened by multiple cracks which, in close distances, demonstrate considerable interaction. 
The analysis of a periodic array of embedded and edge cracks in an infinite elastic strip are 
investigated by Rizk [16, 17].  

In this study, the cracked surface was heated and compressive stresses occurred near the 
heated surface causing the crack surfaces to come into contact along a certain contact length. 
Later, the problem of two periodic edge cracks in an elastic infinite strip under thermal loading 
was also studied by Rizk and Fattah [18]. 

In the case of dynamic thermal loading and thermal shock, a transient thermomechanical 
analysis should be performed. Nied [19]investigated the transient thermal stress problem for an 
elastic strip weakened by an edge crack which was insulated on one face and cooled by surface 
convection on the face containing the edge crack.  
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Rizk et al.[20]studied the transient thermal stress in a strip with an edge crack. In another paper, 
Rizk et al. [21]investigated the effects of a sudden thermal transient stresses for plate of finite 
thickness containing an edge crack. In this study, the stress intensity factors for various crack 
sizes and cooling rates have been investigated. The transient thermal stresses around a crack in 
a semi-infinite thermoelastic body under a thermal impact using the hyperbolic conduction was 
determined by Chen and Hu[22]. Hu and Chen [23]also investigated the transient temperature 
and thermal stresses around a crack in a thermoelastic strip under a temperature impact loading. 
Among different methods for the analysis of cracks, the distributed dislocation technique has 
considerable advantages. Analysis of multiple cracks as well as providing full field closed form 
solutions are feasible using this technique. However, all the aforementioned investigations lack 
this advantageous technique. The study of an insulated crack in an anisotropic half-plane under 
a uniform heat flux using distributed dislocation technique was analyzed by Liu and 
Kardomates [24].Ravandi and Fariborz [25] studied the cracked layer fixed at a boundary and 
free of traction at the other boundary with specified temperature at the boundary using the 
distributed dislocation technique. 
As can be seen, there are only a few investigations in the last decade employed this technique 
to solve the problem. This method, not only, provides a closed form solutions to the crack 
problems, but also, is capable of analyzing multiple arbitrary cracks in a medium. Besides, the 
majority of the problems were restricted to solve the problems being under a uniform heat flow. 
Therefore, the aim of this study is to present a closed-form solution for a half-plane with 
multiple cracks which is subjected to the point load thermal and mechanical loadings. The 
novelty of the current investigation lies in the introduction of a Volterra type thermoelastic 
dislocation, applying the thermo-mechanical point loads on the boundary, and presenting a 
Green solution with the help of distributed dislocation technique which is capable to determine 
the stress intensity factors for various crack configuration.  
In section 2, at first, a Volterra type thermoelastic dislocation is introduced in the half-plane 
and the temperature distribution and stress fields are derived. Then, the stress and thermal fields 
of a defect-less half-plane under external mechanical and thermal loadings are determined. 
These subsections provide the required elements of the distributed dislocation technique. In 
section 3, the distributed dislocation technique is utilized to model the half-plane weakened by 
multiple cracks leading to a set of integral equations. In this study, only the case of the complete 
opening of cracks is considered. The integral equations are numerically solved and the stress 
intensity factors (SIFs) are determined. Several examples are presented including half-plane 
with cracks of different geometries and the effect of the loading conditions on SIFs are 
investigated. 
 

2 Fundamentals 
 

We intend to employ the distributed dislocation technique for the thermoelastic analysis of a 
half-plane weakened by multiple cracks. For this purpose, it is required to study the problem of 
a dislocation in the half-plane. Moreover, we shall determine the behavior of the uncracked 
half-plane subjected to external thermal and mechanical loadings. These tasks are carried out 
in this section. 



                             Iranian Journal of Mechanical Engineering                                      Vol. 17, No. 2, Sep. 2016  22

 
Figure 1 Half-plane weakened by a thermoelastic dislocation. 

 

2.1 Thermoelastic analysis of a half-plane weakened by a dislocation 
 

Let us consider an elastic half-plane containing a thermoelastic dislocation located at origin of 
coordinates as depicted in Figure (1). The dislocation line is considered to be in the positive 
direction of the z-axis. Here, the effects of inertia and thermoelastic coupling are neglected 
which leads to an uncoupled and quasi-static problem of thermoelasticity. By the use of 
Fourier's heat conduction equation, governing equation for temperature field in Cartesian 
coordinates and constant properties reads [26]

 
2 2

2
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Where  ( , )T x y  is temperature field and 2  is the Laplacian operator. The heat equation (1) 
should satisfy the following conditions 
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In Eq. (2), (..)H  is the Heaviside step-function, yQ  is the heat flux in the y-direction, and 

T is the temperature discontinuity along the dislocation cut.  
It should be mentioned that a crack with insulated faces perturbs a heat flux. Since a crack 

can be represented as a dislocation array, it is reasonable to assume that the heat flux perturbs 
across the dislocation cut. According to the second condition in Eqs. (2), the continuity of the 
heat flux along the dislocation cut requires that 

( ,0 ) ( ,0 )T x T x

y y

  


 
                                                             (3) 

This boundary value problem is solved by applying the complex Fourier transformation to 
Eq. (1). Then, the solution to the temperature field reads 
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Where (..) is the Dirac delta function.  
In a homogenous isotropic medium, the heat flux nQ  along the unit vector ˆ ˆ

x yn n i n j  is given 
by [26] 

.T
nQ K T n                                                                       (5) 

Where  K  is the thermal conductivity. Once the temperature field from Eq. (4) is substituted in 
Eq. (5), the heat flux is obtained as 
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It is observed that the heat flux ),( yxQT
n  is Cauchy singular at the dislocation core, i.e. 

rQn 1 , as 022  yxr .  
In order to determine the stress field, we can make use of the basic equations including 

compatibility equation and the constitutive law given by[26] 
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The stress components in terms of Airy stress function ),( yx  may be expressed as 
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The substitution of Eq. (8) into the compatibility equation and considering the constitutive law 
in uncoupled theory of thermoelasticity, we arrive at the following differential equation 
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Where  3 4    and (1 )T    for the plane strain, and (3 ) (1 )      and T   
for generalized plane stress. Substituting the stress components (8) into the constitutive law, the 
strain components read 
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While  (u,v) are the displacement fields of the half-plane. The boundary value problem for the 
elastic half-plane with thermoelastic dislocations includes the conditions 
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Where  xb  and yb  are the Burgers vectors for the glide and climb edge dislocations, 
respectively. The general solution of the differential equation (9) is 

hp                                                                   (12) 
Where  p and h  are particular and homogenous solutions, respectively, and should satisfy 
the following relations 
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Employing the complex Fourier transform together with the assumption lim[ , ] 0p h
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Moreover, considering Eqs. (8) and (10), Fourier transformation of conditions (11) reaches 
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The differential equations (14) are solved considering the conditions (15). Then by employing 
the Fourier inversion, the Airy stress function reads 
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By substituting the Airy function (16) into (8), the stress components read 
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Here, yD   is the differential operator. Employing the integral expressions given in [27], 
the stress field (18) is simplified to  
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In the equations (19), xQ and xyQ  are defined as 
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and functions ...P , ...M and ...N  are given in the Appendix. It is noted that the stress components 
(19) exhibit the familiar Cauchy type singularity at the dislocation core. The dislocation solution 
in half-plane, cited for instance in [28], may readily be recovered by letting 0T   in Eq. (19). 
 
2.2 Thermoelastic Analysis of a defect-less half-plane under external load 

 
In order to employ the distributed dislocation technique, we need to know the behavior of a 
half-plane (in the absence of defects) subjected to external thermal and mechanical loads. The 
theory of linear thermoelasticity is based on linear addition of thermal strains to mechanical 
strains. First, we assume that the temperature on the boundary of the half-plane is 
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Following a similar procedure as we followed in the previous section, it can be shown that 
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The heat flux T
nQ due to above temperature distribution is 
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Next, we consider a half-plane which is subjected to an in-plane mechanical point force with 
magnitude 0 and 0 at coordinates ),0( h  on the boundary. Consequently, the boundary 
conditions read 
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Following a similar procedure as outlined in the previous section for the dislocation solution, 

the stress field due this external mechanical loading can be derived. 
Finally, the stress field due to the above-mentioned in-plane mechanical and thermal loadings 
reads 
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(25) 
In the following section, the dislocation solution together with the solution to the defect-less 
half-plane are employed to construct the integral equations representing the crack. 
 
3 Thermoelastic analysis of half-plane with multiple cracks 

 
The thermoelastic dislocation solutions accomplished in the previous section may be used to 
analyze a half-plane with several arbitrarily oriented cracks subjected to the thermomechanical 
loading. The stress and heat flux components caused by the climb, glide, and thermal 
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dislocations located at ),( 00 yx can be obtained by replacing ),( 00 yx  with 0 0( , )x x y y   in Eqs. 
(6) and (19). Consequently the stress and heat flux components read 

( , ) ( , ) ( , ) ( , )t x y
ij ij T ij x ij yx y k x y k x y b k x y b     

0( , ) ( , ) , { , } { , }i i TQ x y q x x y i j x y    
(26)  

where , {t, , }m
ijk m x y are the coefficients of T , xb and yb  and may be deduced from Eq. (19). 

Let N be the number of cracks in the half-plane. A crack configuration with respect to the 
Cartesian coordinate x y  may be described in parametric form as: 

( )
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i i

i i
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y i N
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                                (27) 

The moveable orthogonal coordinate systems ),( ns are chosen on the ith crack such that the 
origins locate on the cracks while the s-axes remain tangent to the cracks surfaces. The stress 
components and heat flux may be transformed to ),( ns coordinates as 
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The components of Burgers vectors xb and yb  are transformed to the ),( ns  coordinate on 
the surface of jth crack. The relationships between components of Burgers vectors in two 
coordinate systems are  
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,)sin()cos(
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bbb

bbb








                                                      (29) 

 
where 1tan ( ( ) ( )), { , }k k kt t k i j      is the angle between s- and x-axes. 

Cracks can be modeled as a distribution of thermoelastic dislocations with the densities 
(t), { , , }mjB m T s n  as well. The components of tractions vector and heat flux along the 

cracks surfaces due to the dislocation distribution are 
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Where  the kernels in Eq. (30) are given by 
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In this analysis, it is assumed that the problem is linear. So, the solution of the crack problem 
is considered to be the sum of two sub-problems. The first problem is the thermoelastic analysis 
of a half-plane in the absence of cracks under external thermomechanical loadings which yields 
the traction and heat flux with opposite signs for a perfect conduction crack. The second 
problem gives the corrective solution which is generated by continuously distributing the 
dislocations along the crack faces. Accordingly, to satisfy the traction free condition of the 
crack faces, the left-hand sides of Eq. (30) are the traction and heat flux with opposite sign 
obtained from thermoelasticity problem of a half-plane under external thermomechanical 
loadings.  

Employing the definition of the dislocation density function, the equations for crack opening 
displacement and temperature discontinuity across the ith crack become 
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(32)  

Where nu , ,su  and T  are displacement components in the normal and tangential directions 
and temperature, respectively. For cracks embedded in the half-plane Eq. (30) should be 
complimented with the following closure requirements: 
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In studying the fracture of structural components due to the thermal stresses, it is important to 
consider the thermal stress singularities at the tips of crack[2, 3] 

The singularity of heat flux, in the vicinity of a crack tip, is the same as that of stress fields. 
Therefore, the dislocation densities for an embedded crack are given by 
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Referring to the definitions of modes I and II stress intensity factors for embedded cracks 
given by Fotuhi and Fariborz [29], the intensity factors lead to 
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                                       (35) 

where the subscripts L  and R  designate the left and right crack tips respectively. Eq. (34) are 
substituted into Eqs. (30) and (33), and the resultant equations are solved via the technique 
developed by Erdogan et al. [30] to determine ( )lig t in which },...,2,1{ Ni .The values of 

)1(lig  should be substituted into Eq. (35) to obtain SIFs. 
 
4 Results and discussions 

 
In this section the results of some examples for a half-plane weakened by arbitrary number of 
parallel, collinear and oblique cracks under diverse loading conditions including mechanical, 
thermal and thermo-mechanical loadings are presented. In all the following examples, the 
thermoelastic and material constants are 51.9( / . )k W m K , 5 12.53 10 ( )T C      and

0.29  . Moreover, we are only concerned with the full opening of cracks. Note that, the 
temperature distribution on the boundary of the half-plane was taken as 0( , ) xT x h T e   , where 

0 100T C   and  is taken to be5  and 10(1/ )m .To render the results dimensionless, unless 

otherwise stated, stress intensity factors for straight cracks was normalized by 0 0K a . 
Table (1) depicts the SIFs of an isotropic half-plane subjected to mechanical loadings which 

is shown in Figure 2. The results have a great agreement with those reported by Ashbaugh [31]. 
 

4.1 Medium under in-plane mechanical loadings 
 

Figures (3a) and (3b) show the effects of crack orientation on the mode I SIFs. In this case, the 
half-plane is subjected to normal and shear point loads. It can be seen that the stress intensity 
factors are varying with respect to the angle of rotation. It is evident that the mode I SIF increase 
dramatically and hits its peak around 60 degree. Obviously, at 2  , the traction on the crack 
surface vanishes and the stress intensity factors are zero.  
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Table1 Straight crack in an isotropic half-plane for right and left crack tips 
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Figure 2 A weakened half-plane under uniform mechanical loading. 
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Figure 3a Non-dimensional mode I stress intensity factors for an oblique crack under normal point load. 

 
Figure 3b Non-dimensional mode I stress intensity factors for an oblique crack 

 under normal and shear point loads. 
 

In addition, the effect of shear traction on mode I can be seen in Figure (3b). According to the 
provided results, the shear traction highly effects the stress intensity factors and declines the 
SIFs values. In Figure (4), the effects of normal and shear loadings on the mode II can be seen. 
It is clear that the lack of geometric symmetry of cracks produces mode II SIFs even when 
cracks are subjected to normal traction Figure (4a). As can be seen, the mode II SIFs are 
increased and then declined dramatically at the vertical position. The SIFs allocate the least 
values at this position. It should be mentioned that as opposed to mode II, mode I is the 
dominant mode when 0   and stress intensity factor is far more than those of the mode II. 
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Figure 4a Non-dimensional mode II stress intensity factors for an oblique crack under normal point load. 
 

 
 

Figure 4b Non-dimensional mode II stress intensity factors for an oblique crack 
 under normal and shear point loads. 

 
In the second example, the interaction between two identical collinear cracks with the same 
lengths (Figures 5 and 6) subjected to normal mechanical point load are studied. The centers of 
cracks are fixed while the cracks lengths are changing with the same rate. As it was expected, 
due to the symmetry of cracks, the counterpart crack tips have the same SIF values. Besides, 
the values of mode I SIF increase as long as the length of the crack increases. The SIF for crack 
tips 1R  and 2L increases dramatically which roots in the intense interaction between them. 
Furthermore, the mode II SIFs are considerably less than the mode I SIFs. 
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Figure 5 Non-dimensional mode I stress intensity factors for two collinear cracks. 

 
Figure 6 Non-dimensional mode II stress intensity factors for two collinear cracks. 

 

In the next example, we consider two offset equal-length cracks parallel to the boundary of 
half-plane (see Figures 7 and 8). The variation of dimensionless stress intensity factors 0IK K

and 0IIK K , are presented in Figures (7) and (8), respectively. As it was expected, the highest 

0IK K  occurs where the distance between the interacting crack tips 1R  and 2L  is minima 
which indicates that the interaction between the crack tips increases. It is also found that the 
value of mode I and mode II SIFs grow steadily as long as the dimensionless crack length 
increases.  
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Figure 7 Non-dimensional mode I stress intensity factors for two parallel cracks. 

 
Figure 8 Non-dimensional mode II stress intensity factors for two parallel cracks. 

 

Next, the half-plane is assumed to be weakened by a horizontal and an inclined crack, shown 
in Figures (9) and (10). It is assumed that the distance between the centers of the cracks is 
2 1.5c h  which are situated symmetrically with respect to y-axis. It can be seen that the angle 
of crack orientation has a considerable effect on the mode I and mode II stress intensity factors; 
the SIFs for the rotating crack decreases as   increases and then rises again. Furthermore, the 
SIFs of the rotating crack have the same values while   is 0 and 180 degree due to symmetry. 
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Figure 9 Non-dimensional mode I stress intensity factors for a fixed and oblique crack. 
 

 

Figure 10 Non-dimensional mode II stress intensity factors for a fixed and oblique crack. 
 

4.2 Medium under non-uniform thermal loading 
 

In the following example, the effects of the non-uniform external thermal loading on the stress 
intensity factors are investigated. Here, it is assumed that there are no external in-plane 
mechanical loadings. The SIFs are normalized by 0 0K T a  and depicted in Figure (11). 
It is noticed that for mode I, the SIFs at tip L  fluctuates as the crack length increases while the 
SIFs at tip R  grows gradually. This is due to the fact that the applied non-uniform temperature 
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0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 

L1L2R1R2

0

IK
K

(degrees)θ

0σ

11

2

2

θ

0 20 40 60 80 100 120 140 160 180
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3

 

 

(degrees)θ

0

IIK
K

L1

L2R1

R2

0σ

11

2

2

θ



                             Iranian Journal of Mechanical Engineering                                      Vol. 17, No. 2, Sep. 2016  36

symmetrical results. Moreover, it is observed that by doubling the parameter  , the SIFs values 
decline significantly. On the other hand, the results shown in Figure (12) depicts that the second 
mode SIFs decrease steadily as long as crack length increases. It can be seen that by increasing 
the parameter   the average values of IIK increases and then decreases as dimensionless crack 
length rises above 0.6.  
 

Figure 11 Mode I stress intensity factor versus crack length under thermal loading. 

Figure 12 Mode II stress intensity factor versus crack length under thermal loading. 
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Furthermore, the effects of two collinear crack lengths on the stress intensity factors under non-
uniform thermal loading is studied. According to the Figures (13a) and (13b), the mode I SIFs 
for two collinear cracks rises gradually as crack length increases. As expected, the interaction 
between crack tips 1R  and 2L  is far more than the two other crack tips.  
 

Figure 13a Mode I stress intensity factor for two collinear cracks under thermal loading for 5  . 
 
 

 
Figure 13b Mode I stress intensity factor for two collinear cracks under thermal loading for 10  . 
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Also, the given results in Figures (14a) and (14b) show an upward trend for second mode SIFs 
as crack length increases. It is noted that 1R  and 2L possess considerably higher stress 
concentrations as crack length increases and, as a result, the interaction between two cracks 
rises significantly. In addition, the results depict that the effect of parameter   on the SIFs is 
significant; by increasing the parameter   , the amount of SIFs decreases. 
 

 
Figure 14a Mode II stress intensity factor for two collinear cracks under thermal loading for 5  . 

Figure 14b Mode II stress intensity factor for two collinear cracks under thermal loading for 10  . 
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4.3 Medium under thermo-mechanical loading 
 

In this example the medium is considered to be under both in-plane mechanical and thermal 
loadings in which 0 100T C   and 5(1/ )m  . The effect of crack length on the SIFs are 
demonstrated in Figures (15) and (16). The SIFs values rise as crack length increases. 
Additionally, it can be seen that SIFs for crack tips R  and L  is slightly more than the other tip 
for mode I and mode II, respectively.  

 
Figure 17 Mode I stress intensity factor for two collinear cracks under thermo-mechanical loading. 

 
Figure 18 Mode II stress intensity factor for two collinear cracks under thermo-mechanical loading. 
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For the same loading, the interactions of two collinear horizontal cracks are studied in Figures 
(17) and (18). It can be seen that the first mode SIFs of both cracks rise steadily as long as crack 
length increases. The crack tip 1R allocates considerably more SIF. Moreover, the Figure (18) 
illustrates that IIK increases by increasing the cracks length. It also shows that the SIFs for crack 
tips 1R  and 2L  increases considerably due to the significant interaction occurring between these 
two crack tips. 
 
5 Conclusions 

 
This paper investigates the steady state thermoelastic crack problem of a half-plane subjected 
to thermomechanical loading. The analytical closed-form solution of thermoelastic dislocation 
is obtained in the half-plane. For an arbitrarily located mechanical point load and external 
temperature load, fundamental solutions are derived. Then, the obtained solutions are utilized 
to obtain integral equations to formulate the behavior of cracks within the half-plane. These 
equations are of Cauchy singular type and are numerically solved to obtain dislocation density 
on the cracks surfaces. The crack surface is under traction-free conditions and the uniform heat 
flow is given vertically to the crack from the boundary. Several examples including single and 
multiple cracks under thermomechanical loadings are studied. The obtained formulation 
determines the cracks stress intensity factors of the weakened half-plane. This formulation can 
successfully be employed to analyze and design the cracked half-planes. 
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Nomenclature  

,x yb b Burgers vector 

liB Dislocation densities

( )lig t Regular terms of dislocation densities

h Distance of the origin from the edge
(..)H Heaviside step function
m
ijk Kernels of integral equations

0K Stress intensity factor of a crack in infinite plane 

K Thermal conductivity
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,IL IRK K Mode I stress intensity factor of crack tips
,IIL IIRK K Mode II stress intensity factor of crack tips

N Total number of cracks
,u v The displacement fields

nQ Heat flux 

( , )T x y Temperature field

( ), ( )i i    Functions describing the geometry of cracks

( , )ij x y The in-plane stress components 

(..) Dirac delta function
, { , }k k i j  The angle between s- and x-axes.

 Fourier variable
),( yx Airy stress function

 
Appendix 
 
The coefficients of Burgers vectors in Eq. (19) are expressed as: 
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  چكيده
  

ه بدست با استفاده از تبديل فوري يك نيم صفحه الاستيكدر  ترموالاستيكنابجايي تحليلي در اين مقاله حل 
حيط كوشي براي مهاي با تكينگي انتگرالي معادلات مجموعه آمده است. سپس به كمك روش توزيع نابجايي 

بدست آمده است. با حل عددي معادلات انتگرالي و محاسبه مكانيكي  -تحت بار حرارتي حاوي چندين ترك 
مكانيكي و حرارتي از آن براي محاسبه ضرايب شدت تنش  ،نابجايي بر روي سطوح ترك ها هاي دانسيته

سه هنددر نهايت اثر و مكانيك شكست ارائه شده است نتايج عددي براي مودهاي يك و داستفاده شده است. 
  .است بدست آمدهبر روي ضرايب شدت تنش تركها شرايط بارگذاري 


