Parametric optimization of cylindrical grinding process through hybrid Taguchi method and RSM approach using genetic algorithm

Document Type: Research Paper

Authors

1 School of Mechanical & Electro-mechanical Engineering, Hawassa Institute of Technology, Hawassa, Ethiopia

2 Mechanical Engineering Department, Jadavpur University, Kolkata

Abstract

The present investigation proposes a hybrid technique: Taguchi method, response surface methodology (RSM) and genetic algorithm (GA), to analyze, model and predict vibration and surface roughness in traverse cut cylindrical grinding of aluminum alloy. Experiments have been conducted as per L9 orthogonal array of Taguchi methodology using several levels of the grinding parameters. Analysis of variance has been done to identify the influential process parameters on output variables. RSM has been applied to develop relationship between output responses with input parameters. Multi-objective overlaid contour plots have been made to study the interaction effects on both the responses simultaneously. Developed models are then solved individually, first and then combinedly by GA, for process optimization. Predicted output responses are then confirmed by confirmatory experiments.

Keywords

Main Subjects


[1]    Roy, P., Sarangi, S.K., Ghosh, A., and Chattopadhyay, A.K., “Machinability Study of Pure Aluminum and Al-12% Si Alloys Against Uncoated and Coated Carbide Inserts”, International Journal of Refra Metals & Hard Mate, Vol. 27, pp. 535–544, (2009).

 

[2]    Mohotti, D., Ali, M., Ngo, T., Lu, J., Mendis, P., and Ruan, D., “Out-of-plane Impact Resistance of Aluminum Plates Subjected to Low Velocity Impacts”, Materials and Design, Vol. 50, pp. 413–426, (2013).

 

[3]      Wang, Y.G., Qi, M., He, H., and Wang, L., “Spall Failure of Aluminum Materials with Different Micro Structures”, Mecha of Mate, Vol. 69, pp. 270–279, (2014).

 

[4]    Lou, M.S., Chen, J.C., and Li, C.M.,  “Surface Roughness Prediction Technique for CNC End Milling”, Journal of Ind. Technol, Vol. 15, Vol. 1, pp. 1-6, (1998).

 

[5]    Tsai, Y.H., Chen, J.C., and Lou, S.J., “An In-process Surface Recognition System Based on Neural Networks in End Milling Cutting Operations”, International Journal of Machine Tools & Manufacturing, Vol. 39,  pp. 583–605, (1999).

 

[6]    Tolga, D., and Soutis, C., “Recent Developments in Advanced Aircraft Aluminum Alloys”, Materials & Design, Vol. 56, pp. 862-871, (2014).

 

[7]    Ertekin, Y.M., Kwon, Y., and Tseng, T.L., “Identification of Common Sensory Features for the Control of CNC Milling Operations under Varying Cutting Conditions”, International Journal of Machine Tools & Manufacturing. Vol. 43, pp. 897-904, (2003).

 

[8]    Thaigarajan, C., Sivaramakrishnan, R., and Somasundaram, S., “Modeling and Optimization of Cylindrical Grinding of AL/SiC Composites using Genetic Algorithm”, Journal of the Braz Soc of Mech. Sci. & Engi, Vol. XXXIV, pp. 32-40, (2012).

[9]    Erol, F., and Nehir, S., “The Wear of Aluminum Based Journal Bearing Materials under Lubrication”, Materials and Design, Vol. 31, pp. 2532-2539, (2010).

 

[10]  Horvath, R., and Agota, D.K., “Analysis of Surface Roughness of Aluminum Alloys Fine Turned: United Phenomenological Models and Multi-performance Optimization”, Measurement, Vol. 65, pp. 181-192, (2015).

 

[11]  Danial, G., Abolfazl, G., and Izman, S., “Multi-objective Process Optimization of Wire Electrical Discharge Machining Based on Response Surface Methodology”,  Journal of the Braz Soci of Mech. Sci. and Engi, Vol. 36, Vol. 2, pp. 301-313, (2014).

 

[12]  Santos, M.C., Machado, A.R., Barrozo, M.A.S., Jackson, M.J., and Ezugwu, E.O., “Multi-objective Optimization of Cutting Conditions when Turning Aluminum Alloys (1350-O and 7075-T6 grades) using GA”, International Journal of Advanced Manufacturing Technology, Vol. 76, pp. 1123-1138, (2015).

 

[13]  Kamguem, R., Djebara, A., and Songmene, V., “Investigation on Surface Finish and Metallic Particle Emission during Machining of Aluminum Alloys using RSM and Desirability Functions”, International Journal of Advanced Manufacturing Technology, Vol. 69, pp. 1283-1298, (2013).

 

[14]  Pinar, A.M., “Optimization of Process Parameters with Minimum Surface Roughness in the Pocket Machining of AA5083 Aluminum Alloy Via Taguchi Method”, Arabian Journal for Science and Engineering, Vol. 38, No. 3, pp. 705–714, (2013).

 

[15]  Davoodi, B., and Tazehkandi, A.H., “Experimental Investigation and Optimization of Cutting Parameters in Dry and Wet Machining of Aluminum Alloy 5083 in Order to Remove Cutting Fluid”, Journal of Cleaner Production, Vol. 68, pp. 234–242, (2014).

 

[16]  Surasit, R., Jaknarin, C., Worapong, B., and Romadorn, B., “Influence of Cutting Parameters in Face Milling Semi Solid AA 7075 using Carbide Tool Affected the Surface Roughness and Tool Wear”, Ener Proc, Vol. 56, pp. 448-457, (2014).

 

[17]  Elias, R., Hamid, G., and Masoud, K., “Effect of Cutting Speed Parameters on the Surface Roughness of AL5083 Due to Recrystallization”, Mech. Sci. Vol. 7, pp. 85-91, (2016).

 

[18]  Saravanakumar, S., Sasikumar, P., and Nilavusri, N., “Optimization of Machining Parameters using Taguchi Method for Surface Roughness”, Journal Mater Environ Sci. Vol. 7, No. 5, pp. 1556-1561, (2016).

 

[19]  Rao, P.S., Koona, R., and Beela, S., “Effect of Wire EDM Conditions on Generation of Residual Stresses in Machining of Aluminum 2014 T6 alloy”, Alexandria Engineering Journal, Vol. 55, No. 2, pp. 1077–1084, (2016).

 

[20]  Sharma, V., and Kumar, V., “Multi-objective Optimization of Laser Curve Cutting of Aluminium Metal Matrix Composites using Desirability Function Approach”,  Journal of the Braz Soci of Mech. Sci. and Engi Vol. 38, No. 4, pp. 1221-1238, (2016).

 

[21]  Chen, X., and Rowe, W.B., “Modelling Surface Roughness Improvement in Grinding”, Proc of the Insti of Mech Engi Part B: Journal of Engi. Manuf. Vol. 213, pp. 93-96, (1999).

 

[22]  Wang, X., Yu, T., Dai, Y., Shi, Y., and Wang, W., “Kinematic Moldeling and Simulating of Grinding Surface Topography Considering Machining Parameters and Vibration Characteristics”, International Journal Advanced Manufacturing Technology, Vol. 87, pp. 2459–2470, (2016).

 

[23]  Kruszynski, B.W., and Lajmert, P., “An Intelligent Supervision System for Cylindrical Traverse Grinding”, CIRP Annals – Manuf. Technol. Vol. 54, pp. 305-308, (2005).

 

[24]  Satish, T.S.M., and Palanna, R., “Experimental Characterization of Nonlinear Dynamics underlying the Cylindrical Grinding Process”, Journal of Manuf. Sc. and Engi. Vol. 126, pp. 341-344, (2004).

 

[25]  Agarwal, S., and Rao, P.V., “A New Surface Roughness Prediction Model for Ceramic Grinding”, Proc of the Insti of Mech Engi Part B: Journal of Engi. Manuf. Vol. 219, pp. 811-821, (2005).

 

[26]  Hecker, R.L., and Liang, S.Y., “Predictive Modeling of Surface Roughness in Grinding”, International Journal of Mach. Tools & Manuf. Vol. 43, pp. 755-761, (2003).

 

[27]  Capello, E., and Semeraro, Q., “Process Parameters and Residual Stresses in Cylindrical Grinding”, J. of Manuf. Sc. and Engi. Vol. 124, pp. 615-623, (2002).

 

[28]  Oktem, H., Erzurumlu, T., and Kurtaran, H., “Application of RSM in the Optimization of Cutting Conditions for Surface Roughness”, Journal of Mate. Proce. Technol. Vol. 170, pp. 11-16, (2005).

 

[29]  Lee, K.M., Hsu, M.R., Chou, J.H., and Guo, C.Y., “Improved Differential Evolution Approach for Optimization of Surface Grinding Process”, Exp. Syst. with Appli. Vol. 38, pp. 5680-5686, (2011).

 

[30]  Samana, B., Erevelles, W., and Omurtag, Y., “Prediction of Surface Roughness using Soft Computing”, Proc. of the Insti. of Mech. Eng. Part B: Journal of Eng. Manuf. Vol. 222, pp. 1221-1232, (2008).

 

[31]  Gopal, A.V., and Rao, P.V., “Performance Improvement of Grinding of SiC using Graphite as a Solid Lubricant”, Mate. and Manuf. Proce. Vol. 19, pp. 177-186, (2004).

 

[32]    Inasaki, I., Karpuschewski, B., and Lee, H.S., “Grinding Chatter-origin and Suppression”, CIRP Annals – Manuf. Technol. Vol. 50, pp. 515-534, (2001).

 

[33]    Samuel, K.K., Bernard, W., and George, N.N., “Dynamic Modeling of Chatter Vibration in Cylindrical Plunge Grinding Process”, Innov. Syst. Desi. and Engi. Vol. 2, pp. 58-72, (2011).

 

[34]    Li, H., and Shin, Y.C., “Wheel Regenerative Chatter of Surface Grinding”, Journal of Manuf. Sc. and Engi. Vol. 128, pp. 393-403, (2006).

[35]    Stefan, N., and Mirosla, N., “Vibration in Grinding Vibrations”, Seventh International Multidisplinary Conference, Baia Mare, Romania, pp. 537-542, May 17-18, (2007).

 

[36]    Inasaki, I., “Performance Enhancement of Grinding Processes Mutual Interaction between the Material Process and the Machine Tool”, JTEKT Engineering Journal English Edition, pp. 3-8, (2008).

 

[37]    Alfares, M., and Elsharkawy, A., “Effect of Grinding Forces on the Vibration of Grinding Machine Spindle System”, International Journal of Machine Tools & Manufacturing, Vol. 20, pp. 2003-2030, (2000).

 

[38]    Oliveira, J.F.G., Franca, T.V., and Wang, J.P., “Experimental Analysis of Wheel/work-piece Dynamic Interactions in Grinding”, CIRP Annals-Manufacturing Technology, Vol. 57, pp. 329-332, (2008).

 

[39]    Fu, J.C., Troy, C.A., and Morit, K., “Chatter Classification by Entropy Functions and Morphological Processing in Cylindrical Traverse Grinding”, Preci. Engi. Vol. 18, pp. 110-117, (1996).

 

[40]    Yan, Y., Xu, J., and Wiercigroch, M., “Chatter in a Traverse Grinding Processes”, Journal of Sound and Vibra. Vol. 333, pp. 937-953, (2014).

 

[41]    Gupta, R., Shishodia, K.S., and Sekhon, G.S., “Optimization of Grinding Process Parameters using Enumeration Method”, Journal of Mate. Proce. Technol. Vol. 112, pp. 63-67, (2001).

 

[42]    Pai, D., Rao, S., and D’Souza, R., “Application of RSM and Enhanced Non-dominated Sorting Genetic Algorithm for Optimization of Grinding Process”, Proc. Engi. Vol. 64, pp. 1199-1208, (2013).

 

[43]    Hassui, A., and Diniz, A.E., “Correlating Surface Roughness and Vibration on Plunge Cylindrical Grinding of Steel”, International Journal of Mach. Tools & Manuf. Vol. 43, pp. 855-862, (2003).

 

[44]  Nandi, A.K., and Banerjee, M.K., ‘FBF-NN-based Modelling of Cylindrical Plunge Grinding Process using a GA”, Journal of Mate. Proce. Technol. Vol. 162-163, pp. 655-664, (2005).

 

[45]  Zhao, T., Shi, Y., Lin, X., Duan, J., Sun, P., and Zhang, J., “Surface Roughness Prediction and Parameter Optimization in Grinding and Polishing of IBR of Qero-engine”, International Journal of Adv. Manuf. Technol. Vol. 74, pp. 653-663, (2014).

 

[46]  Mukherjee, I., and Ray, P.K., “A Review of Optimization Techniques in Metal Cutting Processes”, Comp. & Ind. Engi. Vol. 50, pp. 15–34, (2006).

 

[47]  Mukherjee, I., and Ray, P.K., “Optimal Process Design of Two Stage Multiple Responses Grinding Processes using Desirability Functions and Metaheuristic Technique”, Appli. Soft. Comput. Vol. 8, pp. 402-421, (2008).

 

[48]  Chandrasekaran, M., Muralidhar, M., Krishna, C.M., and Dixit, U.S., “Application of Soft Computing Techniques in Machining Performance Prediction and Optimization: a Literature Review”, The International Journal of Advanced Manufacturing Technology, Vol. 46, pp. 445-464, (2010).

 

[49]  Krajnik, P., and Kopac, J., “Design of Grinding Factors Based on Response Surface Methodology”, Journal of Mate. Proce. Technol. Vol. 162–163, pp. 629–636, (2005).

 

[50]    Palanikumar, K., Latha, B., Senthilkumar, V.S., and Karthikeyan, R., “Multiple Performance Optimizations in Machining of GFRP Composites by a PCD Tool using Non-dominated Sorting GA (NSGA-II)”, Metals and Materials International, Vol. 15, pp. 249-258, (2009).

 

[51]    Reddy, N.S.K., and Rao, V.P., “Selection of an Optimal Parametric Combination for Achieving a Better Surface Finish in Dry Milling using GA”, International Journal of Adv. Manuf. Technol. Vol. 28, pp. 463-473, (2006).

 

[52]    Kilickap, E., Huseyinoglu, M., and Yardimeden, A., “Optimization of Drilling Parameters on Surface Roughness in Drilling of AISI 1045 using Response Surface Methodology and Genetic Algorithm”, International Journal of Manufacturing Technology, Vol. 52, pp. 79-88, (2011).

 

[53]    Mahapatra, S.S., and Patnaik, A., “Optimization of Wire Electrical Discharge Machining Process Parameters using Taguchi Method”, International Journal of Advanced Manufacturing Technology, Vol. 34, pp. 911-925, (2007).

 

[54]    Muhammad, N., Manurung, Y.H.P., Jaafar, R., Abas, S.K., Tham, G., and Esa, H., “Model Development for Quality of Resistance Sot Welding using Multi-objective Taguchi Method and Response Surface Methodology”, International Journal of Advanced Manufacturing Technology, Vol. 24, pp. 1175-1183, (2013).

 

[55]    Sujan, D., Moola, M.R., and Qua, S.Y., “Influence of Cutting Fluid Conditions and Cutting Parameters on Surface Roughness and Tool Wear in Turning Process using Taguchi Method”, Meas. Vol. 78, pp. 111-119, (2016).

 

[56]    Anish, K., Vinod, K., and Jatinder, K., “Semi-empirical Model on MRR and Overcut in WEDM Process of Pure Titanium using Multi-objective Desirability Approach”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 37, No. 2, pp. 689-721, (2015).

 

[57]  Hatem, A., Hassen, B., Alex, M., Nasri, M., and Alain, L., “Modeling and Optimization of a Ball Burnished Aluminum Alloy Flat Surface with a Crossed Strategy Based on RSM”, International Journal of Advanced Manufacturing Technology, Vol. 88, pp. 801–814, (2017).

 

[58]  Mark, J.J., Machado, A.R., Barrozo, M.A.S., Santos, M.CJr., and Ezugwu, E.O., “Multi Objective Optimization of Cutting Conditions when Turning Aluminum Alloys (1350-O and 7075-T6 Grades) using a Genetic Algorithm”, Machining with Nanomaterials, pp. 323-346, (2015).

 

[59]  Gerardo, B., Castano, F., Ramon, Q., and Rodolfo, E.H., “Surface Roughness Modeling and Optimization of Tungsten-copper Alloy in Micro Milling Processes”, Measurement, Vol. 86, pp. 246-252, (2016).

 

[60]  Brezocnik, M., Kovacic, M., and Ficko, M., “Prediction of Surface Roughness with Genetic Programming”, Journal of Material Processing Technology, Vol. 157-158, pp. 150-158, (2004).

 

[61]  Shaji, S., and Radhakrishnan, V., “Analysis of Process Parameters in Surface Grinding with Graphite as Lubricant Based on the Taguchi Method”, Journal of Material Processing Technology, Vol. 141, pp. 51-59, (2003).

 

[62]  Jae, S.K., Sung, B.S., and Yeong, D.J., “An Analysis of Grinding Power and Surface Roughness in External Cylindrical Grinding of Hardened SCM440 Steel using the RSM”, International Journal of Machine Tools and Manufacturing, Vol. 46, pp. 304-312, (2006).

 

[63]  Kwak, J.S., and Kim, Y.S., “Mechanical Properties and Grinding Performance on Aluminum-based Metal Matrix Composites”, Journal of Material Processing Technology, Vol. 201, pp. 596-600, (2008).

 

[64]  Jae, S.K., “Application of Taguchi and Response Surface Methodologies for Geometric Error in Surface Grinding Process”, International Journal of Machine Tools and Manufacturing, Vol. 45, pp. 327–334, (2005).

 

[65]  Dhavlikar, M.N., Kulkarni, M.S., and Mariappan, “Combined Taguchi and Dual Response Method for Optimization of a Centerless Grinding Operation”, Journal of Material Processing Technology, Vol. 132, No. 1–3, pp. 90–94, (2003).

 

[66]  Lee, E.S., and Lee, J.H., “A Study on Optimum Condition of Centerless Grinding Machine for Ferrule using Taguchi Method and Response Surface Method”, Key Engineering Materials, Vol. 329, pp. 9-14, (2007).

 

[67]  Gopal, A.V., and Rao, P.V., “Selection of Optimum Conditions for Maximum Material Removal Rate with Surface Finish and Damage as Constraints in SiC Grinding”, International Journal of Machine Tools and Manufacturing, Vol. 43, pp. 1327–1336, (2003).

 

[68]  Pai, D., Rao, S.S., and D’souza, R., “Multi Objective Optimization of Surface Grinding Process by Combination of RSM and Non-dominated Sorting Genetic Algorithm”, International Journal of Comp Appli Vol. 36, No. 3, pp. 19-24, (2011).

 

[69]  Li, G.F., Wang, L.S., and Yang, L.B., “Multi-parameter Optimization and Control of the Cylindrical Grinding Process”, Journal of Material Processing Technology, Vol. 129, pp. 232-236, (2002).

 

[70]  Tung, H.H., Chi, H.S., and Wang, L.L., “Parameters Optimization of a Nano-particle Wet Milling Process using the Taguchi Method, Response Surface Methodology and Genetic Algorithm”, Powder Technology, Vol. 173, pp. 153–162, (2007).

 

[71]  Chen, J., Fang, Q., and Li, P., “Effect of Grinding Wheel Spindle Vibration on Surface Roughness and Subsurface Damage in Brittle Material Grinding”, International Journal of Machine tools and Manufacturing, Vol. 91, pp. 12-23, (2015).

 

[72]    Rudrapati,R., Pal, P. K., and Bandyopadhyay, A., “Modeling and Optimization of Machining Parameters in Cylindrical Grinding Process”, International Journal of Advanced Manufacturing Technology, Vol. 82, pp. 2167-2182, (2016).

 

[73]  Das, S.K., and Sahoo, P., “Tribological Characteristics of Electroless Ni-B Coating and Optimization of Coating Parameters using Taguchi Based Grey Relational Analysis”, Materials and Design, Vol. 32, pp. 2228-2238, (2012).

 

[74]  Sardinas, R.Q., Santana, M.R., and Brindis, E.A., “Genetic Algorithm-based Multi-objective Optimization of Cutting Parameters in Turning Processes”, Eng. Appli. of Artif. Inte. Vol. 19, 127–133, (2006).

 

[75]  Dubey, A.K., and Yadava, V., “Multi-objective Optimization of Laser Cutting Process”, Opt & Laser Technology, Vol. 40, pp. 562-570, (2008).

 

[76]  Kilickap, E., “Optimization of Cutting Parameters on Delamination Based on Taguchi Method during Drilling of GFRP Composite”, Expert Systems with Applications, Vol. 37, pp. 6116-6122, (2010).

 

[77]  Horng, J.T., Liu, N.M., and  Chiang, K.T., “Investigating the Machinability Evaluation of Hadfield Steel in the Hard Turning with Al2o3/TiC Mixed Ceramic Tool Based on the RSM”, Journal of Material Processing Technology, Vol. 208, pp. 532-541, (2008).

 

[78]  Khayet, M., Seman, M.N.A., and Hilal, N., “Response Surface Modeling and Optimization of Composite Nano Filtration Modified Membranes”, Journal of Membrane  Science, Vol. 349, pp. 113-122, (2010).

 

[79]  Minitab 16.1 user Manual

 

[80]  Elangovan, S., Anand, K., and Prakasan, K., “Parametric Optimization of Ultrasonic Metal Welding using RSM and GA”, The International Journal of Advanced Manufacturing Technology, Vol. 63, pp. 561-572, (2012).

 

[81]  Sivasakthivel, P.S., and Sudhakaran, R., “Optimization of Machining Parameters on Temrature Rise in End Milling of Al 6063 using RSM and GA”, The International Journal of Advanced Manufacturing Technology, Vol. 67, pp. 2313-2323, (2013).

 

[82]  Mahesh, G., Muthu, S., and Devadasan, S.R., “Prediction of Surface Roughness of End Milling Operation using Genetic Algorithm”, Journal of Adv. Manuf. Technol. Vol. 77, pp. 369-381, (2015).

 

[83]  Erol, K., Mesut, H., and Ahmet, Y., “Optimization of Drilling Parameters on Surface Roughness in Drilling of AISI 1045 using RSM and GA”, Journal of Adv. Manuf. Technol. Vol. 52, pp. 79-88, (2011).

 

[84]  Mahapatra, S.S., and Patnaik, A., “Parametric Optimization of Wire Electrical Discharge Machining (WEDM) Process using Taguchi Method”, Journal Braz. Soc. Mech. Sci. and Eng. Vol. 28, No.4, pp. 422-429, (2006).

 

[85]  Lhanasilturk, and Mehmet, C., “Modeling and Prediction of Surface Roughness in Turning Operations using Artificial Neural Network and Multiple Regression Method”, Expert Syst with Appli, Vol. 38, pp. 5826-5832, (2011).

 

[86]  Rao, R.V., and Kalyankar, V.D., “Parameter Optimization of Modern Machining Processes using TLBO Algorithm”, Eng. Appli. of Artif. Inte. Vol. 26, pp. 524-531, (2013).

 

[87]  Rao, R.V., and Patel, V., “Comparative Performance of an ETLBO for Solving Unconstrained Optimization Problems”, International Journal of Ind. Eng. Compu. Vol. 43, pp. 29-50, (2013)