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1 Introduction 

The problems in engineering always contain some cracks and a closed solution cannot be 

obtained easily. Hence, Green’s functions are necessary for these complex problems. 
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The analytical method is developed to examine the fracture 

behavior of a functionally graded piezoelectric rectangular plane 

(FGPRP) with finite geometry under impact loads. The material 

properties of the FGPRP vary continuously in the transverse 

direction. Two different types of boundary conditions are examined 

and discussed in the analyses. The finite Fourier cosine and Laplace 

transforms are employed to obtain stress and electric displacement 

fields in the finite plane containing electro-elastic screw 

dislocation. Based on the distributed dislocation technique, a set of 

integral equations for the finite plane is weakened by multiple 

parallel cracks under electromechanical impact loads. By solving 

numerically, the resulting singular integral equation, the dynamic 

stress intensity factor (DSIF) is obtained for the electrically 

impermeable case. The new results are provided to show the 

applicability of the proposed solution. The effects of the geometric 

parameters including plate length, width, crack position, crack 

length, loading parameter, and FG exponent on the dynamic stress 

intensity factors are shown graphically and discussed. 
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Furthermore, with the increasing usage of non-homogeneous piezoelectric materials as actuating 

and sensing devices in smart structures with finite geometry, much attention has been paid to 

their fracture behavior. To improve the performance of the piezoelectric materials, the 

functionally graded piezoelectric materials (FGPMs) as a new class of advanced composites 

have been introduced. 

In order to predict the reliable service life of ceramic piezoelectric components, it is necessary 

to analyze theoretically the damage and fracture processes taking place in piezoelectric materials 

with consideration of the coupled effects of mechanics and electrics. There are several 

investigations on fracture analysis of functionally graded piezoelectric materials with infinite or 

semi-infinite domains under static load. Among a lot of significant efforts in this area, there are 

limited numbers of investigations dealing with fracture problems in finite domains.  

Chang [1] obtained the stress intensity factor of a rectangular orthotropic plate containing a 

central crack under anti-plane shear by using the Fourier transform and series. The problem of 

an edge crack in a rectangular sheet subjected to anti-plane shear was examined by Zhang [2]. 

The problem of an eccentric crack at the interface between two dissimilar layers in a finite 

rectangular sheet under arbitrary anti-plane shear stress was treated by Zhang and Zhang [3]. 

The article by Ma [4] dealt with the general solution of the stress intensity factor in a rectangular 

sheet weakened by a central crack of mode III, where its boundary is constrained. In another 

paper, Zhang [5] obtained the stress intensity factor of an interface central crack between two 

orthotropic rectangular sheets. The stress analysis in a nonhomogeneous rectangular sheet with 

shear modulus varying in the x-direction was accomplished by Zhang and Ban [6]. The dynamic 

stress intensity factor of a pair of edge cracks in the finite rectangular plate subjected to a normal 

anti-plane shear wave was analyzed by Zhang [7]. The solution to an eccentric crack problem 

in a rectangular sheet under anti-plane deformation was the subject of study by Ma and Zhang 

[8]. Stress intensity factors of an interfacial crack between two dissimilar orthotropic rectangular 

media were analyzed by Li and Duan [9]. The problem was solved for four types of boundary 

conditions and the effects of the material properties on stress intensity factors were examined. 

An orthotropic rectangular plane with various boundary conditions, containing multiple defects 

was solved by Faal, Daliri, and Milani [10]. In this work, the solution to the anti-plane crack 

problem was obtained using distributed dislocation technique. They computed the stress 

intensity factors of crack tips and the dimensionless hoop stresses on the boundary of each 

cavity. The stress analysis of FGM rectangular planes with several arbitrary smooth cracks was 

investigated by Faal and Dehgan [11]. In this study, the effects of material properties, crack 

spacing, and cracks length on the SIF of cracks were investigated. The problem of the cracked 

rectangular piezoelectric ceramic body under anti-plane mechanical and in-plane electrical loads 

in the framework of linear piezoelectricity was the subject of an investigation by Kwon and Lee 

[12]. The paper by Li and Lee [13] was concerned with a crack at an arbitrary position in a 

rectangular piezoelectric ceramic. The energy release rate was computed and the effect of the 

crack length on these factors was investigated. An analytical model for a piezoelectric 

rectangular plane containing multiple cracks and cavities, was treated by Abazadeh and 

Darafshani [14]. These authors employed the distributed dislocation technique to determine 

electric displacement, stress intensity factors, and hoop stress around cavities in the piezoelectric 

rectangular plane. The solution procedures devised in all the above studies are not capable of 

handling multiple cracks in FGPRP with finite geometry and various boundary conditions under 

impact electromechanical loads. In general, transient analysis of cracked finite smart structures 

under dynamic loads is complicated and only those with simple geometries may be handled 

analytically.  

In the present article, we employ the distributed dislocation technique to analyze multiple 

parallel cracks in an FGPRP with different boundary conditions and subjected to impact loads. 

By using the finite Fourier cosine and Laplace transforms, the stress and electric displacement 
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fields in the FGPRP containing screw dislocation were obtained. The dislocation solutions are 

then used to construct singular integral equations for the FGPRP containing multiple cracks. 

Two different boundary conditions are examined in the analyses namely, a free-clamped-free 

clamped case (F-C-F-C) and a clamped-free-free-free case (C-F-F-F). Parametric analyses are 

carried out to examine the effects of the gradient and loading parameters, crack length, and 

geometry of the FGPRP on the dynamic stress intensity factors. 

 

2 Formulation of the Problem 

We consider a finite rectangular plane made up of functionally graded piezoelectric materials, 

where the material properties vary continuously in the thickness direction. Under conditions of 

anti-plane displacement and the in-plane electric fields, the electro-elastic boundary value 

problem is simplified considerably. The constitutive relations of the non-homogeneous 

piezoelectric materials are 

 

  

   
     

   

   
   

   

zx 44 15 zy 44 15

x 15 11 y 15 11

w w
(x,y,t) c (y) e (y) , (x,y,t) c (y) e (y)

x x y y

w w
D (x,y,t) e (y) (y) , D (x,y,t) e (y) (y)

x x y y

 

 

 
(1)  

where 44c , 15e  and 11  are the elastic stiffness, the piezoelectric constant, and the dielectric 

constant of piezoelectric material, respectively. To overcome the complexity of mathematics, 

the present work employs exponential functions to describe the continuous variations of material 

properties, 

 
     2 y

44 15 11 440 150 110 0
[c (y),e (y), (y), (y)] [c ,e , , ]e  (2) 

 
The governing equations for piezoelectric materials can be expressed as follows 

 
 

  
  

2
zyzx

2

w
(y)

x y t
 

 


 

 

yx
DD

0
x y

 

 

 

 

(3)  

 
Substitution of Eqs. (1) and (2) into Eq. (3) yield the governing equations 

 
2

2 2

440 150 440 150 0 2

w w
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y y t

  
       
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2 2

150 110 150 110

w
e w 2 e 2 0

y y

 
       

 
 

 

(4) 
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where 
2 2 2 2 2x y        is the two-dimensional Laplacian operator in the variables x and  

y. To solve the present problem, we introduce a new function 

 
* w   (5) 

 
where 150 110/e  , the constitutive equations can be expressed in terms of new variables as  

follows: 
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zx 150 zy 150

* *
2 y 2 y
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D (x,y,t) e , D (x,y,t) e
x y

 

 

 

 

(6) 

 

The coefficient 2

440 150 110( ) /k c e    is the piezoelectric constant. Under the above 

consideration, the governing equations can be simplified to the following form: 

 
 

   
 

2
2

2 2

s

w 1 w
w 2

y c t
 

 


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

*
2 * 2 0

y
 

 

 

 

(7) 

 

where 0/sc k   denotes the shear wave velocity in the piezoelectric material. To obtain the 

desired electroelastic field, for convenience it is necessary to impose that the FGP rectangular 

plane is initially at rest. Namely, the piezoelectric material is subjected to the vanishing initial 

conditions 

  

,t
w(x,y,0) 0, w (x,y,0) 0,   

,t
(x,y,0) 0, (x,y,0) 0,     

 

 
(8) 

The solution of the governing equations (7) is obtained by using the Fourier cosine, and Laplace 

transforms technique. The finite Fourier cosine transform ( , , ), 0f x y t x a   is defined as 

follows: 

 
 

a

c 0

n
F (n,y,t) f(x,y,t)cos( x)dx

a


   

 

(9) 
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Moreover, the inverse finite Fourier cosine transform read as: 

 

c
c

n 1

F (0,y,t) 2 n
f(x,y,t) F (n,y,t)cos( x)

a a a






    (10) 

  
The Laplace transform of a function with respect to t is defined by 

 
st

0
W(x,y,s) w(x,y,t)e dt


   (11) 

 
where the bar denotes the Laplace transform. Applying finite Fourier cosine and Laplace 

transforms to Eq. (7) gives 

 
2

2 n 1c c
n c2

d W (n,y,s) dW (n,y,s) dw(a,y,s) dw(0,y,s)
2 ( ) W (n,y,s) ( 1) ,

dy dx dxdy
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2 * n 1c c

n c2

d (n,y,s) d (n,y,s) d (a,y,s) d (0,y,s)
2 ( ) (n,y,s) ( 1) ,

dy dx dxdy

   
         

 

 (12) 

 

Where 
 
 


     2 2

n n n s

n
, ( ) (s / c ) ,

a
 

(13) 

 

It may be shown that the solution to the problem is obtained as follows: 

 
 

y

c k ,0 0 k ,0 0
W (0,y,s) e A cosh( y) B sinh( y) ,        

 

y

c k ,n n k ,n n
W (n,y,s) e A cosh( y) B sinh( y) ,        

 

    * 2 y

c k ,0 k ,0
(0,y,s) C D e , k 1,2  

* 2 y

c k ,n n k ,n n
(n,y,s) e [C cosh( y) D sinh( y)], k 1,2 n 1,2,...         

 

(14) 

 

The index 2,1k  refers to the regions  y h  and 0 y   , respectively. In the above 

equations, the new variable is defined as follows: 
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  2 2 2 2

n n n n
, ,            

 

(15) 

The expressions for , , ,, ,k n k n k nA B C  and 
, 1,2 0,1,2,...k nD k n  are unknown functions, which 

will be obtained from the boundary conditions. With the aid of constitutive equations (6) and 

(14), it is not difficult to obtain the expressions for the components of stress and electrical 

displacement in the Laplace transform domain. 
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and 
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(17) 

 

In this paper, two types of boundary conditions are considered. There are other possible 

boundary conditions for rectangular planes that are not analyzed in this work. Furthermore, the 

crack faces are assumed to be not in contact such that the cracks are electrically nonconductive. 

Therefore, the impermeable condition was adopted. To investigate the transient behavior of 

cracked FGPRP, we first obtain the dislocation solution of the problem. Using this solution as a 

Green’s function, the desired field quantities may easily be obtained. 

 
2.1 The plane is free on two opposite edges and fixed on the other edges (Problem I) 

 
Consider an electro-elastic dislocation located at an arbitrary position ),(   in a functionally 

graded rectangular piezoelectric plate with length a  and width h . (Fig. 1).  
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Figure 1 Schematic view of the FGPRP with a screw dislocation (C-F-C-F). 

 
Referring to Fig. 1, the boundary and traction-free conditions of the problem may be expressed 

as follows: 

 

zx zx
(0,y,t) (a,y,t) 0 0 y h      

x x
D (0,y,t) D (a,y,t) 0 0 y h     

w(x,0,t) w(x,h,t) 0 0 x a     

(x,0,t) (x,h,t) 0 0 x a       

 

 

 

 
 

(18) 

The continuity conditions for the FGPRP together with equations representing electro-elastic 

dislocation are represented by: 

 

zy zy
(x, ,t) (x, ,t)       

y y
D (x, ,t) D (x, ,t)     

wz
w(x, ,t) w(x, ,t) b (t)H(x )       

z
(x, ,t) (x, ,t) b (t)H(x ) 


       

 

 

(19) 

 

 

where (.)H  is the Heaviside step function and ,wz zb b  are the Burgers vectors. Based on the 

Eqs. (5) and (19), it can be seen that: 
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wz
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(20) 

 

The finite Fourier cosine transform of Eqs. (20), in view of continuity conditions in Eq. (19) 

reduce to: 

 

wz
c c n

n

b (s)
W (n, ,s) W (n, ,s) sin( )       


 

z wz

c c n

n

b (s) b (s)
(n, ,s) (n, ,s) sin( ) 


       


 

c c
dW (n, ,s) dW (n, ,s)

dy dy

  
  

c c
d (n, ,s) d (n, ,s)

dy dy

    
  

 

 

 

 

(21) 

 

 

After some relatively straight manipulations, we could find the unknown functions in Eq. (14) 

which are defined in Appendix A. The corresponding stress and electric displacement 

components may be obtained with the help of Eqs. (16) and (17): 
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and 
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
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(23)        
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Where 

 

1 2 1 1 2
1n 1 2

1 1

γsinh(p p )-p cosh(p p )
F (p ,p )=

np sinh(p h)
 

1n 1 2 1 2 1 1 2
E (q ,q ) sinh(q q ) q cosh(q q )    

1 2 1 1 2
2n 1 2

1 1

sinh(p p ) p cosh(p p )
F (p ,p )

np sinh(p h)

 
  

2n 1 2 1 1 2 1 2
E (q ,q ) q cosh(q q ) sinh(q q )]   

 

 

(24) 

 

From (22) and (23), it is seen that large values of n  the series solutions converge slowly and a 

large number of terms are required to obtain accurate results. To circumvent this difficulty, the 

series in (22) and (23) should be performed differently. To this end, we consider the following 

relation  

 

n

n

n

n

n

n

¥

1n n 1n n n n
n=1

¥
-μ (y-ξ)n n n

-2μ h
n=1

¥
μ (ζ-y)2 n n

-2μ h
n=1 n

2 2
-μ (ζ+y)n n n n

-2μ h
n= n

F (μ ,ζ)E (μ ,h- y)sin(β η)cos(β x)=

μ (sin[β (x+η)]-sin[β (x - η)])
e

4n(1-e )

sin(β η)cos(β x)
+γ e

2nμ (1-e )

(γ +2γμ -(μ ) )sin(β η)cos(β x)
+ e

2nμ (1-e )







n

n

n

n

¥

1

2¥
μ (-2h+ζ+y)n n n

-2μ h
n=1 n

2 2¥
μ (-2h+y-ζ)n n n n

-2μ h
n=1

(γ -μ ) sin(β η)cos(β x)
- e

2nμ (1-e )

(γ +2γμ -(μ ) )sin(β η)cos(β x)
+ e ξ<y<h

2n(1-e )





  

 (25) 

For a large value of n , By using the following relation 
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n (y )

n
n 1

0.5sin[ (x )]
ae sin[ (x )]

cosh[ (y )] cos[ (x )]
a a


 






  
 

  

  
 

(26) 

 
After some algebra, Eq. (25) can be expressed in a more suitable form as 

 

n

n

n

¥

1n n 1n n n n
n=1

-μ (y-ξ)¥
-β (y-ξ)n

n n-2μ h
n=1

π
F (μ ,ζ)E (μ ,h-y)sin(β η)cos(β x)=( )×

8a
π(x - η)

sin[ ]
a{

π(y -ξ) π(x - η)
cosh[ ]-cos[ ]

a a
π(x+η)

sin[ ]
a- }

π(y -ξ) π(x+η)
cosh[ ]-cos[ ]

a a
μ e1 π

+ ( - e )(sin[β (x+η)]-sin[β (x - η)])
4 an(1-e )

+γ





n

n

n

n

n

n

¥
μ (ζ-y)2 n n

-2μ h
n=1 n

2 2¥
-μ (ζ+y)n n n n

-2μ h
n=1 n

2¥
μ (-2h+ζ+y)n n n

-2μ h
n=1 n

2 2

n n n n

-2μ

sin(β η)cos(β x)
e

2nμ (1-e )

(γ +2γμ -(μ ) )sin(β η)cos(β x)
+ e

2nμ (1-e )

(γ -μ ) sin(β η)cos(β x)
- e

2nμ (1-e )

(γ +2γμ -(μ ) )sin(β η)cos(β x)
+

2n(1-e







n

n

¥
μ (-2h+y-ζ)

h
n=1

e ξ<y<h
)



 

 

 

 

 

 

 

 

 

 

 

 

 

 
(27) 

 

It is obvious that the relations appearing in (27) converge sufficiently rapidly for a large value

n , which makes the summations susceptible to numerical evaluation. A procedure analogous 

to relation (25) is used to obtain suitable forms for other similar terms in the field components. 

In all the problems discussed here, it is not difficult to show the singularity of field quantities. 

Also, It can be shown that the first term of Eq. (27) has a Cauchy-type singularity as 

,x y   . Faal and Dehgan [11]. 

 

2.2 The rectangular plane is fixed on one edge and free on all other edges (Problem II) 

 

To solve the present problem, the jumps of the displacement and the electric potential across the 

dislocation line are held, and the edge conditions can be defined as follows: 
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zx zx
(0,y,t) 0, (a,y,t) 0, 0 y h       

x x
D (0,y,t) 0, D (a,y,t) 0, 0 y h     

zy y
(x,h,t) 0, D (x,h,t) 0, 0 x a      

w(x,0,t) 0, (x,0,t) 0, 0 x a      

 (28) 

Applying the finite Fourier cosine and Laplace transforms to Eqs. (28), in view of continuity 

conditions, the stress and electric field components for this problem are obtained as follows: 

 
(y )

s 0 0 0 0 wz
zy 2

0 0 0 0

(y )
2wz
n 3n n 3n n n n

n 1

(y )
2150 wz
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Figure 2 Functionally graded piezoelectric rectangular plate with a screw dislocation (C-F-F-F). 
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(y )
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(29) 

 

and 
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(30)  

      

 

and the functions 3nF  and 3nE  are given by 

 

3n 1 2 1 2
F (p ,p ) sinh(p p )  

 

1 n 2 n 2
3n 1 2

1 1 1 1

q cosh( q ) sinh( q )
E (q ,q )

nq ( sinh(q h) q cosh(q h))

   


 
 

 

 

(31) 

 

Similar to the previous problems, it is not difficult to obtain suitable expressions for the 

components of the stress and electric displacement in the Laplace transform domain for a large 

value n . This task is taken up as follows: 
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(32) 

 

 

after a somewhat lengthy but routine analysis, the following result was obtained: 

 

n n n n

n

2

n 3n n 3n n n n
n 1

2 (h y ) 2 2 (y )2

n n

2 h

n

F ( ,h )E ( ,y)sin( )cos( x)
8a

sin[ (x )] sin[ (x )]
a a[ ]

cosh[ (y )] cos[ (x )] cosh[ (y )] cos[ (x )]
a a a a

(1 e )( (1 e ) (1 e ))e1
[

4 n [ (1 e )





          

 


         

 
 


   

     

      


  



n

n
(y )

a
2 h

n 1 n

n n

e ]
a(1 e )]

(sin[ (x )] sin[ (x )])

  

 





 

     



 

 

 

 

 

 
 
 

(33) 

 
 

Proceeding the same way for other similar terms in Eqs. (29) and (30), one can derive similar 

suitable forms for the summation terms which are appeared in the field components. Since the 

resulting infinite series could be summed in closed form. Hence, it is not difficult to study the 

singular behavior of the kernels. functionally graded rectangular plane. 

It is possible to verify the stress components for the case of functionally graded rectangular 

plane with no piezoelectric effect. In the particular case of an isotropic elastic rectangular plane, 

by applying 150 0,e  and  
110

0 , the stress components (22) reduce to 
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where  
 

n
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


 

, 

1n n n n
H sinh( ) cosh( )       , 

2n n n n
H sinh[ (h )] cosh[ (h )]        

 
and 

 

2 2

n

n
( )

a


     

(35) 

 

 
The results are coincident with those reported in the article of Faal and Dehgan [11]. 

 
3 Multiple cracks formulation 

 

The integral equations of the problems can then be derived by using the dislocation solution as 

Green’s function. Thus, the dislocation solution may be utilized for analyzing the 

aforementioned cracked structures subject to impact loads. The geometry of a crack may be 

described in parametric form, as 

 
 

 
i 0i i

i 0i

x x L p 1 p 1

y y i 1,2,...,N

    

   

 

(36) 

where 0 0( , )i ix y  is the location of the center and iL  is the half-length of the crack. The 

components of traction and electric displacements on the boundary of the ith crack caused by 

the continuous distribution of dislocations with density ( , ), { , }
ki

B q s k w   are given, from 

(22), (23),(29), and (30), by 
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


  
N 1 11 12

zn i i ij wzzj ij j j1
j 1

(x (p),y (p),s) [K (p,q,s)B ( q,s) K (p,q,s)B (q,s)]L dq  

N 1 21 22

n i i ij wzzj ij j j1
j 1

D (x (p),y (p),s) [K ( p,q,s)B ( q) K ( p,q,s)B (q)]L dq




   

 

(37) 

 

where 
2 2( ) [ ( )] [ ( )]  j j jL q x q y q . The left-hand side of equations (37), with opposite signs, is 

the traction and electric displacement induced by the external load on the presumed crack 

surfaces in the intact FGPRP. For the internal cracks, the displacement and electric potential 

discontinuity across the jth crack are: 

 
p
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1
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1
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


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(38) 

 

The sides' conditions are required to render the problem determinate. In this case, the single-

valuedness condition becomes 

 
1

kj j

1

B (q,s)L dq 0 k {wz, }


    
 

(39) 

 

 

It may be shown that the kernel of integral equations (37) has only Cauchy-type singularity. 

Hence, the dislocation densities on the surface of cracks are taken as 

 

kj

kj 2

g (q,s)
B (q,s) , 1 q 1, k {wz, }

1 q
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
 

(40) 

The unknown functions ( , )kjg q s  are bounded. Substitution of Eq. (40) into Eqs. (39) and (37) 

and carrying out the numerical technique for the solution of Cauchy singular integral equations 

leads to the Laplace transform of the dislocation density function devised by Erdogan et al. [15]. 

The stress intensity factors at the tips of an embedded crack become: 
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(41) 
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For brevity, the details of the derivation of stress intensity factors are not given here. The inverse 

Laplace transform of DSIFs is accomplished numerically by Stehfest’s method Cohen [16]. 

 
4 Numerical results and discussion 
 

The validity of formulation is examined by considering the problem of a functionally graded 

rectangular plane containing a vertical central crack under the static point load, Figure 3a, which 

is solved by Faal and Dehghan [11] is re-examined and the results are shown in Figures (3b and 

3b). As it may be observed, the agreement of the results in the above examples is reasonable. 

Furthermore, the results for the static case are compared with those presented for the problem 

by Faal and Dehghan [11].  

 

 
Figure 3a A functionally graded rectangular plane with a vertical crack under point load. 

 

 
Figure 3b Variations of stress intensity factor with crack location for a functionally graded rectangular plane 

weakened by a vertical crack under point load. 
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Figure 3c Variations of stress intensity factor with cx a  for a functionally graded rectangular plane weakened 

by a vertical crack under point load. 

 
Table1 Stress intensity factors for a h . 

 

d h   2 0.1L h   2 0.2L h   2 0.3L h   2 0.4L h   

0.95 
Present Study 

 Ref. [11] 

1.099 

1.097 

1.285 

1.284 

1.542 

1.531 

1.914 

1.913 

0.9 
Present Study 

 Ref. [11] 

1.035 

1.033 

1.130 

1.128 

1.272 

1.272 

1.489 

1.487 

0.75 
Present Study 

 Ref. [11] 

1.010 

1.011 

1.059 

1.059 

1.136 

1.136 

1.268 

1.269 

0.5 
Present Study 

 Ref. [11] 

1.007 

1.009 

1.049 

1.048 

1.123 

1.120 

1.243 

1.242 

 

The values of SIFs, are given in Table (1) for various crack locations and lengths in an elastic 

rectangular finite plane. The results are in excellent agreement with those obtained by Faal and 

Dehghan. Therefore, the validity of the present crack formulation is confirmed. 

This section deals with the results of several numerical examples that may have some physical 

importance and will be discussed. The FGPRP is subjected to uniform electromechanical impact 

loadings 
0 ( )zy H t   and 

0 ( )yD D H t  which are applied at crack faces. To reflect the 

combination between the mechanical impact and electric impact, the electromechanical 

coupling factor is introduced 0 150 0 110/D D e   . 
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In this paper, impermeable conditions prevail and unless otherwise stated, the geometry of the 

rectangular plane and electromechanical coupling factor in the ensuing examples, are identified 

as 0.02( )a m , 0.01( )h m  and 1.0D  , respectively. Furthermore, DSIFs are normalized 

by 
0 0K L , where L  is the half-length of the crack. The numerical example to be 

considered here is a PZT-4 rectangular plane. Wang et al. [17]. The material constants for PZT-

4 are 

 

       10 9

440 150 1102 2 2 3

N C C kg
c 2.56 10 ,e 12.7 , 6.4634 10 , 7500

m m Vm m
 

 

(42) 

 

In the first example, a central crack with three different FG exponents 0.5h  , 1.0h  and 

2.0h   is considered for both types of boundary conditions (Figures 4a, 4b).  

 

 
(a) 

 
(b) 

 

Figure 4 A central crack in functionally graded piezoelectric rectangular plane (FGPRP): (a) C-F-C-F case and 

(b) C-F-F-F case. 
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(a) 

 

 
(b) 

 

Figure 5 Variation of stress dynamic stress intensity factor of a crack in a FGPRP with different FG parameter: 

(a) C-F-C-F case and C-F-F-F case. 

 

The variations of normalized DSIFs for a crack are depicted in Figures 5a. and 5b. The results 

in Figures 5a. and 5b indicate that the value of the DSIF increases quickly with time, reaches a 

peak value, and then decreases oscillating around the corresponding static value. The peak value 

of the DSIF will increase as the FG exponent h  increases for both types of boundary 

conditions. Moreover, the FG exponent does not alter the time of the maxima of DSIFs in the 

C-F-C-F case. Furthermore, the boundary effect is significant, and for the C-F-C-F case, the 

peak values of the DSIFs are larger than that of the C-F-F-F case. In the case of C-F-F-F, the 

time of occurrence of the maxima of DSIFs increases gradually with increase h . 

The variations of DSIFs of a crack with length 2 0.6L h   located at three different locations, 

from the lower boundary, are shown, in Figures 6a and 6b. It is seen that the increase cy h  

results in an increase in the DSIF for the C-F-C-F case whereas, it tends to decrease for the C-

F-F-F case. 
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(a) 

 
 

 
(b) 

Figure 6 Variation of stress dynamic stress intensity factor of a crack in a FGPRP at three different locations: (a) 

C-F-C-F case and C-F-F-F case. 

 

 Nevertheless, the effect of crack location on values of the maxima of DSIFs is not significant 

for the C-F-F-F case (Figure 6b).  

The variations of the DSIFs under the various value a L  are plotted for a central crack under 

impact electromechanical load (Figure7a and 7b). It can be seen that the boundary effect is 

significant. For both two cases, the peak value DSIFs decreases as the length of the FGPRP 

increases, and the crack becomes harder to propagate. A much longer time elapses for DSIF to 

reach its static value for the C-F-F-F case to the C-F-C-F case. From these figures, we can 

observe the presence of the dynamic overshoot phenomenon. Moreover, the phenomenon is 

intensified with the decrease a L . 



Mojtaba Ayatollahi et al.                                                                                                                                      61 

The Iranian Journal of Mechanical Engineering Transactions of ISME                                     Vol. 24, No. 1, 2023 

 
(a) 

 

 
(b) 

Figure 7 Variation of stress dynamic stress intensity factor of a crack in a FGPRP with different plane length: (a) 

C-F-C-F case and C-F-F-F case. 

 
The variations of the normalized DSIF with the normalized time for two types of boundary 

conditions at different values of electromechanical coupling factor are plotted in Figures 8a and 

8b. All the curves reach a maximum and then oscillate with decreasing peaks. For both types of 

boundary conditions, the effect of the coupling factor D is more significant. This implies that 

the large value of the electromechanical coupling factor will enhance the crack initiation, while 

the small value will retard the crack initiation for the C-F-C-F and C-F-F-F cases. 
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(a) 

 

(b) 
 

Figure 8 Variation of stress dynamic stress intensity factor of a crack in a FGPRP with different 

electromechanical coupling factor: (a) C-F-C-F case and C-F-F-F case. 

 
The formulation may be employed for the analysis of FGPRP containing multiple cracks. To 

this end, the study of the interaction between two collinear cracks is taken up, Figures 9a and 

9b. Referring to Figures 10a and 10b, the DSIF increases rapidly from zero to a peak value well 

above its corresponding static value and then oscillates about it. The cracks distance d L  was 

selected to be 1 3,1 6  and 1 12  to ensure that interaction effects exist between these central 

cracks. We observe that interaction between cracks enhances the DSIFs of crack which is more 

pronounced at 1R  and 2L because it is closer to the other crack. 
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(a) 

 

 

 
(b) 

 

Figure 9 Two collinear cracks in functionally graded piezoelectric rectangular plane: (a) C-F-C-F case and C-F-

F-F case. 

 (a) 
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 (b) 
 

Figure 10 Variation of stress dynamic stress intensity factors of two collinear cracks for different crack distances: 

(a) C-F-C-F case and C-F-F-F case. 

 
 

 
(a) 

 

 
(b) 

 

Figure 11 Two parallel off-center cracks in functionally graded piezoelectric rectangular plane: (a) C-F-C-F case 

and C-F-F-F case. 
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Two off-center equal-length cracks which are parallel to the FGPRP edges are shown in Figures 

11a and 11b. The lengths of cracks remain fixed while the crack distances from the lower 

boundary are changed.  

The variations of dimensionless DSIFs versus dimensionless time 0t t  are depicted in Figures 

12a and 12b. For the C-F-C-F case, two peaks of the curve of dynamic stress intensity factor 

become greater as cy h  rises. 
 

 
 

(a) 
 

 
 
 

 

 

(b) 
 

Figure 12 Variation of stress dynamic stress intensity factors of two off-center cracks for different crack 

distances: (a) C-F-C-F case and C-F-F-F case. 
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5 Conclusions 
 

 

In this paper, the transient response of a cracked functionally graded piezoelectric rectangular 

plane subjected to dynamic electromechanical loads is investigated. Fourier and Laplace 

transform technique is implemented to obtain a new analytical transient solution for electro-

elastic dislocation in the rectangular plane. The solution obtained in this study could be 

considered to be a Green function for the cracked problem. Hence, this solution is utilized to 

construct integral equations for the cracked FGPRP under different boundary conditions. The 

effect of boundary conditions of the rectangular plane on the DSIFs is considered and discussed. 

Furthermore, the formulation can be extended to analyze more complicated problems involving 

several parallel cracks with any patterns. The numerical results also showed that it is possible to 

impede the crack propagation by decreasing the FG exponent. 

The authors report there are no competing interests to declare. 
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2 2
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Appendix B: 

 
The unknown functions in Eq. (14) for the C-F-F-F case are: 
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