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1 Introduction 

 

Many microelectromechanical systems (MEMS) are utilized for distinct applications such as 

energy harvesting and sensing [1, 2]. Some of the microsensors are used for the measurement 

of the special physical parameters. Nazemi, Joseph, Park and Emadi [3] reviewed Advanced 

micro and nano-gas sensor. Tian, Zhao, Jiang and Hu [4] designed and analyzed beam-

membraned structure sensor for micro-pressure measurement. Bouchaala, Nayfeh, Jaber and 

Younis [5] studied mass and position determination in MEMS mass sensor. Also, some of these 

studies were about microsensors which are used for the virus identification. Kurmendra and 

Kumar [6] reviewed MEMS based cantilevers biosensors for cancer detection. Kim, Jeon, Cho, 
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Multi-objective Optimization of Two-

Layer Microbeam used for Sensing of 

Viruses by Genetic Algorithm 
In this paper, new optimizations of the two-layer microbeams based 

on the classical and non-classical theory are presented. In the first 

step, the natural frequency is obtained based on the modified 

couple stress theories. Afterwards, three important functions of the 

microbeams which are used as microsensors, sensitivity, quality 

factor, and maximum stress are defined. In the subsequent stage, 

two and three objective optimizations are carried out by using the 

genetic algorithm. At the two-objective optimization, sensitivity and 

quality factor are selected as objective functions. At the three 

objective optimizations, the maximum stress adds to the objective 

functions. The geometric parameters are design variables and 

there are some constraints and limits for those. The results are 

presented based on the classical and non-classical theory and 

optimal points are obtained for each optimization by using 

MATLAB.   
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Cheong, Moon and Go [7] presented a Highly sensitive microcantilever biosensors for detection 

of human papilloma virus. Kabir, Merati and Abdekhodaei designed an effective piezoelectric 

microcantilever biosensor for rapid detection of COVID-19.  

In the other hand, to investigate the operation of these systems according to the dynamic of 

them, it is necessary to implement a physical model and derive governing equations. 

Microbeams as a microsensor are one of the most general models of MEMS [2]. Park and Gao 

[8] presented Bernoulli–Euler beam model based on a modified couple stress theory for 

microbeams. The new model contained material length scale parameters and could investigate 

the effects of the size. Their model predicted bending rigidity larger than the classical model. 

Liang, Ke, Wang, Yang, and Kitipornchai [9] investigated the flexural vibration of an atomic 

force microscope cantilever based on the modified couple stress theory. They implemented a 

Timoshenko model and derived equations of motion by using Hamilton's principle. Results 

show that when the value of the material length scale parameter is like the value of the thickness, 

the size has a significant effect on the natural frequency.  

Dai, K. Wang, and L. Wang, [10] developed a new nonlinear model for cantilever microbeams 

based on the modified couple stress theory. The equation of motion is valid for large 

deformation. The numerical results were presented in the form of frequency-response curves. 

Thai, Vo,  Nguyen and Kim [11] presented a review of the continuum models to investigate the 

size effect in the analysis of beams and plates. Ghayesh, Farokhi, and Gholipour [12] studied 

the vibration of the geometrically imperfect three-layered shear deformable microbeams. The 

effects of some parameters such as material length scale and material friction were investigated.  

Ding, Xu, Zheng, and Li [13] investigated the size-dependent nonlinear dynamic of the 

microbeams based on the modified couple stress theory. The effect of the thickness, width, and 

gap between electrodes on the frequency response and picking amplitude were investigated. 

Rahi [14] studied the lateral vibration of micro-overhung rotor-disk subjected to an axial load. 

The governing equations were derived based on the modified strain gradient theory and 

Hamilton's principle. The effects of the parameters such as material length scale and rotational 

speed on the natural frequency and instability speed were presented.   

Karamanli and Aydogdu [15] analyzed size-dependent rotating laminated and sandwich 

microbeams. They studied the eigenfrequencies of these microbeams with various boundary 

conditions. Also, various values of the different parameters such as aspect ratio and fiber 

orientation angles are employed to complete the study. Andre Gusso [16] investigated nonlinear 

damping in microbeams which is resulting from surface energy loss. They modeled the 

resonator as a clamped-clamped microbeam. Jahangiri, Asghari, and Bagheri [17] investigated 

torsional vibration in the micro-rotors based on the modified couple stress theory. Some 

parametric studies were presented to investigate the effects of parameters such as material 

length scale on the natural frequency and super-harmonic resonant amplitude.  

Gan and Wang [18] presented a topology optimization design considering the size effect and 

based on the modified couple stress theory. They utilized a bi-directional evolutionary structural 

optimization method. Pan, Li, M. Wang, and L. Wang [19] presented elastothermodynamic 

damping modeling of a three-layer Kirchhoff–Love microplate considering three-dimensional 

heat conduction. They used typical boundary conditions such as Clamped-Clamped-Clamped-

Clamped to model the microplate. Loghman, Bakhtiari-Nejad, Kamali E., Abbaszadeh, and 

Amabili [20]  investigated the nonlinear vibration of fractional viscoelastic microbeams. The 

modified couple stress theory is used to consider the size effects. The effects of the order of the 

fractional derivative, viscoelastic model, and micro-scale had been studied numerically. Rahi 

[21] analyzed the vibration of the multi-layer micro beams based on the modified couple stress 

theory and obtained the first three natural frequencies.  

Eftekhari and Toghraei [22] investigated the dynamic and vibration of a cantilever sandwich 

microbeam integrated with piezoelectric layers. The strain gradient theory and Hamilton's 
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principle were implemented to derive equations of motion. The effects of the various material 

length scale, geometry, and surface parameters had been studied.  

There is a lack of optimization of the practical microbeams in the literature. In other words, 

there is not a study about the optimal microbeam which has the best performance according to 

the important parameters of the sensing. In this paper two and three objective optimizations of 

a multi-layer microbeam that is used as a microsensor is presented. Sensitivity, quality factor, 

and maximum stress are the target functions. It is also worth noting that geometric parameters 

are design variables and the optimization is carried out under the guidance of the genetic 

algorithm. Optimizations are presented based on classical and non-classical (modified couple 

stress) theories.   

 
2 Modeling 

 

There is a microbeam that has 2 layers. One layer is silicon and the other one is quartz as a 

piezoelectric. The boundary conditions are simply supported. It is assumed that there is no 

slipping between layers. For simplification, nonlinearity effects are neglected. As it has been 

shown in Figure (1), the thickness of the layers are ℎ𝑖 and the length is 𝐿. Also, the width of the 

microbeam is 𝑏.  

There are some external particles in many sensing systems that sit on the sensor and the mass 

of the system undergoes a change. This change leads to frequency change. In this paper, it is 

assumed that external particles are viruses and the sensor is applied to detect viruses.  

The microbeam has a transverse vibration and the displacement field is defined as follows: 

  

𝑤(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡) (1) 

where  
 

𝑇(𝑡) = 𝑒𝑖𝜔0𝑡 (2) 

𝑋 = 𝑋𝑚𝑎𝑥 (sin (
𝜋𝑥

𝐿
)) (3) 

 

 
Figure 1 2-layer simply supported microbeam 
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To calculate the first natural frequency 𝜔0, Rayleigh’s method is used. The kinetic, potential 

energy are calculated based on Rahi's research [21]. Also, in this paper, the first natural 

frequency is calculated as: 

 

𝜔0 = (
𝑁 (

𝜋4

2𝐿3)

𝑀(0.486)𝐿 + 𝐺 (
𝜋2

2𝐿)
)

1
2

 (4) 

 

where  

 

𝑁 = {∑ 𝐸𝑖𝐼𝑖

𝑛

𝑖=1

+
6𝐸𝑖𝐼�̅�

(1 + 𝜈𝑖)
(

𝑙𝑖

ℎ𝑖
)

2

} 

 

𝑀 = (∑ 𝜌𝑖𝐴𝑖

𝑛

𝑖=1

) 

𝐺 = (∑ 𝜌𝑖𝐼𝑖

𝑛

𝑖=1

) 

(5) 

 
In these formulas 𝜌𝑖 is the density of each layer, 𝐴𝑖 is the area of each layer. ℎ𝑖 is the thickness 

of each layer. 𝐸𝑖 , 𝜈𝑖 , 𝑙𝑖 are Young’s module, Poisson's coefficient, and material length scale 

parameter, respectively. Also, 𝐼𝑖 is the moment of inertia and is the function of dimensions. 

The function 𝑋 which is defined in Equation (3) is opted based on the boundary conditions. 

This microbeam is simply supported therefore displacement on the two end of the microbeam 

is zero. If set 𝑋=0 or 𝐿, the value of the function will be zero and geometrical boundary 

conditions satisfy.  

To obtain 𝑋𝑚𝑎𝑥, the system is modeled as a simple mass-spring system and 𝑋𝑚𝑎𝑥 is obtained 

as: 

 

𝑋𝑚𝑎𝑥 =
𝐹

𝑘
 (6) 

 

where 𝐹 is the weight of the virus particles and is defined as: 

 

𝐹 = (Δ𝑚𝑔) (7) 

 

 

where Δ𝑚 is the external mass. 

If the area of the particles, or the area of the contact surface, and the area of the microbeam, or 

the top surface of the microbeam, are 𝐴𝑝 and 𝐴𝑏 respectively so: 

 

Δ𝑚 = (
𝐴𝑏

𝐴𝑝
) 𝑚𝑝 = (

𝑏𝐿

𝐴𝑝
) 𝑚𝑝 (8) 

 
where 𝑚𝑝 is the mass of a single particle.  
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Also, 𝑘 is the stiffness of the system and based on equation (4) is calculated as:  

 

𝑘 =  𝑁 (
𝜋4

2𝐿3
) (9) 

 
There are some functions which are of paramount importance for sensors such as sensitivity 

and quality factor that describe the accuracy and quality of the measurement. Sensitivity is the 

relation between mass and frequency changes. If the sensitivity is high, it means a minor change 

in the mass of the system could be detected. The sensitivity is defined as [2]: 

 

𝑆 =
∆𝑓

∆𝑚
= −

2𝑓0
2

𝐴√𝜌𝜇
 (10) 

 
where 𝐴 is the active area of the piezoelectric and 𝜌, 𝜇 are the density and the shear module of 

the piezoelectric respectively. Also, 𝑓0 is calculated as: 

 

𝑓0 =
𝜔0

2𝜋
 (11) 

 
The quality factor is the function that shows the quality of the measurement. In other words, 

when the quality factor is high, the quality of the measurement is better. This function is defined 

as [23]: 

 

𝑄−1 =
𝐸𝛼2𝑇𝑜

𝐶𝑝
(

6

𝜉2
−

6

𝜉3

sinh(𝜉) + sin(𝜉)

cosh(𝜉) + cos(𝜉)
) (12) 

 
 

where 𝐸 is Young's module, 𝐶𝑝, 𝛼, 𝑎𝑛𝑑 𝑇𝑜 are the heat capacity, the thermal expansion 

coefficient, and the surrounding temperature respectively and 

 

𝜉 = 𝑏√
𝜔0

2𝜒
 (13) 

 

where  
 

𝜒 =
𝐻

𝜌𝐶𝑝
 (14) 

 
where 𝐻 is the conductivity and 𝜌 is the density. 

The model of the microbeam is two layers so in Equations (12-14) values are approximated by 

the mean values of the layers. For example: 

 

 

𝐸𝑒 =
𝐸1ℎ1 + 𝐸2ℎ2

ℎ1 + ℎ2
 (15) 
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Another imperative function is the maximum stress. When the maximum stress increases, the 

safety of the system would decrease because the probability of failure increases. The maximum 

stress is defined as [24]: 

 

𝜎𝑚𝑎𝑥 = (𝐸𝑧)𝑚𝑎𝑥(
𝜕2𝑋

𝜕𝑥2
)𝑚𝑎𝑥 (16) 

 
Considering the two layers of the micro-beam and the equations (3, 6-9), the above equations 

can be rewritten as follows: 

 

𝜎𝑚𝑎𝑥 = 𝐶 (𝐸𝑖ℎ𝑖)𝑚𝑎𝑥

(𝑏𝐿) 

𝑁 (
𝜋4

2𝐿3)
(

𝜋

𝐿
)

2

 
(17) 

 

or  
 

𝜎𝑚𝑎𝑥 = 𝐶 𝜎∗ (18) 

 

where 𝐶 is: 

𝐶 =
𝑔𝜌𝑝

𝐴𝑝
 (19) 

 
So far, the most important functions pertaining to microbeams used as sensors have been 

introduced. In the subsequent stage, the optimization of this type of microbeam will be 

discussed. First, by considering the sensitivity and quality factor as objective functions, two-

objective optimization is performed. Then, by adding the maximum stress to the objective 

functions, a three-objective optimization will take place. 

 

3  Two-objective optimization 

 

In the first step, two objective optimization Nonwas done by using a genetic algorithm. The 

sensitivity and quality factor are two objective functions including dimensions. These functions 

are defined as: 
 

𝑆 = 𝑓1(ℎ1, ℎ2, 𝑏, 𝐿) (20) 

−𝑄 = 𝑓2(ℎ1, ℎ2, 𝑏, 𝐿) (21) 

 

As it has been shown in Equation (21), the negative value of the quality factor is one of the 

objective functions. This has happened due to the fact that the genetic algorithm discovers the 

minimum values of the functions but as it is mentioned before, to enhance quality, the quality 

factor must be improved and the maximum value must be figured out. Also according to 

Equations (20,21), the design variables are ℎ1, ℎ2, 𝑏, 𝐿. The constraints of design are defined as: 
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ℎ1 + ℎ2 ≤ 0.1𝐿 (22) 

2(ℎ1 + ℎ2) ≤ 𝑏 (23) 

𝐿 ≥ 3𝑏 (24) 

 

The coefficients that appears in Equations (22-24) are arbitrary but these constraints should be 

applied to prevent finding the points that are not authentic based on the geometrical 

assumptions. If they are not applied, the points would be found which have a bigger width than 

the length, for example. In addition, the lower and upper bound of design variables and the 

properties of the layer’s material are pinpointed in Table (1,2), respectively. 

The MATLAB software is used for optimization and 18 optimal points are found based on both 

classical and non-classical theories. Previous equations were calculated based on classical 

theory. If 𝑙𝑖 in Equation (5) is set to zero, the results will be obtained based on the non-classical 

theory. 

The values of the objective functions with the values of the design variables in the optimal 

points are shown in tables (3,4). Table (3) illustrates the results that are obtained based on the 

classical theory and table (4) shows the non-classical one. Among all the design variables, the 

thickness of the piezoelectric is the least important because the changes in this variable value 

are less than others and are about 1%. Technically all the optimal points have approximately 

same thickness.   

 
Table 1 The lower and upper bounds 
 

Variable Lower bound(10-6) Upper bound(10-6) 

𝒙(𝟏) 10 100 

𝒙(𝟐) 10 100 

𝒙(𝟑) 40 300 

𝒙(𝟒) 200 1000 

 
Table 2 Properties of the materials [25] 
 

Property/material Unit SiO2(quartz) Si 

E Gpa 72.52 170 

Ν - 0.166 0.22 

Μ Gpa 30.97 69.67 

Ρ kg/m3 2650 2233 

𝒍 μm 2.4 1 

C J/kg K 700 812.33 

H W/m K 1.3 156 

Α 10-6/K 12.3 0.262 
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Table 3 Description of the optimal point based on the non-classical theory (Two-objective optimization) 
 

Design variables Objective functions 

ℎ1(𝜇𝑚) ℎ2(𝜇𝑚) 𝑏(𝜇𝑚) 𝐿(𝜇𝑚) S -Q 

10 10.00001 40.00007 200.0001 -3.88E+19 -2036797 

10.01901 11.35231 43.5109 720.0225 -2.46E+17 -7.8E+07 

10.00691 10.01056 40.06431 635.5686 -3.83E+17 -7E+07 

10.00509 11.17875 42.48153 611.7689 -4.76E+17 -3.8E+07 

10.00468 11.17899 42.48131 611.7688 -4.76E+17 -2.6E+07 

10.01219 10.35013 40.75713 639.182 -3.82E+17 -7.2E+07 

10.01901 11.35231 43.5109 720.0225 -2.46E+17 -7.8E+07 

10.00159 10.07924 40.18488 218.64 -2.73E+19 -2427589 

10 10.00001 40.00007 200.0001 -3.88E+19 -2036797 

10.00173 10.00276 40.01614 308.289 -6.91E+18 -4764419 

10.00172 10.01772 40.11404 269.3141 -1.18E+19 -3703092 

10.00097 10.04725 40.46914 227.1184 -2.32E+19 -2553050 

10.00439 10.82472 41.88108 606.0759 -4.83E+17 -1.9E+07 

10.00142 10.25892 41.16421 239.037 -1.90E+19 -2798615 

10.00176 10.35051 40.90174 212.8613 -3.07E+19 -2248415 

10.00087 10.02506 40.05425 231.4272 -2.17E+19 -2734157 

10.00183 10.03308 40.11689 209.2467 -3.24E+19 -2227478 

10.00149 10.26653 41.57221 245.8099 -1.69E+19 -2884708 

 
Table 4 Description of the optimal point based on the classical theory (Two-objective optimization) 
 

Design variables Objective functions 

ℎ1(𝜇𝑚) ℎ2(𝜇𝑚) 𝑏(𝜇𝑚) 𝐿(𝜇𝑚) S -Q 

10 10.00001 40.00007 200.0082 -3.88E+19 -2044203.6 

10.00001 10.00001 40.00013 212.5398 -3.04E+19 -2313396.7 

10.00001 10.00001 40.00004 289.8286 -8.84E+18 -4391840.4 

10.00001 10.00001 40.00007 200.0002 -3.88E+19 -2044202 

10.03435 10.09113 40.54201 757.0462 -1.90E+17 #NAME? 

10.16005 10.26292 40.89201 727.7444 -2.24E+17 -70835904 

10.10925 11.79615 44.3718 622.6984 -4.51E+17 -26636923 

10.04767 11.66927 44.15664 375.9384 -3.36E+18 -6773119.1 

10.13482 10.76489 41.83812 663.0096 -3.35E+17 -36892767 

10.06463 11.24589 42.96567 487.5611 -1.17E+18 -11843581 

10.08699 11.35119 43.07463 532.2448 -8.32E+17 -17211213 

10.12257 11.19898 42.90853 599.8223 -5.10E+17 -19084673 

10.12367 11.97743 44.21448 646.7196 -3.96E+17 -26961257 

10.01838 10.13986 40.55102 452.5007 -1.49E+18 -10135445 

10.07844 10.60038 41.69286 501.764 -1.01E+18 -12198685 

10.04287 10.12313 40.77347 669.8415 -3.09E+17 -70716326 

10.00001 10.00001 40.00004 270.3355 -1.17E+19 -3698391.8 

10.00415 10.0014 40.12365 222.9417 -2.51E+19 -2509075.9 
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The most important variable is the length which has about 375% changes. It shows that the 

length has significant effects on the values of the objective functions and should be taken into 

consideration far more than other variables. 

The pareto front of the objective functions in optimal points is shown in Figures (2,3) based on 

both theories. It is obvious that the values are approximately the same based on both theories. 

Also, it can be inferred from the figures that the functions have contradictory behavior because 

the ideal points which are located almost on the bisector of the axes are very far from the origin. 

To find ideal points, first, the values should be normalized by using Equation (25): 

 

 

Ψ̅ =
Ψ𝑖(𝑗) − max[Ψ𝑖(𝑗)]

min  [Ψ𝑖(𝑗)] − max[Ψ𝑖(𝑗)]
  ,      Ψ̅ =  𝑆̅ , �̅� 

 

Ψ̅ =
Ψ𝑖(𝑗) − 𝑚𝑖𝑛 [Ψ𝑖(𝑗)]

max  [Ψ𝑖(𝑗)] − 𝑚𝑖𝑛 [Ψ𝑖(𝑗)]
  ,      Ψ̅ = 𝜎∗̅̅ ̅ 

(25) 

 
 

The ideal points are the farthest points and between these minimum values have the largest 

values in other words to find the best answers Equation (26) is used. 

 

Υ = 𝑀𝑎𝑥(−𝑆̅ − �̅�) (26) 

 

The values of ideal points are described in Table (5). 

The microbeam which is selected based on the classical theory is bigger than that of selected 

based on the non-classical theory. The thickness of the silicon is approximately equal to the 

lower bound and both functions are so far from the maximum. 
 

 
Figure 2 The pareto front of the objective functions in optimal points, based on the non-classical theory 
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Figure 3 The pareto front of the objective functions in optimal points, based on classical theory. 

 
Table 5 The ideal points in two-objective optimization 
 

Theory 
ℎ1 

(𝜇𝑚) 
ℎ2 

(𝜇𝑚) 
𝑏 

(𝜇𝑚) 
𝐿 

(𝜇𝑚) 
𝑆 −𝑄 ∑ Ψ̅ 

Non-classical 10.00 10.00 40.01 308.28 -6.91E+18 -4764419 -0.208 

Classical 10.047 11.66 44.15 375.93 -3.36E+18 -6773119.1 -0.150 

  
 

4 Three-objective optimization 
 

In this section, one more function adds to objective functions and three-objective optimization 

is done. As well as mentioned before, maximum stress is the critical function which the safety 

of the system is related to. Therefore, to improve the system, the maximum stress should be 

decreased. The third objective function is defined as: 
 

𝜎∗ = 𝑓3(ℎ1, ℎ2, 𝑏, 𝐿) (27) 

 

According to Equation (18), 𝜎∗ is the changeable part of the maximum stress and is selected as 

an objective function. The minimum value of the 𝜎∗ is obtained at a point that has the minimum 

value of maximum 𝜎. All of the constraints, boundary conditions, and bounds are the same in 

comparison with previous section. 

The results based on the non-classical and classical theories are presented in Tables (6,7). 

Unlike the previous, thickness of the piezoelectric is very important and also it has a significant 

change, more than 100%. This difference is due to the third objective function. To decrease 

maximum stress, the thickness of the piezoelectric should be increased.  

As Same as two objective optimizations the length of the microbeam is the most important 

variable and has more than 200% changes. Approximately at all the points that have high 

sensitivity and low stress, the quality factor is low undesirable. When the dimensions are large, 

sensitivity is low however, the quality factor is high. 
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Table 6 Description of the optimal point based on the non-classical theory (Three-objective optimization) 
 

 

Design variables Objective functions 

ℎ1(𝜇𝑚) ℎ2(𝜇𝑚) 𝑏(𝜇𝑚) 𝐿(𝜇𝑚) S -Q 𝜎∗ 

10.00001 10.00001 40.00007 200.0002 -5.37E+18 -5405342 193.9582 

13.03221 10.69175 50.92351 564.0295 -7.14E+16 -6.1E+07 991.4873 

10.93447 14.0286 50.67345 484.3055 -1.80E+17 -4.3E+07 811.2724 

10.75598 14.19547 50.27158 521.3468 -1.38E+17 -4.5E+07 950.8082 

10.31625 13.15566 47.21637 460.1513 -2.22E+17 -4.3E+07 826.5051 

20.59833 10.00008 64.57942 305.9847 -6.66E+17 -1375276 127.438 

10.00001 10.00001 40.00007 200.0002 -5.37E+18 -5511329 193.9582 

20.17613 10.00047 63.60115 301.7665 -7.11E+17 -1438157 129.1941 

10.52122 15.08772 51.55225 623.1986 -7.16E+16 -4.8E+07 1327.079 

17.73594 10.00001 57.9402 277.3601 -1.06E+18 -1839345 140.4387 

12.1846 11.64869 48.44027 353.4557 -5.30E+17 -1E+07 417.4656 

15.22577 10.07447 53.85419 266.6986 -1.30E+18 -2590799 172.3256 

10.00001 10.00001 40.00007 200.0002 -5.37E+18 -5621555 193.9582 

20.59805 10.00031 64.57948 305.9845 -6.66E+17 -1380589 127.4413 

16.04507 10.00003 54.01909 260.4517 -1.43E+18 -2204859 149.534 

11.59445 11.20332 46.16022 312.0009 -8.80E+17 -9119975 357.356 

10.02362 11.50198 43.51302 250.0708 -2.36E+18 -8077744 278.327 

17.73594 10.00001 57.9402 277.3601 -1.06E+18 -1839345 140.4387 

 
Table 7 Description of the optimal point based on the classical theory (Three-objective optimization) 
 

Design variables Objective functions 

ℎ1(𝜇𝑚) ℎ2(𝜇𝑚) 𝑏(𝜇𝑚) 𝐿(𝜇𝑚) S -Q 𝜎∗ 

10.00001 10.00001 40.00004 200.0002 -5.37E+18 -5405342 193.9583 

19.39867 10.00001 59.87561 293.9867 -8.29E+17 -1648422 132.5585 

10.06362 13.42987 47.05403 464.1174 -2.22E+17 -9E+07 853.3362 

10.03196 10.3022 40.83423 361.8783 -5.08E+17 -3.6E+07 621.9785 

10.06865 13.54808 47.45675 499.2988 -1.66E+17 -9.1E+07 980.1989 

10.04173 10.64251 42.53186 436.3329 -2.39E+17 -7.4E+07 886.5531 

10.0494 12.56905 45.50196 421.1854 -3.12E+17 -4.2E+07 740.2274 

10.06363 13.42994 47.05354 464.1174 -2.22E+17 -4.5E+07 853.3316 

10.00548 10.09296 40.49045 214.9609 -4.02E+18 -6289638 222.7829 

10.02145 10.03341 40.32878 237.8772 -2.67E+18 -8274834 273.0353 

10.06684 13.55043 47.45416 499.2983 -1.67E+17 -9.1E+07 980.2743 

10.03611 11.87771 44.02136 361.663 -5.55E+17 -2E+07 568.912 

19.39867 10.00001 59.87457 293.9867 -8.29E+17 -1626636 132.5585 

10.03555 10.34632 41.06736 231.2434 -3.04E+18 -7025317 253.2432 

10.02098 10.12818 40.44247 252.5567 -2.12E+18 -8858499 306.2567 

10.04369 11.02939 43.06111 444.4524 -2.29E+17 -7.6E+07 900.277 

10.06682 11.56334 43.86083 293.0747 -1.25E+18 -1.1E+07 378.7585 

10.01345 10.02569 40.29685 225.3182 -3.32E+18 -6862215 245.354 



Mohammadreza Davoodi Yekta & Abbas Rahi                                                                                                                 81 

The Iranian Journal of Mechanical Engineering Transactions of ISME                                    Vol. 24, No. 1, 2023 

Figures (4,5) show the behavior of the objective functions at optimal points. Results are 

presented based on the classical and non-classical theories and have many similarities. To find 

the best point among these points, a similar method to the previous section is used. Functions 

are normalized by using Equations (25,28). Equation (28) is: 
 

 

Ψ̅ =
Ψ𝑖(𝑗) − 𝑚𝑖𝑛 [Ψ𝑖(𝑗)]

max  [Ψ𝑖(𝑗)] − 𝑚𝑖𝑛 [Ψ𝑖(𝑗)]
  ,      Ψ̅ = 𝜎∗̅̅ ̅ (28) 

 
and the ideal points are obtained by using Equation (29): 
 

Υ = 𝑀𝑎𝑥(−𝑆̅ − �̅� + 𝜎∗̅̅ ̅) (29) 

 

 
Figure 4 The behavior of the objective functions at optimal points based on non-classical theory 

 
 

 
Figure 5 The behavior of the objective functions at optimal points based on non-classical theory 
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Table 8 The ideal points in three-objective optimization 
 

Theory 
ℎ1 

(𝜇𝑚) 
ℎ2 

(𝜇𝑚) 
𝑏 

(𝜇𝑚) 
𝐿 

(𝜇𝑚) 
𝑆 −𝑄 𝜎∗ ∑ Ψ̅ 

Non-classical 10.52 15.08 51.55 623.19 -7.16E+16 -4.8E+07 1327.079 0.207 

classical 10.06 13.42 47.05 464.11 -2.22E+17 -4.5E+07 853.3316 0.352 

 

The ideal points are presented in Table (8). 

Compared to the two-objective optimization, the dimensions, especially the length, increase. 

Unlike the previous section, the ideal microbeam based on the non-classical theory is bigger 

than the classical one. Conversely, as well as the prior section, the value of the objective 

functions compared to their maximum are very low.  

The magnitude of the sensitivity compared to the two-objective optimization decreased but that 

of the quality factor did not have significant changes. In other words, when the maximum stress 

is added to the objective functions, the characteristics of optimal points change in a way that 

doesn't have effects on the quality factor but changes sensitivity. It can be inferred that 

sensitivity and stress are correlated but not to the quality factor. 

 

5 Conclusion 

 

Multi-objective optimization of the simply supported microbeam used as a sensor was carried 

out in this research. The model had two-layer and transverse vibration. In the first step two- 

objective optimization was done while the sensitivity and quality factors were selected as 

objective functions. In the second step, the maximum stress was added to the objective 

functions. The design variables were the dimensions of the microbeam and optimization was 

done by MATLAB software. The results mentioned below were obtained: 

 The length is the most important variable. 

 The sensitivity and the maximum stress are correlated but with the quality factor. 

 In two-objective optimization, the changes in the piezoelectric layer are very minor but when 

the maximum stress is one of the objective functions, it increased significantly. 

 The sensitivity is high when the dimensions are small. 

 The quality factor is high when the dimensions are large.  
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