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Investigating the Influence of 

Piezoelectric Excitation on the Veering 

Phenomenon Associated with 

Electrostatically Coupled Micro-beams 

This paper introduces piezoelectric excitation as a balancing 

mechanism for mode-localized mass micro-sensors. To this end, 

adopting the Hamilton principle together with the Ritz method, the 

non-linear reduced equations of motion governing electrostatically 

coupled micro-beams with piezoelectric layers are obtained. The 

free vibration equations associated with the present system are also 

extracted by linearizing the motion equations around the previously 

determined static configuration of the system. Solving the free 

vibration equations, the eigenvalue loci of the system are then 

plotted. Afterward, the influence of piezoelectric excitation on the 

veering phenomenon is studied. The results, whose accuracy is 

successfully validated by those available in the literature, reveal 

that piezoelectric excitation can drastically affect the veering 

phenomenon. For instance, it is observed that the application of the 

electrostatic voltage of 4V can be compensated by the piezoelectric 

excitation of -35.4695 mV so that the veering phenomenon will 

occur at the same coupling voltage. Given this important 

observation, the possibility of employing piezoelectric excitation in 

designing tunable resonant mass micro-sensors that operate based 

on the mode-localization phenomenon suggests itself. 
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1 Introduction 

 
The acronym of MEMS stands for microelectromechanical systems [1]. MEMS devices 

generally operate as sensors or actuators [2]. One of the largest categories of MEMS-based 

sensors is resonant mass micro-sensors [3]. This class of micro-sensors generally refers to a 

continuous structure at the micron scale such as a micro-beam that obtains the mass of a particle 

via calculating the shift in the resonance frequency of the device before and after the attachment 

of a target entity [4]. However, beam-type mass micro-sensors do not enjoy high sensitivity; 

because adding a particle with an extremely small mass to a micro-beam cannot considerably 

change its resonance frequency [5-7]. 

To remove the aforementioned incapability of beam-type mass micro-sensors and design high-

sensitive devices, exploiting the mode-localization phenomenon was suggested by Spletzer et 

al. [5]. The mode-localization phenomenon [8], which was discovered by Anderson [8],  refers 

to the concentration of the vibrational energy in a small geometric region instead of the whole 

structure [9]. For instance, under the conditions of weak internal coupling, the presence of small 

irregularities in periodic structures can inhibit the propagation of vibration and lead to the 

localization of vibration modes [10]. 

A mode-localized resonant mass micro-sensor generally consists of weakly coupled two 

identical micro-resonators oscillating at their simultaneous resonance state. According to the 

concept of mode-localization, when a small particle is attached to one of the micro-resonators 

and consequently changes its resonance zone, the vibration amplitude of the corresponding 

resonator is drastically suppressed; because the excitation frequency takes place far away from 

the resonance zone associated with this resonator [11]. This phenomenon is the main sensing 

principle in mode-localized resonant mass micro-sensors. Given the fact that adding a small 

disorder can provide a considerable frequency shift in the resonance zone associated with 

weakly coupled resonators, it is obvious that the sensitivity of mode-localized mass sensors is 

extremely more than that of single resonator systems [12]. 

As mentioned above, the mode localization phenomenon occurs when the system is out of 

balance (i.e., a small disorder is being applied on one of the two resonators). To find the balance 

state of the system, one should plot the eigenvalues loci associated with the system versus the 

disorder parameter [13]. Doing so, a veering phenomenon [14] can be observed in the loci of 

eigenvalues when the disorder parameter vanishes. It is worth mentioning that for a point far 

away from the veering zone, the modes of the unbalanced system become strongly localized 

around the resonator on which the disorder is not applied [15]. This is the reason behind the 

fact that both the eigenvalue loci veering and mode-localization phenomena occur 

simultaneously. 

Given the advantages associated with the mode-localized mass micro-sensors with variable 

stiffness, such as environmental adaptability, the design and analysis of electrically actuated 

sensors motivate the attention of many researchers to date. Exploiting electrical actuation for 

designing adjustable sensors was first proposed by Thiruvenkatanathan et al. [16]. The authors 

[17] also reported the first empirical work on the application of mode localization phenomenon 

in electrically coupled micro-systems. They observed a rapid but continuous interchange of the 

eigenfunctions during the veering phenomenon. They concluded that the electrical coupling 

provides the possibility of adjusting the modal interchange severity and, consequently, the 

extent of energy confinement within the system. In view of the fact that applying electrical 

actuation can shift the veering point, Walter et al. [18] studied the possibility of using electrical 

actuation to overcome the manufacturing defects of the system. Zhao et al. [19] investigated 

the capability of the electrical coupling for tuning of 3-DoF coupled resonators instead of 

traditional 2-DoF systems. They expressed that the electrical coupling provides more degrees 

of freedom for tuning the systems when it consists of more resonators. Kacem et al. [20] 
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designed two mechanically coupled nano-cantilevers with different lengths under electrostatic 

actuation and internal resonance. In this study, the veering phenomenon was investigated under 

different values of the length ratio of the resonators. Zhang et al. [21] proposed two weakly 

coupled resonators subjected to electrical bias that operated in the linear regime. They 

controlled the initial working point of the system by adjusting the bias voltage applied to the 

resonators. Rabenimanana et al. [22]designed two electrostatically coupled cantilevers with 

different lengths. They observed that the difference between the stiffness values of the 

cantilevers can be compensated by employing the softening effect of electrical actuation. In 

another study, they showed that the electrostatic tunability magnifies the mode localization 

effect led to a drastic improvement in the mass sensors’ sensitivity [23]. Ilyas et al. [24] 

calculated the natural frequencies of electrostatically and mechanically coupled micro-beams. 

They verified their findings experimentally and showed that, despite the electrostatic coupling, 

the mechanical coupling is not possible to tune significantly the eigenvalues of the system. This 

is due to the fact that the coupling strength cannot be changed once fabricated. The veering 

phenomenon associated with the first three vibration modes of a mode-localized system was 

investigated by Ouakad et al. [25]. It was demonstrated that by controlling the DC voltage, the 

veering point and their respective localization characteristics can be altered. Lyu et al. [26, 27] 

studied the combined effects of the electrical actuation and micro-resonators length as well as 

thickness ratios on the veering point’s position of non-linear mode-localized mass sensors. 

Alkaddour et al. [28] developed a general model for a mode-localized mass sensor made of N 

weakly coupled resonators subjected to an electrical actuation. They tuned their system by 

adjusting the DC and AC voltages applied to the system. Zhao et al. [29] analyzed the effect of 

different eigenmodes coupling on the balance condition of the mode-localized mass sensors. 

Their proposed model consists of two electrostatically coupled micro-beams with different 

values of thicknesses subjected to the DC and AC voltages. They showed that the veering point, 

and consequently the system’s equilibrium state, can be changed once the different eigenmodes 

are coupled with each other.  

Bearing in mind that applying DC voltage can only decrease the stiffness of the structure, the 

idea of exploiting piezoelectric excitation, which can both decrease and increase the stiffness 

of the system, suggests itself. Therefore, the present work aims to investigate the influence of 

piezoelectric excitation on the veering phenomenon to provide a tunable mass micro-sensor 

design with more degrees of freedom. To this end, employing the Euler-Bernoulli beam theory 

together with the Ritz method, the set of the reduced equations of motion associated with a dual 

beam mass sensor is obtained. Neglecting the time-dependent terms, the set of reduced 

equilibrium equations is then extracted and solved numerically using the Newton-Raphson 

method. The model’s predictions for the static configuration of the system are successfully 

verified through direct comparison with available results in the literature. Afterward, the 

eigenvalue problem associated with the present system is obtained by linearizing the equations 

of motion around the previously determined static configuration of the system. Solving the set 

of the present governing free vibration equations analytically, the eigenvalues loci are obtained. 

By doing this, the influence of piezoelectric excitation on the veering phenomenon is studied. 

The main novelties of the present study are 

 Modeling electrically coupled micro-beams when they are equipped with piezoelectric 

layers. 

 Providing Ritz-based reduced order model for the system. 

 Studying the influence of piezoelectric excitation on static configuration of the system. 

 Investigating the coupled electrostatic and piezoelectric excitations on the free vibration 

behavior of the system, especially on its veering point. 

 Introducing the piezoelectric excitation as a mechanism for tuning the balance state of the 

mode-localized mass micro-sensors. 
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2 Mathematical model of the problem 

 

The present system consists of two clamped micro-beams, as depicted in Figure (1), which are 

coupled through the application of a coupling voltage 𝑉𝑐 between them. Despite the upper 

micro-beam (i.e., micro-beam 1) that is made of a homogeneous material, the lower one (i.e., 

micro-beam 2) is made of two piezoelectric layers symmetrically attached to both sides of a 

homogeneous substrate. The voltages 𝑉𝑝1 and 𝑉𝑝2 are applied to the upper and lower 

piezoelectric layers, respectively. It is assumed that the length, width, and thickness of the upper 

micro-beam are L, b, and h, respectively. In addition, the geometric properties associated with 

the substrate of the lower micro-beam are considered to be the same as those of the upper one.  

Also, the thicknesses of the piezoelectric layers are taken the same and equal to ℎ𝑝. The initial 

gap between the two micro-beams is 𝑔𝑐. In addition, 𝑔𝑎 denotes the initial gap between the 

lower micro-beam and the fixed substrate. Furthermore, x, y, and z are the coordinates along 

the length, width, and thickness of the upper micro-beam. 

According to the Euler–Bernoulli beam theory, the displacement components associated with 

an arbitrary point of the micro-beam are given by [30]: 

 

𝑢1 = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
,   𝑢2 = 0,   𝑢3 = 𝑤(𝑥, 𝑡), (1) 

 

where 𝑢 and 𝑤 are the displacements of a point located on the mid-plane of the micro-beam, 

respectively, in the x and z directions. Employing the von Kármán strain-displacement relation, 

the only non-zero strain component of the displacement field given in Equation (1) can be 

expressed as [30]: 

 

휀𝑥 =
𝜕𝑢

𝜕𝑥
+

1

2
(

𝜕𝑤

𝜕𝑥
)

2

− 𝑧
𝜕2𝑤

𝜕𝑥2
. (2) 

 

 

 
Figure 1 Schematic of the present system 
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Given the strain-displacement introduced in Equation (2), the variational form of the strain 

energy expression associated with the ith micro-beam (𝑖 = 1, 2) is [31]: 

 

δ𝑈𝑖 = ∫ 𝜎𝑥𝛿휀𝑥𝑑𝑉𝑖

 

𝑉𝑖

= 𝑏 ∫ (𝑁𝑖𝛿𝑢𝑖
′ + 𝑁𝑖𝑤𝑖

′𝛿𝑤𝑖
′ − 𝑀𝑖𝛿𝑤𝑖

′′)𝑑𝑥
𝐿

0

, (3) 

 
where the prime sign denotes differentiation with respect to variable x. Also, 𝑉𝑖 refers to the 

volume of the ith micro-beam (𝑖 =  1, 2) and (𝑁𝑖 , 𝑀𝑖) = ∫ 𝜎𝑥(1, 𝑧)𝑑𝑧 are the corresponding 

force and moment resultants [31].  

Since the lower micro-beam is composed of three layers, as was previously mentioned, the 

corresponding stress-strain relations are as follows: 

 

𝜎𝑥 = {

𝐸𝑝휀𝑥 + 𝑒31𝑉𝑝1/ℎ𝑝           − (ℎ𝑝 + ℎ/2) ≤ 𝑧 ≤ −ℎ/2

    𝐸𝑠휀𝑥                                 − ℎ/2 ≤ 𝑧 ≤ ℎ/2 
𝐸𝑝휀𝑥 + 𝑒31𝑉𝑝2/ℎ𝑝                   ℎ/2 ≤ 𝑧 ≤ (ℎ/2 + ℎ𝑝)

 (4) 

 
where 𝐸𝑝, ℎ𝑝, and 𝑒31 are the Young’s modulus, thickness, and piezoelectric constant of the 

piezoelectric layers. Also, 𝐸𝑠 denotes Young’s modulus of the substrates. 

The electrostatic attraction between the two micro-beams, which is denoted by 𝐹𝑐, and that 

exerted on the lower one, which is denoted by 𝐹𝑒𝑠, per unit length of the beams, can be expressed 

as [32]: 

 

𝐹𝑐
𝑖 =

휀𝑉𝐶
2(−1)𝑖+1 

2(𝑔𝑐 − 𝑤1 + 𝑤2)2
 , (5a) 

𝐹𝑒𝑠 =
휀𝑉𝑑𝑐

2

2(𝑔𝑎 − 𝑤2)2
 , (5b) 

 
where 휀 = 8.854 × 10−12 (Fm−1) is the dielectric constant of the vacuum [33]. Also, 𝑉𝑑𝑐 

represents the amplitude of the DC voltage applied to the lower micro-beam. In addition, 

𝑤1(𝑥, 𝑡) and 𝑤2(𝑥, 𝑡) are the deflections of the upper and lower micro-beams, respectively.  

Given the displacement field introduced in Equation (1), the variational form of the kinetic 

energy associated with the 𝑖𝑡ℎ micro-beam (𝑖 = 1, 2) can be written as [31]:  

 

𝛿𝐾𝑖 = 𝑏(2𝛿𝑖2𝜌𝑝ℎ𝑝 + 𝜌𝑠ℎ) ∫ (�̇�𝑖𝛿�̇�𝑖 + �̇�𝑖𝛿�̇�𝑖)𝑑𝑥
𝐿

0

, (6) 

 
where the dot sign denotes differentiation with respect to time t. Also, 𝜌𝑖 is the density of the 

𝑖𝑡ℎ micro-beam (𝑖 = 1, 2).  

It is to be noted that despite the density of the upper micro-beam (i.e., 𝜌1) being a constant along 

its thickness, the one associated with the lower micro-beam (i.e., 𝜌2) varies along the thickness 

of this structure as: 
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𝜌2 = {

𝜌𝑝

𝜌𝑠

𝜌𝑝

        
−(ℎ𝑝 + ℎ/2) ≤ 𝑧 ≤ −ℎ/2

 
−ℎ/2 ≤ 𝑧 ≤ ℎ/2

ℎ/2 ≤ 𝑧 ≤ (ℎ/2 + ℎ𝑝)

 (7) 

 
where 𝜌𝑝 and 𝜌𝑠 are the densities of the piezoelectric layer and substrate, respectively. 

Furthermore, the virtual work done by these electrostatic excitations can be written as: 

 

(𝛿𝑊𝑐)𝑖 = ∫ ∫ 𝐹𝑐
𝑖𝛿𝑤𝑖𝑑𝑥𝑑𝑦

𝐿

0

𝑏

0

=  ∫
휀𝑏𝑉𝐶

2(−1)𝑖+1

2(𝑔𝑐 − 𝑤1 + 𝑤2)2
𝛿𝑤𝑖𝑑𝑥

𝐿

0

, (8a) 

𝛿𝑊𝑒𝑠    = ∫ ∫ 𝐹𝑒𝑠𝛿𝑤2𝑑𝑥𝑑𝑦

𝐿

0

𝑏

0

=   ∫
휀𝑏𝑉𝑑𝐶

2

2(𝑔𝑎 − 𝑤2)2
𝛿𝑤2𝑑𝑥

𝐿

0

. (8b) 

 

Having the kinetic energy and inertia terms as well as the virtual work done by the electrical 

actuations, Hamilton’s principle can be employed to obtain the equations of motion associated 

with the system. This principle can be stated as [31]: 

 

∫ (𝛿𝐾𝑖 − 𝛿𝑈𝑖 + 𝛿𝑊𝑒𝑥𝑡
𝑖 )𝑑𝑡 = 0

𝑡𝑓

𝑡𝑖

, (9) 

 

where 𝛿𝑊𝑒𝑥𝑡
𝑖   (𝑖 = 1, 2) refers to the virtual work done by the external forces on the 𝑖𝑡ℎ micro-

beam (𝑖 = 1, 2), which are introduced as follows:  

 

𝛿𝑊𝑒𝑥𝑡
𝑖 = (𝛿𝑊𝑐)𝑖 + 𝛿𝑖2𝛿𝑊𝑒𝑠 , (10) 

 
with 𝛿𝑖2 refers to the Kronecker delta.  

Given the fact that the clamped boundary condition is the only one utilized in designing mass 

sensors for practical applications at micron scales [34], this boundary condition is selected in 

the present work. Taking the clamped boundary conditions, substituting Equations (3), (6), and 

(8) into Equation (9), solving the displacement 𝑢𝑖 in terms of the deflection 𝑤𝑖 for the case of 

clamped boundary conditions and following some straightforward mathematical manipulations, 

one gets: 

 

∫ ∫(−𝑏{𝜌𝑠ℎ + 2𝛿𝑖2𝜌𝑝ℎ𝑝}�̈�𝑖𝛿𝑤𝑖 + 𝑏𝑀𝑖𝛿𝑤𝑖
′′

𝐿

0

𝑡𝑓

𝑡𝑖

 − 𝑏�̃�𝑖𝑤𝑖
′𝛿𝑤𝑖

′ 

(11) 

                +
(−1)𝑖+1휀𝑏𝑉𝑐

2

2(𝑔𝑐 − 𝑤1 + 𝑤2)2
𝛿𝑤𝑖 +

𝛿𝑖2휀𝑏𝑉𝑑𝑐
2

2(𝑔𝑎 − 𝑤2)2
𝛿𝑤2)𝑑𝑥𝑑𝑡 = 0. 
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The introduced stress resultants �̃�𝑖 and 𝑀𝑖 (𝑖 = 1, 2) are as follows: 

 

�̃�𝑖 =
(𝐸𝑠ℎ + 2𝛿𝑖2𝐸𝑝ℎ𝑝)

2𝐿
∫ (𝑤𝑖

′)2𝑑𝑥
𝐿

0

+ 𝛿𝑖2𝑒31(𝑉𝑝2 + 𝑉𝑝1), 

(12) 

𝑀𝑖 = −

(𝐸𝑠ℎ3 + 8𝛿𝑖2𝐸𝑝 (ℎ𝑝
3 +

3
2

ℎ𝑝
2ℎ +

3
4

ℎ𝑝ℎ2)) 𝑤𝑖
′′

12
 +

1

2
𝛿𝑖2𝑒31(ℎ𝑝 + ℎ)(𝑉𝑝2 − 𝑉𝑝1). 

 
For convenience, the mechanical energy of the system in Equation (11) is normalized using the 

following dimensionless variables: 

 

�̂� =
𝑥

𝐿
 , �̂�1 =

𝑤1

𝑔𝑎
, �̂�2 =

𝑤2

𝑔𝑎
 , �̂� =

𝑡

𝜏
 , 𝑅 =

𝑔𝑐

𝑔𝑎
 , (13) 

 
Where 

 

𝜏 = √
12𝜌𝑠𝐿4

𝐸𝑠ℎ2
. (14) 

 
Upon substitution of the dimensionless quantities introduced in Equation (13) into Equation 

(11) and dropping the hats, the normalized mechanical energy associated with the present 

system is obtained as: 

 

∫ ∫ {(1 + 𝛿𝑖2𝛼3)�̈�𝑖𝛿𝑤𝑖 + (𝛿𝑖1 + 𝛿𝑖2𝛼4)𝑤𝑖
′′𝛿𝑤𝑖

′′
1

0

𝑡𝑓

𝑡𝑖

+ (𝛿𝑖1𝛼1 + 𝛿𝑖2𝛼5) (∫ (𝑤𝑖
′)2𝑑𝑥

1

0

) 𝑤𝑖
′𝛿𝑤𝑖

′ 

(15) −𝛿𝑖2𝛼6(𝑉𝑝2 − 𝑉𝑝1)𝛿𝑤2
′′ + 𝛿𝑖2𝛼7(𝑉𝑝2 + 𝑉𝑝1)𝑤2

′ 𝛿𝑤2
′ −

(−1)𝑖+1𝛼2𝑉𝑐
2

(𝑅 − 𝑤1 + 𝑤2)2
𝛿𝑤𝑖 

             −𝛿𝑖2

𝛼2𝑉𝑑𝑐
2

(1 − 𝑤2)2
𝛿𝑤2} 𝜏𝐿𝑑𝑡𝑑𝑥 = 0 , 

 
in which, the normalized parameters of the system are given by: 

 

𝛼1 =
6𝑔𝑎

2

ℎ2
, 𝛼2 =

6휀𝐿4

𝐸𝑠ℎ3𝑔𝑎
3  , 𝛼3 =

2𝜌𝑝ℎ𝑝

𝜌𝑠ℎ
, 𝛼4 =

(8𝐸𝑝ℎ𝑝
3 + 12𝐸𝑝ℎ𝑝

2ℎ + 6𝐸𝑝ℎ𝑝ℎ2 + 𝐸𝑠ℎ3)

𝐸𝑠ℎ3
, 

(16) 

   𝛼5 =
6𝑔𝑎

2(2𝐸𝑝ℎ𝑝 + 𝐸𝑠ℎ)

𝐸𝑠ℎ3
, 𝛼6 =

6𝐿2(ℎ𝑝 + ℎ)

𝐸𝑠ℎ3𝑔𝑎
𝑒31,  𝛼7 =

12𝐿2

𝐸𝑠ℎ3
𝑒31 . 

 
Using the Ritz method, the deflections of micro-beams are discretized as: 
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where 𝑞𝑠1,𝑖, 𝑞𝑠2,𝑖, are the ith static generalized coordinates associated with the upper and lower 

micro-beams, respectively. In addition,  𝑞𝑑1,𝑗(𝑡) and 𝑞𝑑2,𝑗(𝑡) are their corresponding dynamic 

generalized coordinates. Also, 𝜑𝑗 is the jth linear un-damped mode-shape of a clamped beam, 

which is given by [35]: 

 

𝜑𝑗(𝑥) = (cos(𝛽𝑗𝑥) − cosh(𝛽𝑗𝑥)) −
cos(𝛽𝑗𝑥) − cosh(𝛽𝑗𝑥)

sin(𝛽𝑗𝑥) − sinh(𝛽𝑗𝑥)
(sin(𝛽𝑗𝑥) − sinh(𝛽𝑗𝑥)), (18) 

 
where 𝛽𝑗(𝑥) is the jth eigenvalue of the clamped beam [35], as listed in Table (1).  

Next, substituting Equations (17) into Equations (15) and integrating the outcome from x = 0 

to 1, the present reduced order model is obtained as follows: 

 

∑ {𝐾1�̈�𝑑1,𝑗 + 𝐾2(𝑞𝑠1,𝑖 + 𝑞𝑑1,𝑗) + 𝛼1 (∫ (∑ 𝜑𝑖
′𝑞𝑠1,𝑖

𝑛

𝑖=1

)

2

+ 2 {∑ 𝐾3𝑞𝑠1,𝑖

𝑛

𝑖=1

} 𝑞𝑑1,𝑗

1

0

)

𝑁

𝑗=1

 

(19a) 

             × 𝐾3(𝑞𝑠1,𝑖 + 𝑞𝑑1,𝑗) − 𝛼2𝑉𝑐
2 (𝐼1 + 2𝐼2(𝑞𝑑1,𝑗 − 𝑞𝑑2,𝑗))} 𝛿𝑞1,𝑗 = 0 

  

∑ {{1 + 𝛼3}𝐾1�̈�𝑑2,𝑗 + 𝛼4𝐾2(𝑞𝑠2,𝑖 + 𝑞𝑑2,𝑗) + 𝛼5 (∫ (∑ 𝜑𝑖
′𝑞𝑠2,𝑖

𝑛

𝑖=1

)

2

+ 2 {∑ 𝐾3𝑞𝑠2,𝑖

𝑛

𝑖=1

} 𝑞𝑑2,𝑗

1

0

)

𝑁

𝑗=1

 

    × 𝐾3(𝑞𝑠2,𝑖 + 𝑞𝑑2,𝑗) − 𝛼6(𝑉𝑝2 − 𝑉𝑝1)𝐾4 + 𝛼7(𝑉𝑝2 + 𝑉𝑝1) × 𝐾3(𝑞𝑠2,𝑖 + 𝑞𝑑2,𝑗) 

(19b) 

           −𝛼2𝑉𝑑𝑐
2 (𝐼3 + 2𝐼4𝑞𝑑2,𝑗) + 𝛼2𝑉𝑐

2 (𝐼1 + 2𝐼2(𝑞𝑑1,𝑗 − 𝑞𝑑2,𝑗))} 𝛿𝑞2,𝑗 = 0 

 
where all the introduced coefficients in this equation are given in Appendix A. It is worth 

mentioning that the static configuration of the system under the action of the electrical 

actuations can be determined by the solution of the reduced equilibrium equation that can 

simply be obtained by neglecting the time-dependent terms in Equations (19).  

 
Table 1 The eigenvalues of the clamped beam [35] 
 

𝑤1(𝑥, 𝑡) = ∑ 𝜑𝑖(𝑥)𝑞𝑠1,𝑖

𝑛

𝑖=1

+ ∑ 𝜑𝑗(𝑥)𝑞𝑑1,𝑗(𝑡)

𝑁

𝑗=1

, (17a) 

𝑤2(𝑥, 𝑡) = ∑ 𝜑𝑖(𝑥)𝑞𝑠2,𝑖

𝑛

𝑖=1

+ ∑ 𝜑𝑗(𝑥)𝑞𝑑2,𝑗(𝑡)

𝑁

𝑗=1

, (17b) 

β1 β2 β3 

4.7300 7.8532 10.9956 
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These non-linear algebraic equations will be solved numerically through the use of the Newton-

Raphson procedure in this paper.  

Having the static configuration of the present system, the free vibration equations can be 

obtained by linearizing the present system of initial value problems (IVPs) given in Equations 

(19) around the pre-determined static configuration as: 

 

�̈�𝑑1,𝑗 + (𝐾2 + 2𝛼1𝑆1
2 + 𝛼1𝑆2𝐾3 − 2𝛼2𝑉𝑐

2𝐼2)𝑞𝑑1,𝑗 + 2𝛼2𝑉𝑐
2𝐼2𝑞𝑑2,𝑗 = 0, (20a) 

 

{1 + 𝛼3}�̈�𝑑2,𝑗 + {𝛼4𝐾2 + 2𝛼5𝑆3
2 + 𝛼5𝑆4𝐾3 + 𝛼7(𝑉𝑝2 + 𝑉𝑝1)𝐾3 

(20b) 

−2𝛼2𝑉𝑐
2𝐼2 − 2𝛼2𝑉𝑑𝑐

2 𝐼4}𝑞𝑑2,𝑗 + 2𝛼2𝑉𝑐
2𝐼2𝑞𝑑2,𝑗 = 0. 

 
Assuming simple harmonic motion for the dynamic counterpart of generalized coordinates of 

the micro-beams (i.e., 𝑞𝑑1,𝑗 and 𝑞𝑑2,𝑗), the set of eigenvalue-eigenvector equations can be 

written as: 

 

[
𝑅11 − Ω𝑛

2                           𝑅12

𝑅21          𝑅22 − Ω𝑛
2 {1 + 𝛼3}

] {
𝑄𝑑1,𝑗

𝑄𝑑2,𝑗
} = {

0
0

}, (21) 

 
where Ω𝑛 is the natural frequency and 𝑄𝑑1,𝑗 and 𝑄𝑑2,𝑗 are the eigenvectors. In addition, the 

introduced coefficients in Equation (21) are given in Appendix B. 

Solving this set of eigenvalue-eigenvector equations, the combined effects of the electrostatic 

and piezoelectric excitations on the static configuration of the system and veering phenomenon 

will be investigated in the next section.  

 
3 Results and discussion 

3.1   Validation of system 

 
To validate the presented model, neglecting the influence of the upper micro-beam (i.e., setting 

𝑉𝑐 = 0), pull-in voltages associated with a single beam equipped with piezoelectric layers are 

compared to those presented in the literature.  

To this end, a bimorph micro-beam with geometric and material properties, respectively, given 

in Tables (2) and (3), is considered. 

Assuming the upper and lower piezoelectric layers are excited by a similar voltage, Figure (2) 

illustrates the variation of the pull-in voltage of the system versus the piezoelectric voltage.As 

it is seen, there exist excellent agreements between the present results and those reported by 

Rezazadeh et al. [36]. It is worth mentioning that the substrate and the piezoelectric layers are 

assumed to be made of Silicon and PZT-4, respectively. Also, the value of the initial gap is set 

to 1 µm (i.e., 𝑔𝑎 = 1µ𝑚 ).  

This section explores the effect of the piezoelectric excitation on the static configuration of the 

system. To this end, the present electrostatically coupled system, whose lower micro-beam has 

been equipped with two PZT-4 layers, is considered. The geometric properties of the system 

are assumed to be the same as those given in Table (4). It is noteworthy that similar voltages 

are applied across the piezoelectric layers. Also, the electrostatic coupling voltage between the 

two micro-beams is set to 𝑉𝑐  =  2 𝑉. 
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Table 2 Geometric properties of the substrate and piezoelectric layers [36] 
 

 𝐿(µm) 𝑏(µm) ℎ(µm) 

Substrate 350 50 3 

Piezoelectric layers 350 50 0.01 

 
Table 3 Material properties of the substrate and piezoelectric layers [36] 
 

 𝐸(GPa) 𝜌(Kg/m3) 𝑒31 

Silicon 169 2331 - 

PZT-4 78.6 7500 -9.29 

 
 

 
 

Figure 2 Pull-in voltages versus piezoelectric voltages for a system with properties presented in Tables (2) and (3) 
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3.2 Static analysis 

 

This section explores the effect of the piezoelectric excitation on the static configuration of the 

system. To this end, the present electrostatically coupled system, whose lower micro-beam has 

been equipped with two PZT-4 layers, is considered. The geometric properties of the system 

are assumed to be the same as those given in Table (4). It is noteworthy that similar voltages 

are applied across the piezoelectric layers. Also, the electrostatic coupling voltage between the 

two micro-beams is set to 𝑉𝑐  =  2 𝑉. 

 
Table 4 Geometric properties of the electrostatically coupled system with two piezoelectric layers 
 

 𝐿(µm) 𝑏(µm) ℎ(µm) 

Substrate 210 4 1 

Piezoelectric layers 210 4 0.005 

 

 

 
Figure 3 Equilibrium path of the lower micro-beam for different values of piezoelectric voltages. The system 

properties are listed in Tables (3) and (4) and the coupling voltage is adjusted to 𝑉𝑐 = 2 𝑉 



Hosein Ali Alam-Hakkakan et al.                                                                                                                           71 

The Iranian Journal of Mechanical Engineering Transactions of ISME                                    Vol. 24, No. 2, 2023 

The equilibrium path of the lower micro-beam versus the applied DC voltage for different 

values of the piezoelectric voltages is illustrated in Figure (3). According to this figure, the 

piezoelectric excitation has a significant impact on the static configuration of the system. Also, 

the occurrence of pull-in instability can be controlled by adjusting the piezoelectric voltage. It 

can be observed that applying a negative voltage to the piezoelectric layers increases the pull-

in voltage. The reason behind this fact is that the negative piezoelectric voltage applies a tensile 

force on the lower micro-beam and so increases its stiffness, leading to the increase in its pull-

in threshold. 

 
3.3 Mode veering analysis 

 

The influence of the piezoelectric excitation and the electrostatic coupling between two micro-

beams on the veering phenomenon will be studied in this section. The present electrostatically 

coupled system with properties presented in Tables (3) and (4) is considered again. 

The variation of the system eigenvalues versus the piezoelectric voltage as the disorder 

parameter (i.e., the eigenvalues loci) is plotted in Figure (4) to find the balance state of the 

system. It is assumed that the electrostatic voltage is set to Vdc = 4 V.  

 

 
 

Figure 4 Eigenvalues loci for systems with two different coupling voltages. The electrostatic actuation is set to 

𝑉𝑑𝑐 = 4 𝑉 and the properties are assumed to be as those given in Tables (3) and (4) 
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Figure (4) presents the results for two different coupling voltages. As depicted in the figure, a 

small coupling voltage leads to the occurrence of the veering phenomenon. 

As Figure (4) shows, only weakly coupled systems can face the veering phenomenon. To 

investigate this issue more, Table (5) represents the eigenvectors associated with the 

eigenvalues depicted in Figure (4). That is, 𝑊𝑚𝑖𝑑
11 /𝑊𝑚𝑖𝑑

21  denotes the ratio of the upper to lower 

micro-beam mid-point deflection corresponding to the first eigenvalue and  𝑊𝑚𝑖𝑑
12 /𝑊𝑚𝑖𝑑

22  is the 

one associated with the second eigenvalue. Hence, 𝑊𝑚𝑖𝑑
11 /𝑊𝑚𝑖𝑑

21  and 𝑊𝑚𝑖𝑑
12 /𝑊𝑚𝑖𝑑

22  are the first 

and the second eigenvectors of the system, respectively, for regions before the veering zone. 

Also, 𝑊𝑚𝑖𝑑
11 /𝑊𝑚𝑖𝑑

21  and 𝑊𝑚𝑖𝑑
12 /𝑊𝑚𝑖𝑑

22  denote the second and the first eigenvectors for regions 

beyond this zone. It is obvious that 𝑊𝑚𝑖𝑑
11 /𝑊𝑚𝑖𝑑

21  and 𝑊𝑚𝑖𝑑
12 /𝑊𝑚𝑖𝑑

22  for strongly coupled systems 

refer to its first and second eigenvector all the time. 

 
Table 5 Eigenvectors associated with the different situations observed in Figure (4) 
 

𝑉𝑝(mV) 
𝑉𝑐 = 2V 𝑉𝑐 = 20V 

𝑊𝑚𝑖𝑑
11 /𝑊𝑚𝑖𝑑

21  𝑊𝑚𝑖𝑑
12 /𝑊𝑚𝑖𝑑

22  𝑊𝑚𝑖𝑑
11 /𝑊𝑚𝑖𝑑

21  𝑊𝑚𝑖𝑑
12 /𝑊𝑚𝑖𝑑

22  

-108 -86.4629 0.0119 -1.0819 0.9540 

-72 -43.6038 0.0237 -0.9368 1.1018 

-35.4695 -1.0159 1.0160 -0.8126 1.2702 

0 42.4254 -0.0243 -0.7125 1.4487 

36 85.5492 -0.0121 -0.6288 1.6416 

 

 

 
Figure 5 Micro-beams configurations for the present weakly coupled system with 𝑉𝑐 = 2 𝑉 and 𝑉𝑑𝑐 = 4 𝑉 

whose eigenvalue loci has been given in Figure (4) 
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As Table (5) illustrates, despite the strongly coupled systems, the vibration modes are localized 

by getting away from the veering point in weakly coupled systems. Furthermore, it is seen that 

neglecting the sign, both the eigenvectors take the same values at the veering point. This means 

that both the vibration modes of the system are excited simultaneously. Therefore, if one excites 

a system with a frequency close to that associated with its veering point, both the eigenmodes 

of the system will experience the resonance phenomenon.    

As mentioned above, getting away from the veering point makes the vibration mode to be 

localized around one of the micro-beams. To investigate this issue more, Figure (5) illustrates 

each micro-beam configuration at some points of eigenvalue loci presented in Figure (4). 

According to the results shown in this figure, when the system deviates from its balanced state, 

where both the upper and lower micro-beams are oscillating, the vibration mode becomes 

localized around one of the micro-beams. This means that the vibrations of the other resonator 

are suppressed.  

Figure (5) demonstrates that both the upper and lower micro-beams oscillate at the balance 

state. However, deviating from the balance state, for instance, adding a mass on the upper 

micro-beam as the external disorder, results in the drastic suppression of the vibrations of this 

resonator. These drastic changes in the vibrations of the upper micro-beam can be employed as 

the sensing principle in mode-localized mass micro-sensors. 

 

 
Figure 6 Combined influences of the electrical actuation and the piezoelectric excitation on the eigenvalues loci 

associated with the present weakly coupled system with 𝑉𝑐 = 2 𝑉 and other properties given in Tables (3) and (4) 
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As mentioned in the introduction section, the present system offers more degrees of freedom 

compared to existing designs in the literature. This allows for the utilization of a combination 

of electrical actuation and piezoelectric excitation to tune the system. Regarding this issue, 

Figure (6) investigates the combined effects of electrical and piezoelectric actuations. As this 

figure depicts, applying DC voltage shifts the veering point to the left. The reason behind this 

observation is that applying electrical attraction reduces the stiffness of the system which needs 

to be compensated by increasing the piezoelectric actuation. As seen, the utilization of a 

combination of piezoelectric and electrostatic actuations offers increased degrees of freedom 

for designing tunable, mode-localized mass micro-sensors. 
 

4 Conclusions 

 

The main goal of the present work was to study the effect of piezoelectric excitation on the free 

vibration characteristics associated with tunable mode-localized mass micro-sensors. To this 

end, employing the Hamilton principle together with the Ritz method, the reduced equations of 

motion were obtained. Determining the static deflection of the system under the action of the 

electrical actuation, the eigenvalue problem governing the free vibrations of the system around 

its static configuration was obtained. The combined effects of the electrical and piezoelectric 

excitations on the eigenvalue loci of the system were studied and validated with those available 

in the literature. The results revealed that the piezoelectric excitation has a significant effect on 

the stiffness of the structure. Therefore, the static configuration of the system and the occurrence 

of pull-in instability can be controlled by adjusting the piezoelectric voltage. In the rest of the 

paper, investigating the influence of the coupling voltage showed that only weakly coupled 

systems can face veering and consequently mode-localization phenomena. It was found that 

employing piezoelectric actuation can compensate for the reductive effect of the electrical 

excitation on the stiffness of the system. Therefore, it was observed that piezoelectric-based 

systems can potentially suggest more degrees of freedom in the design procedure of mode-

localized mass micro-sensors. 
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Nomenclature 
 

English symbols 
 
 

𝑏 Width of the micro-beams 

𝐸𝑝 The Young’s modulus of the piezoelectric layers 

𝐸𝑠 The Young’s modulus of the micro-beams’ substrate 

𝐹𝑐 Electrostatic attraction between the upper and lower micro-beams 

𝐹𝑒𝑠 
Electrostatic attraction between the lower micro-beam and the fixed electrode 

underneath it 

𝑔𝑐 Initial gap between the upper and lower micro-beams 

𝑔𝑎 Initial gap between the lower micro-beam and the fixed electrode underneath it 

ℎ Thickness of the micro-beams’ substrate 

ℎ𝑝 Thickness of the piezoelectric layers 

𝐾𝑖 Kinetic energy of the ith micro-beam (i =1,2) 

𝐿 Length of the micro-beams 

𝑀𝑖 Moment resultant of the ith micro-beam (i =1,2) 

𝑁𝑖 Force resultant of the ith micro-beam (i =1,2) 

𝑞𝑠1,𝑖 
Static counterpart of the ith (i = 1, 2, 3, ...) generalized coordinate of the upper 

micro-beam in the Ritz procedure 

𝑞𝑠2,𝑖 
Static counterpart of the ith (i = 1, 2, 3, ...) generalized coordinate of the lower 

micro-beam in the Ritz procedure 

𝑞𝑑1,𝑗(𝑡) 
Dynamic counterpart of the jth (j = 1, 2, 3, ...) generalized coordinate of the upper 

micro-beam in the Ritz procedure 

𝑞𝑑2,𝑗(𝑡) 
Dynamic counterpart of the jth (j = 1, 2, 3, ...) generalized coordinates of the lower 

micro-beam in the Ritz procedure 

𝑡 Time 

𝑈𝑖 Strain energy expression of the ith micro-beam (i =1,2) 

𝑢𝑖  
Displacements of a point located on the mid-plane of the ith micro-beam (i =1,2) 

in the x direction 

𝑢1 
Displacement component of an arbitrary point of the micro-beam cross section 

along the x-direction 

𝑢2 
Displacement component of an arbitrary point of the micro-beam cross section 

along the y-direction 

𝑢3 
Displacement component of an arbitrary point of the micro-beam cross section 

along the z-direction 

𝑉𝑖 The volume of the ith micro-beam (i =1,2) 

𝑉𝑝1 Piezoelectric voltage of the upper piezoelectric layer 

𝑉𝑝2 Piezoelectric voltage of the lower piezoelectric layer 

𝑉𝑑𝑐 DC voltage 

𝑉𝑐 Coupling voltage 

𝑊𝑒𝑥𝑡
𝑖  The work done by the external forces on the ith micro-beam (i =1,2) 
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𝑊𝑐 
The work done by electrostatic attraction between the upper and lower micro-

beams 

𝑊𝑒𝑠 
The work done by electrostatic attraction between the lower micro-beam and the 

fixed electrode underneath it 

𝑤1(𝑥, 𝑡) Deflections of the upper micro-beam 

𝑤2(𝑥, 𝑡) Deflections of the lower micro-beam 

𝑤𝑖 
Displacements of a point located on the mid-plane of the ith micro-beam (i =1,2) 

in the z-direction 

𝑥 x-coordinate along the length of the micro-beam 

𝑦 y-coordinates along the width of the micro-beam 

𝑧 z-coordinates along the thickness of the micro-beam 

 

Greek symbols 
 

𝛽𝑗(𝑥) jth (j = 1, 2, 3, ...) eigenvalue of the clamped beam 

𝛿 Variational operator 

𝛿𝑖2 Kronecker delta 

휀 Dielectric constant of the vacuum 

휀𝑥 Axial strain in the x direction 

𝑒31 Piezoelectric constant 

𝜌𝑝 Density of the piezoelectric layer 

𝜌𝑠 Density of the micro-beams’ substrate 

𝜎𝑥 Normal stress in the x direction 

𝜑𝑗(𝑥)  jth (j = 1, 2, 3, ...) linear un-damped mode-shape of a clamped beam 

Ω1 First natural frequency of the system 

Ω2 Second natural frequency of the system 

 

 
 

Appendix A 

 
The coefficients appearing in Equations (19) are defined as: 
 

𝐾1 = ∫ 𝜑𝑗
2𝑑𝑥

1

0

 ,   𝐾2 = ∫ 𝜑𝑗
′′𝜑𝑖

′′𝑑𝑥

1

0

 ,   𝐾3 = ∫ 𝜑𝑗
′𝜑𝑖

′𝑑𝑥

1

0

,   𝐾4 = ∫ 𝜑𝑗
′′𝑑𝑥

1

0

 

𝐼1 = ∫
𝜑𝑗𝑑𝑥

(𝑅 − ∑ 𝜑𝑖𝑞𝑠1,𝑖
𝑛
𝑖=1 + ∑ 𝜑𝑖𝑞𝑠2,𝑖

𝑛
𝑖=1 )

2

1

0

,   𝐼2 = ∫
𝜑𝑗

2𝑑𝑥

(𝑅 − ∑ 𝜑𝑖𝑞𝑠1,𝑖
𝑛
𝑖=1 + ∑ 𝜑𝑖𝑞𝑠2,𝑖

𝑛
𝑖=1 )

3

1

0

 

𝐼3 = ∫
𝜑𝑗𝑑𝑥

(1 − ∑ 𝜑𝑖𝑞𝑠2,𝑖
𝑛
𝑖=1 )

2

1

0

,   𝐼4 = ∫
𝜑𝑗

2𝑑𝑥

(1 − ∑ 𝜑𝑖𝑞𝑠2,𝑖
𝑛
𝑖=1 )

3

1

0

 (A1) 
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Appendix B 

 
The coefficients appearing in Equations (21) are defined as: 

 

𝑆1 = ∑ {∫ 𝜑𝑗′𝜑𝑖′𝑑𝑥

1

0

} 𝑞𝑠1,𝑖

𝑛

𝑖=1

,   𝑆2 = ∫ (∑ 𝜑𝑖
′𝑞𝑠1,𝑖

𝑛

𝑖=1

)

1

0

2

𝑑𝑥, 

(B1) 

𝑆3 = ∑ {∫ 𝜑𝑗′𝜑𝑖′𝑑𝑥

1

0

} 𝑞𝑠2,𝑖

𝑛

𝑖=1

,   𝑆4 = ∫ (∑ 𝜑𝑖
′𝑞𝑠2,𝑖

𝑛

𝑖=1

)

1

0

2

𝑑𝑥, 

𝑅11 = (𝐾2 + 2𝛼1𝑆1
2 + 𝛼1𝑆2𝐾3 − 2𝛼2𝑉𝑐

2𝐼2), 

𝑅12 = 2𝛼2𝑉𝑐
2𝐼2 ,        𝑅21 = 2𝛼2𝑉𝑐

2𝐼2 

𝑅22 = (𝛼4𝐾2 + 2𝛼5𝑆3
2 + 𝛼5𝑆4𝐾3 + 𝛼7(𝑉𝑝2 + 𝑉𝑝1)𝐾3 − 2𝛼2𝑉𝑐

2𝐼2 − 2𝛼2𝑉𝑑𝑐
2 𝐼4). 

 


