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A Closed-form Semi-analytical Elastic-
F. Moayyedian* | Plastic Solution for Predicting the Onset of
Ph. D sudent@ Flange  Wrinkling in Deep-drawing of a

Two-layered Circular Plate
In this paper to predict the critical conditions for onset of
elastic-plastic wrinkling of flange of a two-layered circular
blank during the deep-drawing process a closed-form semi-
analytical elastic-plastic solution using Tresca yield criterion
M. Kadkhodayan' alongwith deformation theory in plasticity with considernig the
professor l Perfectly plastic behaviour of materials is presented.
Simplifying the presented solution from two layered to one
layered the results exactly agree with the previous work done
by the authors.
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1 Introduction

Wrinkling is one of the primary modes of failure in the deep-drawing process. Numerous
studies have been conducted on wrinkling phenomenon in monolithic sheets in a deep-
drawing process to predict the occurrence, shape and number of wrinkles. However, few
papers have been published on wrinkling of multi-layer sheets so far. Complex plastic
deformation mechanisms of two-layer sheets compared with a homogenous sheet due to
different mechanical properties and formability of each layer is the primary difficulty in any
study of wrinkling in the two-layer sheets.

Wrinkling (buckling in sheet metals) is caused by excessive compressive stresses during
the forming. As it observed in Figure 1, in a deep-drawing operation an initially flat round
blank is drawn over a die by a cylindrical punch. The annular parts of the blank are subjected
to a radial tensile stress, while in the circumferential direction compressive stress is generated
during drawing, Figure 2, For particular drawing-tool dimensions and blank thickness, there is
a critical blank diameter/thickness ratio. Figure 3 shows that the critical stress causes the
plastic buckling of the annular part of the blank so that an undesirable mode of deformation
ensues with the generated waves in the flange. A bifurcation functional was proposed by
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Hutchinson [1, 2] based on Hill general theory of uniqueness and also bifurcation in elastic-
plastic solids [3, 4]. This functional is given as

1
F= Eﬂ (Mijkij + Nyjelj + toyww,;)dS @

where, S denotes the region of the shell middle surface over which the wrinkles appear, w the
buckling displacement, ¢ the thickness of the plate, N;; the force resultants, M;; the moment
resultants (per unit width), k;; the curvature tensor and e{’j the stretch strain tensor. This
bifurcation functional contains the total energy for wrinkling occurrence. In other words, for
some non-zero displacement fields, the state of F = 0 corresponds to the critical conditions
for wrinkles to occur. In the following, a brief literature review from the work done by the
other authors on this subject is presented.
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Figure 1 Deep-drawing process with cylindrical punch.
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Figure 2 The model of the flange as an annular plate with radial stress distribution in its inner edge.
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Figure 3 The generated waves in the flange.

Yu and Johnson [5] used the energy method in elastic stability theory as a basis for plastic
wrinkling analysis. They proposed an equation for balancing the work done by stresses
induced in the flange and the strain energy due to bending in plastic wrinkling. According to

their analysis, the onset of plastic wrinkling is governed by\/%% < %\/;(:n’:) , Where the

entities H and FP are functions of the wave number and the flange dimension, respectively.
The reader is referred to work of Yu and Johnson, Zhang and Yu [6] for further details of
their approaches. Subsequently, Yossifon and Tirosh [7] extended the analysis to investigate
the fluid pressure as an additional energy term in their equation. Chu and Xu [8] investigated
the phenomenon of flange wrinkling as a bifurcated solution of the equations governing the
deep-drawing problem when the flat position of the flange becomes unstable. Hill’s
bifurcation criterion was used to predict the onset of flange wrinkling in circular and square
cup drawing. Finite element formulation, based on the updated Lagrangian approach was
employed for the analysis. The incremental logarithmic strain measure, which allowed the use
of a large incremental deformation, was used. The stresses were updated in a material frame.
Correa and Ferron [9] analyzed the onset of wrinkling in sheet metals as an elastic—plastic
bifurcation for thin and shallow shells with compound curvatures. Local analysis was
developed which allowed us to define wrinkling limit curves depending on material properties
and local geometry. Finite element (FE) simulations of the conical cup test were also
performed using the Abaqus/Explicit code. Correa and Ferron [10] were investigated the
onset of wrinkling in sheet metal forming using an analytical approach and finite element
(FE) simulations. In both cases the yield criterion proposed by Ferron et al. was employed.
The analytical approach was developed on the basis of the bifurcation criterion developed by
Hutchinson for thin and shallow shells submitted to a biaxial plane stress loading. Both
analytical and numerical predictions compare reasonably well with experiments. Cheng et al.
[11] were conducted the Yoshida buckling test and wedge strip test of laminated steel and its
steel skins. The information of local strains, buckling heights and global wrinkling patterns
were obtained in order to study the initiation condition of wrinkling and the post-buckling
behavior of the sheets and to provide verification data for numerical predictions. Rectangular
panel forming tests were also conducted. The results showed that the 1.0 mm laminated sheet
employed has a wrinkling tendency similar to that of its 0.5 mm skin panel and has a strain
distribution similar to that of its 1.0 mm solid counterpart. Agrawal et al. [12] predicted the
minimum blank holding pressure required to avoid wrinkling in the flange region during
axisymmetric deep-drawing process. Thickness variation during the drawing was estimated
using an upper bound analysis. The minimum blank holding pressure required to avoid
wrinkling at each punch increment was obtained by equating the energy responsible for
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wrinkling to that which suppresses the wrinkles. Loganathan and Narayanasamy [13] were
drawn annealed aluminum sheets of different diameters through a conical die under dry
lubrication condition, until the appearance of a first stage wrinkle. Here, an attempt was made
to relate the percentage amount of draw obtainable in the drawing process with the initial
diameter of the blank. It was also shown that the onset of wrinkling takes place when the
percentage change in thickness reaches a critical value, this value being found to be generally
different for both air cooled and furnace cooled aluminum sheets. Sivasankaran et al. [14]
presented an artificial neural network (ANN) model for predicting and avoiding surface
failure such as wrinkling of sheet metals. Commercially pure aluminum sheets of different
grades were drawn into cylindrical cups through conical die. An ANN model was developed
to map the mechanical properties and instantaneous geometry features of deep-drawing
process. A very good performance of the neural network, in terms of agreement with the
experimental data was. Wang et al. [15] proposed a new Modified Displacement Component
(MDC) method to predict accurately wrinkling characteristics in the membrane by eliminating
the singularity of the displacement solution. In MDC method, a singular displacement
component was primarily obtained at the wrinkling point by introducing the first-order
characteristic vector multiplied by a positive intermediate parameter in the singular stiffness
matrix. The non-singularity displacement solution was then obtained by modifying the
singular displacement component based on three equality relationships at the wrinkling point.
They used a direct perturbed method to accurately consider these two key steps. In the direct
perturbed method, some small, quantitative, out-of-plane forces were applied onto the
membrane surface directly based on the first wrinkling mode, and then removed immediately
after wrinkling starts. Saxena and Dixit [16] treated the phenomenon of flange wrinkling as a
bifurcated solution of the equations governing the deep-drawing problem when the flat
position of the flange becomes unstable. Hill’s bifurcation criterion was used to predict the
onset of flange wrinkling in circular and square cup drawing. A parametric study of the
maximum cup height was also carried out with respect to various geometric, material and
process parameters. Finite element formulation, based on the updated Lagrangian approach,
was employed for the analysis. The incremental logarithmic strain measure, which allowed
the use of a large incremental deformation, was used. Shaffat et al. [17] were developed a new
deflection function and the effects of material anisotropy on the onset of wrinkling were
studied using Hosford and Hill-1948 yield criteria under isotropy, normal anisotropy and
planar anisotropy conditions. It was observed that application of Hosford yield criterion
resulted in better prediction of wrinkling onset. It was also found that as the effective stress
increases, consistency between predicted results and experimental data at the onset of
wrinkling improves. Moreover, a good agreement between the experimental data and
predicted results using proposed deflection function was obtained. Kadkhodayan and
Moayyedian [18] based on a two-dimensional plane stress wrinkling model of an elastic—
plastic annular plate and a bifurcation functional from Hill’s general theory of uniqueness in
polar coordinates presented a closed-form solution for the critical drawing stress. A nonlinear
plastic stress field and the deformation theory of plasticity were used. It was shown that the
results of the presented approach had a good agreement with experimental data. Coman [19]
using the method of adjacent equilibrium derived a set of coordinate-free bifurcation
equations by adopting the Foppl-von Karman plate theory. A particular class of asymmetric
bifurcation solutions was then investigated by reduction to a system of ordinary differential
equations with variable coefficients. The localized character of the eigenmodes was
confirmed numerically.

Most new investigations used numerical approaches especially finite element method with
incremental theory of plasticity and considering different laws of hardening and anisotropy of
materials of a layer sheet metal. Nevertheless, to the best knowledge of authors the numerical
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and especially the analytical approaches to predict flange wrinkling of a two-layered sheet
have not considered strongly until now.

In this paper, the bifurcation functional in Eq. (1) is extended to consider a two-layered
circular blank under deep-drawing process, i.e. stretching of the middle plane of the plate and
rotating the other planes of the plate with respect to the middle plane. To have a closed-form
semi-analytical solution, the Tresca yield criterion and also plastic deformation theory are
used with assumption of perfectly plastic behavior of materials. Finally it is understood that
by simplifying the presented results from two layers to one layer, a good agreement with
previous improvement of the authors [18] in one layer is achieved.

2 Lamination Theory

For the laminate in Figure (4), we take a global r — 6 — z coordinate system with z
perpendicular to the plane of the laminate and positive downward. The origin of the
coordinate system is located on the laminate midplane, centered at the top and bottom
surfaces. The laminate has n layers numbered from top to bottom. The z-coordinate of the
bottom of the kth layer is designated h; with the top of the layer being h;_,. The thickness t;,
of any layer is then t, = hy,_, — hy. The top surface of the laminate is denoted h, and the
total thickness is 2t. The coordinate system is set in the middle plane of the undeformed (pre-
buckled) laminated plate. The material points in the plate are identified by coordinates r and
6 lying in the middle surface of the undeformed body and coordinate z normal to the
undeformed middle surface.

|
h, 2
3 h/2
hy h, _‘Il
5 > Mid-Plane
hy ) k-1
L N i h/2
k+1
h, | Z
hy | n .

Figure 4 The coordinate of laminated plate.

The displacement fields u, v and w of two layers are the same. Then the bending strain tensor
(or the change of the curvature) Ky in the laminate are created as [20-22]

Kij = =Wij )

where w is the buckling displacement normal to the middle surface of the plate. For annular
laminated plates and plane stress problem we have

( d2%w
Kiin =~ 972
1ow 1 9%*w
L —_tow_ 1 ow 3
K22 ror 12002 @)
1 d2%w N 1 ow
1z = rordd 1290
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The stretch strain tensor Su in plane stress problem and with neglecting nonlinear terms is
defined as [20-22]
1
Eioj = E (ui’j + uj,i) (4)

In polar coordinate the components of e become

( o Jdu
Err = (’)r
u 10v
{80 = r69 (5)
0 (1 Ju 0Jv v)
g = — =
\"T0 7 9 r60 or r

where u and v are in-plane displacements in the r and 6 directions, respectively. Therefore,
the Lagrangian strain tensor for any point inside the laminated plates with distances z can be
defined as [20-22]

_ .0
€ij = &jj T ZK;; (6)

In a two layered plates, which the thickness of each plate is t, the force and moment resultants
are defined as

( 0 +t
J N;j = f o;:dz +f ofdz
| -t 0 (7)

0 +t
M;; =j ailjzdz+f ofizdz

-t 0

3 The Elastic Wrinkling of a Two-Layered Plate

The constitutive equation for an elastic solid for each layer is
1 _ gel
0ij = Liji€n 8
2 LEZ ( )
0ij = Lijki€ki

the Lukz and Ll]kl for an isotropic material are defined as

{ijlkz = A16;j 6 + 1t (5ik5jl + 5il5jk) ©)
ijzkz = 226361 + 1* (88 + 6ux)
Where A and p are Lame’s constants as
1= vE
! (1 -|}-Ev)(1 2v) (10)
=20+

in which E and v are Young modulus and Poisson ratio, respectively. Therefore, by
expanding Eqg. (8) for i,j, k = 1,2,3 and simplifying the obtained expression for plane stress
problem (i.e. o35 = 1,3 = 713 = 0) and using Egs. (9, 10) to obtain Lukl and Lukl, a simple
stress-strain relation for plane stress problem can be found for each layer as following [18]
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( Ey v1Ey 0
1 1—vZ 1—vi
0-11 VlEl E1 811
Oy ¢ = 0 €22
1 1—vi 1-vf Viz
12 E
0 0 !
< 2(1+vy) (1)
E; v, E;
2 2 0
011 v,E, E, €11
0%, ¢ = > 5 0 €22
12 E
0 0 __"z
\ i 2(1 4+ vy)d

Inserting Eq. (6) in Eg. (8) and the results into Eq. (7), the force and moment resultants are
found as

( 0 +t
INij = f O'ilde +f O'iZde = (Lljkl l]kl)Kkl + t(Lijl + L?jzkl)el(c)l
-t 0
4 0 +t (12)
LMU :f O-ilj'Zdz-I_f aﬁ-zdz = (Lljkl l}kl)Kkl + (Ll]kl ijl)gkl
-t 0
Substituting these relations in functional (1) yield to
1 2 bt 2
=(—f nf UleU K, rdrdf + - f nf tLS feteprdrdf —
fznf t? Lule e rdrdd + = f f toiww; rdrd@) 13)

2m (b t3 2
( f T[fa 3 Ll]leU le‘deH + f T[f tLUleUSledT‘d9+
onf tzLule e rdrdd + = f f tofiw,w; rdrd@)

The first and second four integrals are related to the first and second layers, respectively. If
the layer has the same material, then the integration 1 with 5, 2 with 6 and 4 with 8 have the
same values and the summation of integrals 3 and 7 will be zero. Now With expanding Eq.

(13) for i,j = 1,2 and by substituting the values of Ky from Eq. (3) and e from Eq. (5) in
Eq. (13) it is found that

2w b t3 2%w 2%w\ (10w 1 0%w 10w
F= f s { 1111 (a 2) + 2Lz (arZ) (?¥+r_2692) L2222( ar T
1 0%w 1 9%w 1 0w 1 c2m ou

0) + 4ty (L - 22) }"d’"d“) 30 e (B )+

r2 902
ou\ (u , 10v 10v 10u  dv v _ (14)
215122 (6r) ( trae) T L3222 ( ts ae) + Liz1z (r 26 " or r) }rdrde

L i (- 53) () + (5 (422 4 (-2

1 92w\ [ou 10w 1 0%w 10v 1 62w 1 ow) [10u
r2 692) (ar)] L3222 (_?E Tz 692) (_ ty ae) + 213512 ( corae T r_zﬁ) (r 26+
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Z—:—E)}rdrd9+f2"fft{a (3 ) (ra—‘”)} rdrd +
A 0 (52) 20 () (5 5500 # (05 +555)
b (= 5 55) frardo +307), G ) vt (5) (1) +

L552, ( + la_v) + L1 (1 i }Tdrd@ +

r a6 r89+___

1p2m b o _Pw\(u  10v)  (_1dw
e i (S50 i (52 (25 + (15
1 0°w) [Jdu 10w 1 0°w 10v 10w 1 ow) [10u
r2 692) (ar)] + L322 (_?E T2 692) ( ts ae)z+ 2L%512 ( ?arae + ﬁ%) (?% +
ov v ow 2 (10w
= —rarae + ;" [} { (39) +é(35) }rdrde
To calculate the functional, a proper displacement fields (u, v, w) has to be assumed to satisfy
the geometric boundary conditions. For instance, they can be expressed as a function of the

radial coordinate r and the polar angle 6. Now it is assumed that the displacement fields of
the flange for a deep-drawn cup have the following form [23, 24]

u(r,0) = dr cosné
v(r,0) = ersinnf (15)
w(r,0) =c(r—a)(1+ cosnb)

where c, d and e are constants. It is obvious that any admissible bifurcation mode in Eg. (15)
satisfies the boundary conditions u,v # 0 and w =0 at the inner edge r = a and the
constraint conditions w(r,8) = 0, u(r,8) = 0, v(r,0) = 0 for a < r < b. Hence, to obtain
the critical conditions for predicting onset of wrinkling with the aid of mentioned functional,
the stress distribution in each layer is required. The inner face of two-layered bears a tensile
stress p, and before wrinkling the axisymmetric conditions is assumed , i.e. (v =0, 66—9 = 0),
Figure (3), The procedure to derive the elastic stress distribution in each layer is described in
Appendix I. Inserting Eq. (15) and Eq. (Al.10) in the functional (14) and taking m = % it is
obtained that

TL’tE1
8(1-v2)

Zﬂ(tl Elz){Tl(m n,vy)cd + U;(m,n)ce} +

wtc?b?pH (m,n, Ey, Ey, vq, V) + 2mc?D,G,(m,n, v,) + ;T(ZEZ ) {0,(m,n,v,)d%+  (16)

{T,(m,n,v,)cd + U,(m,n)ce} +

F=2mc?D,G,(m,n,v,) + {Q,(m,n,v;)d* + R,(m,n,v,)de +

S;(m,n)e?} —

77:t E2
2(1-v2)

T[tCszpHZ (m; n, El: EZ' V1, VZ)

R,(m,n,v,)de + S,(m,n)e?} +

E,t

‘(u)

Eqt3

12(12-7) are the flexural rigidity of layers. It is found that

where D; = and D, =
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2

(6. Y= -2 om 41 (1) S
J(mn,vy) = 5 m+in(—)=5|n

[-(1 =v,)m? + 2In(m) —m) + 3 —v;|n?v; + 3In (%)

Q1(m,n,vy) = (1 —m?»)[(1 —v)n® + 4(1 +v,)]

{Ri(m,n,vy) =41 —m?»)(1 +v)n (17)
S;(m,n) = 2(1 — m?)n?

T,(m,n,vy) = 2min(m) + (1 —m)(1 +v)In?> + (m - 1)1 +v,)

U;(m,n) = [(In(m) —Dm +1]n3 + (m - Dn

mZ

2(1 —m?)[k2 — k2 + k2 — k2 + 2(kyks — kyky)

\Hl(m,n,El,Ez,Vl,Vz) = ]X1
and

2

(6,0 vy) = | =2 4 2m 41 (1) il
,(m,n,v,) = 5 m+in(—)=2|n

[-(1 —vy)m? + 2In(m) —m) + 3 —v;|n?v, + In (%)

Q2(m,n,v,) = (1 = m?*)[(1 —vyIn? + 4(1 +v,)]
{Ry(m,m,vy) = 4(1 —m?)(1 +vyn (18)
S,(m,n) = 2(1 — m?)n?
T,(m,n,v,) = [2min(m) + (1 —m)(1 +vy)|n? + (m — 1D(1 +v,)
U,(m,n) = [(In(m) — Dm + 1]n3 + (m — Dn

m
2(1— mB) K2 — k2 + k2 — k2 + 2(kyks — kpky)

2

HZ(mInIEllEZIVIIVZ) = ]X2

where X; and X, are as following

X1 = [2(k? — kZ + kyks — koky + kyiks — kiky)(In(m) — 1)

(kiky — koks)m? + 8(koks — kiky)m + 2(ki — k3 + kyky — koky + kiks — kyks)
(In(m) + 1) + 2(kiky — kok3)In? + 3(k? — k% + kiks — kiky — koky — kok3)m? +
6(k3 — k% + kyky + kyks — kiky — kik3)In(m) +

3(k3 — k? + kiky + koky — kiks — kok3)

19
X, = [2(k3 — k2 — kyks — kyky + kiks + kik,)(In(m) — 1) + (19)
(kyks — kiky)m? + 8(kiky — kyks)m + 2(k% — k2 — kiky — koky + k ks + kok3)
(In(m) + 1) + 2(k ks — kiky)|n? + 3(k2 — kZ + kiks + kiky — kyky — kyk3)m? +
6(kZ — k3 + kyky — kyks + kiky — kyk3)In(m) +
\3(kZ — k% — kyky + kyky — kiks + kyks)
and
{S 1(m,n) = §,(m,n) = S(m,n) (20)
Uiy(m,n) = Uy(m,n) = U(m,n)

It can be shown that the functional (16) can have the following matrix form [18]

My; M, Ms] cc

F={c d e}|Myy My, My {d} (21)
M3, Ms;, Msslte

where
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( wt*( E E, 5
M, = T<1_—v1261 + 1_—1/2262> + wth p[H1 + Hz]
1mt?b( E, E,
M, = 21 =575 <1—v22T2_1—v12T1>
1mt?b( E, E,
<M13 T <1—v22_1—v12>u
wth? [ E; E,
My, = 8 <1 12Q1‘|‘1 22Q2>
17t?h [ E, E,
M3 32 =57 g <1—v12 1 1—1/22R2>
wth? [ E; E,
M33 = S
\ 8 <1 -vi 1- v2>

The critical conditions for onset of the wrinkling are given as [18]

F =0 or Det(M;;) =0
J0F —0 or a[Det(Ml])] _

on on

From first condition it is deduced that

My, M$s + MasMZ, — 2M;, M3 M, 5
My, M3z — M2,

My, =

By inserting values of M;; from Eq. (22) in Eq. (24) it is found that

b> K
2P H

where

K(m,n,E, Ey, vy, V)= {( 2Q1 ig Qz)( Ey ) _l(
2

1- v§ 4
2
E3 1 Ey 2 4 Eq E; E;
R.) |(2 )( - U S+ T, —
1-v2 2 1-v2 Q1+ ZQZ 1-vZ 1-v2 1-v2 | 1-vZ) \1-vZ "2
2
E E E E E E E
L1y) s—( 22T2 S) (B ke + 1 Re) (12— 1) U -
1-v{ 1-v;5 1-v? 1-v 1-v2 1-v5 1-vq

%(1151 G+ - GZ)}_l

R+

1- V

and
H(m,n,E,,E;,vq,v,) = Hi(m,n,E{, E,,v;,v,) + H,(m,n, Eq, E;, vy, V,)
Now it can be said that elastic wrinkling will occur when

b? >K
t2 p H

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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For a thin circular plate of large diameter, the above elastic buckling model is possible;

however, for a small diameter thick annular plate, p may cause yielding before buckling,
when

4P(k% - k% + kiks — koky + kiky — kyks) <Y

f - k% + k% - ki + 2(k1k3 - k2k4)](1 —m?2) !

[ki — k3 + k3 — ki + 2(kyks — kok,)](1 — m?)
4(k% — k2 + kyks — koky + koky — kpky) "

4p(ki — k3 — kyks + kyky + kyky — kyk3)

2— k% +ki—ki+2(koky — kik3)](1 —m?)
< [k3 — ki + k% — k3 + 2(kyky — k1k3)](1 —m?)

1 P 4(K2 — K2 — kyks + kpky + kiky — koks) 2

)
(arl - 091)|r=a = [k

p <
(29)

2
(0-7g - 002)|r=a = [k <Y,

where Y; and Y, are the yield stresses in layerl and layer2, respectively, and plastic yield
occurs at the inner edge of the plate. Equation (29) expresses a limitation when determining
the critical load which can be written using Egs. (28) and (29) as [5]

(b >jK 4(K? — k2 + kyks — koky + kyky — koks) 1
- >

H[kZ — kZ + kZ — k2 + 2(kik3 — koky)](1 —m?) Y, “
< b jg 40 = K3 = kyks + koky + hiky —koky) 1 <0
(t = JHTKZ — k2 + k2 — kZ + 2(kyky — k1k3)](1 — m2) Y,
By considering v; = v, = v, E; = E, = E it can be shown that
s (3)
Where
(Gl =G, =G = [—E+2m+ln<i)—§]n4+
2 m 2
< [-(1 —v)m? + 2(In(m) —m) + 3 —v]n? + 3In (%) (32)

H=H,=H =

LZ(mTZ—Z—l){Kl +In (%)) m? +In (%) - 1] n?+3 (—%mz + In(m) + %)}

The result is exactly the same as elastic wrinkling of one layer circular plate under deep-
drawing process with thickness 2t as in Ref. [18].
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4 The Plastic Wrinkling of a Two-Layered Plate

In a deep-drawing process, the flange has large deflection and also contains plastic
deformation. Therefore, the plastic behavior of the material and geometric non-linearity of the
structure should be considered, simultaneously and to solve the problem, the stress-strain
relationships are required. There are two types of theory in plasticity. The first one is the
deformation theory which neglects the loading history dependency to the development of the
stress-strain relationships. In fact, this theory assumes that the stress state, o;;, can be

determined uniquely from the strain state, ¢;;, and also plastic strain, eipj, as long as the plastic
deformation continues. Because of it's relatively simplicity, the deformational theory has been
used extensively in the engineering practice for solving elastic-plastic problems. The general
validity of the deformation theory in plasticity is limited to the monotonically increasing
loading in which: (1) the stress components are increased nearly proportionally in a loading
process, known as proportional loading and (2) no unloading occurs. The second way of
utilizing the elasto-plastic analysis is based on the incremental theory. This kind of the
strategy is mostly used in the numerical material non-linearity techniques. In contrast to the
deformation theory, the loading path dependency is assured in the incremental theory [25-28].
It should be reminded that the loading in the annular plate has the proper conditions needed
for the deformation theory. In order to find a closed-form semi-analytical elastic-plastic
solution for the plastic flange wrinkling of two-layered circular plate in the deep-drawing
process, it is preferred to use the deformation theory rather than the incremental plasticity
theory.

If it is assumed that the elastic wrinkling will not occur and two layer behaves perfectly
plastic, the constitutive equation for the three dimensional solid problems used in the
deformation theory can be given as below for each layer

1
o = Lifklsz
it op2 (33)
0;j = Lijklgkl
where for a perfectly plastic material we have [25-28]
( Lel afl afl Lel
ijmn dol 9ol pqkl
1Pl =18, — mn_— b4
k= i 0fy o1 Ofy
ao- rstu 1
< rs T 00y (34)

Lez afZ afz LeZ

ijmn 2 2 “pqkl
P2 _ ez _ 005, 005,
ijkl — Mijkl afz o2 afl
\ ao—ﬁs rstu ao_tzu

By taking Tresca yield criterion as f; = o} —g5 —Y;=0and f, =02 -0 —Y, =010
have closed-form semi-analytical solution, by expanding Eq. (33) for i,j,k =1,2,3 and
simplifying the obtained expression for plane stress problem (i.e. o35 = 7,3 = 7,3 = 0) and
using Eq. (34) along with Tresca yield criterion to obtain Lf]’.’,jl and Lf}’,fl, a simple stress-strain
relation for plane stress problem can be found for each layer [18]
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( [ Ey Ey 0
ol 21-vy) 2(1+vy) e
111 E1 E1 11
0i1( = 0 €22
1 21+vy) 201 —-vy) ”
1'12 E1 12
0 0
< | 2(1+vy) (35)
[ E; E; 0
P 21—-vy) 2(1+vy) e
0121 = Ez Ez 0 EZ
" 2(1+vy) 2(1—vy) v
1"12 EZ 12
\ i 0 0 2(1 +vy)d

In this case the functional has exactly the same form of Eq. (14) and the only change is
substituting  Lf;,; with Lff’kl and using the elastic-plastic stress distribution. Taking
displacement fields (u,v,w) like Eq. (15), satisfying proper boundary and constraint
conditions is insured. Hence, to obtain the critical conditions for predicting onset of wrinkling
with the aid of mentioned functional the stress distribution in each layer is required. The inner
face of two-layered bears a tensile stress p, and before wrinkling axisymmetric conditions are
assumed, i.e. (v =0, aa_e = 0), Figure 3, The procedure to derive plastic stress distribution is
each layer is described in Appendix I1. Substituting plastic stress distribution from Eq. (All.3)
and also displacement fields in Eq. (15) and using the stress-strain relations from Eq. (35) in

the functional (14) with taking m = Z it can be shown that

_ t3c2Eim ep TtE1b? ep 2 ep
F= 2417 G, (mn,vy) + 5(1—v7) [Q5F (m,n,v1)d? + R{¥ (m,n,vy)de +
SiP(m,n,vy)e?] — :(tl Esz) [T7 (m,n,v;)cd + UP (m,n)ce| +
tc?b? t3c2E
= [pHep(m n, El! EZIvlﬁVZ) + Yl p(ml n)] + 24((:1 11T) ep(m' n, VZ) + (36)
% [Q5F (m,n,v,)d? + Ry (m,n,vy)de + S57 (m,n,v,)e?]| —
t%Exb tc2p?
:(1_5%) [T;? (m,n,v,)ed + U;P (m,n)ce] + =2 —— [pH;? (m,n, Ey, E5, v4,v,) +

Y,H,? (m, n)]

where
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]
G;P(m,n,vy) = (1 +vy) |[-m +4m+21n< )—B]n +

4—(1 — v)m? + (1 + v)(In(m) — m) + 2]n? + 6zn( ) 1 +v)
Q;P(m,n,vy) = (1 —m?)[(1 —v)n? + 4(1 + vy)]
RP(m,n,vy) =41 +v))(1 —m*H)n
S{P(m,n,vy) = 4(1 + vy)(1 — m?)n?
TP (m,n,vy) = 2{[(1 —m)(1 + v;) + 2min(m)In? + (m — (1 + v,)}
QUP(mn,vy) = (1 +v){[(In(m) — Dm + 1]n3 + (m — 1)(1 + v,)} (37)
HP(m,n, Ey, By vy, v,) =
4(kyks — kiky)m?
(k3 — kf + k§ — k3 + 2(kzky — kqk3)](1 — m?)

{[(3 + 2In (%)) m? —4m+1|n? +3(1 — mz)}
HP(m,n) = {[(ln (i)>2 +In (i) +1
\ m m 2

f

2_ 1 2+[31() 3] 2+3
m 21’1 nm zm >

and

p(mnvz)—(1+v2)[ m +4m+2ln( )—3]n +

4[—(1 —v,)m? + (1 + v,)(In(m) — m) + 2]n? + 6ln( ) 1+vy)
Q5" (m,n,v,) = (1 —mH)[(A = v)n® + 4(1 + v,)]
RP(m,n,v,) = 4(1 +v,)(1 —m?)n
Sy (m,n,v,) = 4(1 + v,)(1 — m?)n?
T,P (m,n,v,) = 2{[(1 —m)(1 + v,) + 2min(m)In? + (m — 1)(1 + v,)}
QUL (m,n,v,) = (1 + v){[(In(m) — Dm + 1]n® + (m — 1)(1 + v,)} (38)
H,P(m,n,Ey, Ey,vy,v,) =

4(kyks — kiky)m?

[k% - k% + kﬁ - k% + 2(kyky — k1k3)](1 —m?)

{[<3 +2in <%)> m? — 4:n + 1] n2 +3(1— mZ)}
o= (oG )

From Eq. (38) it can be seen that

1 3 3
2 _ (.2 — 24
m Z}n + [3ln(m) Z]m + >

{pr(m, n) = Hy?(m,n) = H° (m,n) (39)

7ep — jep
H1 (m,n,El,Ez,Vl,Vz) = _HZ (m,n,El,Ez,Vl,Vz)

Hence, the functional (37) can take the matrix form of Eq. (21) as
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( ntd ([ E; E, mth?
My = —— GP+——=G;"
H 24(1—1/12 T )T
imnt’h( Ey o, Ex o
Mz =M1 =573 (1—v22T2 1o
1nt’b [ E E
Mz =Mz, =5 22U2ep_ 22U1ep
2 4 \1-v; 1-v;
] 2 (40)
Mon = mth E; E, ep
227 8 \1-v2 1z v2 @
17Ttb2 E, E,
Maos = Ms2 =573 (1—vafp+1—v§R5p>
wth? [ E; E,
Ms; = SiP + S;°
33 8 (1—1/12 b1 —y2m?
and
Y=Y,+Y, (41)

With using the first condition of Eq. (23) it can be shown that

1t Hep
f? AN (42)

in which H®P is presented in Egs. (38) and (39) and K°? is as following

_ Ey ep E; ep E1 cep E; cep
Ker Ey E, vy, v _( Lz )(
(m,n, Eq, E3,v1,v5) 2 2% ) 281t > —=S5,

1( Ey Rep+ fz Rep) [( Ey fp+ Ep ;p)( Ep Uep _E1 Uep) n

4 \1-v2 1-v2 1-v3 1-v3 1-v2
E ' E E E E E E (43)
(257 + 2% Sep)( 2_TeP _ grf”) —( e rer _ B Tep)( LR +
1-v?2 1-v2 1-v32 1-vq 1-v2 1-v?2 1-v?2
-1
E; Lep E; ep _ _Ei ep ep ep
R?) (s ;
1-v3 2 1-v3 z U 1-v2 Uy ~3\- 2

Then wrinkling takes place when

1t Hepr
j;E <2 e (44)

If two layers have the same properties as E; =E, =E and v; =v, =v it yields
M,, = M,; = M;5 = M3; = 0. After simplification we have

Et 5 HeP
\/;B = \/—3(1 —v )GeP (45)

in which
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‘

Gfp=ae”—aep—(1+v)[ m +4m+zzn( )—3]n +
J4[-(1 = v)m? + (1 +v) + (In(m) — m) + 2}n? +6zn( )@ +v) (46)
H®?(m,n) = { (ln (%))2 +In (%) +% m? — %}nz + [BZn(m) - E] m? +;

That is exactly as one layer with thickness 2t as in Ref. [18].

5 The Analysis with Blank-holder

According to the Figure (1), when a spring-type blank-holder is used, it provides a lateral load
proportion to the lateral deflection of the annular plate. By assuming the spring coefficient of
the blank-holder K, the total spring stiffness has the following form

S = Kn(b? — a?) (47)

If the effects of the blank-holder are considered, the bifurcation functional can be established
as below [5, 18]

( fznf: t3 Ll]le K, rdrd6 + = onf tLS e rdrdf —
—fznf t? LUle e rdrdd + = f f tojiww; rdrd@)

2 2
(_f nf lelKu klrdrd9+ fnf th]klgufledee‘F (48)
fznf tzLUle sklrdrde + = f f tojw,;w; rdrdB) + = K(umax + V2 +
Wmax)

Again with taking displacement fields (u, v, w) like Eq. (15), satisfying proper boundary and
constraint conditions is insured. The maximum of displacements can be calculated as below

Umax = drcosn8|r=p = db
6=0
Jvmax = ersinn9|er_=£ =eb 49)
—2n
meax =c(r—a)(1+ cosn9)|g=a =2c(b—a)
=0
The additional term due to blank-holder energy in functional become
1 2 1-m, 1 S 2, ,2
EK(umax-l'vmax-l'Wmax)_n_Sl_l_mC +%m(d +e“) (50)

Finally, the functional can take the matrix form of Eq. (21) where
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(M _ T[t3 El Gep + E2 Gep + T[tbz HEPY + ZS 1 —-m
24 \1-02t 102 2 m 1+m
int*b( E, _, E,
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2= 72l 7o 2 <1—v22 2 1—v2t
1nt’b ([ E, E, NES
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) 13 2 4 <1—v22 SR L VR 271(1 m2)
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23 272 8 <1—v12 i1 —v22
nth? [ E, E, 1 S
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33 8 (1—1/12 b1 -2 2n(1 m2)

21

(51)

except My, M5, and M35 which have extra terms, other components of M;; are the same as

Eq. (40), and Y is as below
Y = Yl + YZ
with using the first condition of Eq. (23) we have

1t_2 Hep
Yb " |Kep

where H¢P was defined in Eq. (38-39) and K P is as below

E 4

Kep(m,n,El,Ez,Vsz):{( V2 fp-l' =

ep
122+

E; cep 4 _ 1 ep Ez ep
1-v32 S+ n2(1-m?2) IPZ) 4 (1 -v? Ry + R ) [(1

7-[2(1_

m?2)

Eq

VZ

WZ) (13%

ep
S

E3

) (U -2 Uep) +( S S
- -

)+

11/1)}_1

m2(1-m?2) 1-v 1-v?

n2(1-m?2) 1-v35 12 -v? 1-2 -v32 T 12
EZZRSP)( E; Uep E12U16p)] _1( Eq Gep + E;
1-v; 1-v2 1-vq 3 \1-v?
where
S
V=3
W S
27 b2t

Hence, wrinkling will occur when

V

Ge”

48 1-m

2 1+m

1-v

S+

ep
5 +

(52)

(53)

(54)

(55)

(56)
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If it is assumed that the two layered have the same mechanical properties, by taking

S
2 57
V= (57)
and simplifying the relations described before, it can be shown that
Et _ a1 5 Hep
I I s ey (59)
2" 14+m

which is exactly the same as one layer circular plate with thickness 2t as in Ref. [18].

6 Results and Discussions

Taking E; = 200 GPa and v; = 0.3 for steel and E, = 70 GPa and v, = 0.25 for aluminium
and also ¥; = 10'7,¥, = 6.25 x 103 and % = 40, in the following the critical conditions for
elastic-plasticflange wrinkling in a two-layered circular St-Al blank under deep-drawing
process are investigated.

The second condition in Eq. (23) yields to Z—Z = 0, contrary in one layer, in a two layered

there is no explicit root for finding n., i.e. critical wave numbers [18]. To find n,., firstly
with using Eq. (25) and Egs. (42) and (53) lz—jp versus 1 —% and 1 —%versus \/%% is drawn
for different values of n for elastic, plastic and plastic with blank-holder wrinkling

respectively, Figures (5) , (10) and (15). Then using the envelope of these curves it is possible

to obtain the curve of n.. versus 1—% by least square method which gives n =

—0.6652

a . a\ 0719 .
2.8627 (1 — Z) , Figure (6), n = 2.7588 (1 — Z) in Figure (11) and n =

—0.5605
5.689 (1—%) in Figure (16) for elastic, plastic and plastic with blank-holder

wrinkling, respectively.

¥ 10

wfe fef7/6fsm=a |

—

4+ -

1 1 1 1 1 1 1
u] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1-alhb

Figure 5 Elastic wrinkling load for different values of n.
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Figure 6 Number of waves produced in the flange for elastic wrinkling.
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Figure 7 Condition of elastic wrinkling.
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Figure 8 Comparison of Figures 5 and 7.



24 Iranian Journal of Mechanical Engineering Vol. 14, No. 2, Sep. 2013

w10
| :
14+ ] I'f i
/
1 /
12+ '| BUCKLED ,l' g
l /
10F E
N /
e /
o
o BF T
5 L !
— St-5t
5 S — — AkAl
4 \ - . - -~ St-AlH
—— UNBUCKLED
2 1 1 1 1 1 1 1

1
0 01 0z 03 0.4 0.5 06 07 ns
1-a/lb

Figure 9 Comparing the elastic wrinkling of St-St, Al-Al and St-Al
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Figure 10 Onset of plastic wrinkling for different values of n.
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Figure 11 The wave generated for laminated St-Al in plastic wrinkling.
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Figure 12 Onset of plastic wrinkling for laminated St-Al.
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Figure 13 Comparison between the results of Figs. 10 and 12.
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Figure 14 Comparison between the onset of plastic wrinkling for St-St, Al-Al and St-Al.
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Substituting these critical values in Egs. (25), (42) and (53) and using the inequalities in Egs.
(28), (44) and (56) the wrinkling loads and limitations can be determined in Figures (7), (12)
and (17) for elastic, plastic and plastic with blank-holder wrinkling, respectively. In Figures
(8) and (13) it is deduced that our solutions in Figures (7) and (12) are envelopes of curves
with different n in Figures (5) and (10) for elastic and plastic wrinkling. For plastic wrinkling
with blank-holder also this result can be shown.

1-afhb

S ¥ th e

Figure 15 Onset of plastic wrinkling for different values of n with blank-holder.

%=5689 (1- %)-“6”5

a

1 1 1 1 1 1 1
0 0.1 0z nz 0.4 0s 06 07 ne
1-alhb

Figure 16 The wave generated for laminated St-Al in plastic wrinkling with blank-holder.

In Figures (9), (14) and (18) the buckling limitation of laminated St-St, St-Al and Al-Al are
compared and it can be deduced that limitation load for buckling is as following: St-St > St-Al
> Al-Al. As it can be seen in Figures (19) and (20), the blank-holder influence on number of
the wrinkles and also limitation of the buckling are shown. For the constant values of (1 — %)

it is observed that with increasing the blank-holder force the wave number increased and the
onset of buckling postponed.
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Figure 17 Onset of plastic wrinkling for St-Al with blankholder
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Figure 18 Comparison between the onset of plastic wrinkling for St-St, Al-Al and St-Al with blank-holder.

Increase in
blank holder force

1 1
0 0.1 0z 03 0.4 05 0B 07 0.8 [IR=}

] 1 1 1

T-a/b
Figure 19 The effect of blank-holder force in the generated wave number for St-Al in plastic buckling.
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Figure 20 The effect of blank-holder force on critical plastic buckling load for St-Al.

To show the accuracy of the presented theoretical method, the numerical modeling of the
problem is presented. To model the plastic wrinkling of a two layered St-Al, the
Abaqus/Explicit 6.10 software is employed. The shell element of S4R, with 4-node doubly
curved thin or thick shell and reduced integration, hourglass control and finite membrane
strains is used. Figures (21) and (22) show a view of deep-drawing model and the generated

waves for 1 — % =03and1 —% =0.5.

Figure 21 Modeling of deep-drawing process of a two layered sheet metal.

The number of generated waves in plastic wrinkling obtained by the presented theory and
Abaqus are compared to each other in Table (1) and almost good agreement between results
can be observed.
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(@)

29

(b)

Figure 22 The wave generated in the wrinkling of laminated St-Al, (a) 1 —% =03,(b)1- % = 0.5.

Table 1 Comparison of number of generated waves in plastic wrinkling of St-Al obtained by presented method
and Abaqus simulation.

1.8 Number of generated wave from presented Number of generated wave from
b method (Nrheoriticar) ABAQUS (nAbaqus)
0.1 16 14
0.2 10 9
0.3 8 7
0.4 4 5

7 Conclusions

A closed-form semi-analytical elastic-plastic solution for predicting the critical wave number
and load in deep-drawing of a two-layered plate the bifurcational function which proposed by
huchinson improved using Tresca yield criterion alongwith plastic deformation theory with
considering perfectly plastic behavior of materials. Moreover, the influence of blank-holder
can be quantitatively predicted by the suggested scheme. It is shown that by simplifying the
proposed solution from two layers to one layer, a good agreement with previous
improvements in one layer can be achieved.
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Nomenclatures

a inner radius of the flange
b outer radius of the flange
E:  Young modulus
f:  vyield criterion
F:  Dbifurcation functional
K:  stiffness of the blank-holder
ijki- elastic coefficient matrix
ijki-  Plastic coefficient matrix
M;; . moment resultants
n:  wave number
N;; . force resultants
S:  blank-holder force
t:  thickness of the plate
u,v: in-plane displacement field
w:  wrinkling displacement
W:  width of the flange
Y
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(Al.1)

yield stress
Greek Symbols
si"j: stretch strain tensor
&j- Lagrangian strain
aij: stress
Kij: curvature tensor
v Poission ratio
A L Lame constants
Appendix |
Strain-displacement relations in middle plane of the laminated are as following
du
Epp = —
T dT‘
u
Egp = —
66 =

Equilibrium equations in each layer is

1 1 1
do; o0y — oy

a0 T

2 2 2
dos 0§ — 0F

dae r

0

0

(Al.2)
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Inserting Eq. (AlL.1) in Eq. (11) yields to

1 du u

0, = klgrr + k2899 = kl% + kz;

1 du u

0-9 = kzgrr + klggg ES k2 E + kl ;
Al.3
2 o (AL3)

o, = k38r7~ + k4899 = k3 E + k4;

) du u

i 0-9 = k4,grr + k3899 ES k4E + k3;

E V1 E E. VyE:
where, k; = L§1;, = __11,%» ky = LS50, = li_vl%'k3 =L = 1__:,%'1‘4 = L552, = 13_1/2%

Substituting Eq. (Al.3) in Eq. (Al.2) for each layer yields to famous Navior equation as
bellow

2
du 1ldu u (AlL4)
With considering z = Inr the above equation can be solved as
B
u = Ar + ? (A|5)

where A and B are constant that can be obtained from boundary conditions. Inserting this
relation in constitutive equations (Al.3) gives

r( k, —k
ol = (ky + ky)A + Zrz 'B
3
1 _ k2_k1
" T_k (AL.6)
02 = (ks + kA + ZTZ 'B
], ey — ks
| 0-9 == (k3+k4)A_ TZ B

To find two unknowns, two boundary conditions are required, i.e. summation of radial forces
in two layered in inner face r = a is equal to p2ma(2t) and in outer face r = b is zero as

{aﬂr:a 2mat + 072 |,=q2mat = p2ma(2t) (ALT)
0} |y=p 2mht + 02|y=p2mht =0 '

Finally it can be shown that
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kz_k1+k4_k3

ky — klc-ll—zk4 — ks {g} = {259} (AL8)
b2

Ky + Ky + ks + Ky

ky+ ko + ks + ky
where
ky —ky + kg — ka1t

ki+k,+ks+k
A 1 2 3 4 2 2p
a { } (AL9)

BS ~ ky — Iy + ky — k 0
ky +ky+ ks +k, — 1b24 >

The elastic stress distribution in two layered can be found with substituting A and B from Eq.
(Al.9) to Eq. (Al.6) as following

(( 4 2a’p
O' =
' [ — K3 + K3 — ke + 2(kiks — koky)] (b* — a2)

b
rZ

((ki — K3 + kiks — kaky + kyky — koks)

— (K2 = K3 + eyks — kegky — ks + k2k3))
—2a%p
[ki — k5 + K5 — K5 + 2(k1ks — k2k4)] (b? - a2)
((k% — I + kyks — kegky — kyky + koks)
_I_
\
(

ol =

b
(K — K + keakes — koka + kg — kzkg)r—2>
) (Al.10)
g2 = 2a°p
B =i I = IS+ 20kaks — kika)| (b — a?)

b

rz

((ki — K5 — kiks + keakes + kyky — koks)

— (K3 = K3 = ks + kkey — hykey + k2k3)>
—2a’p

|5 — I + K — K5 + 2(koky — kik3)| (b7 — a2)

((ki — I — yks + ok — kyky + koks)

05 =

b
U + (Ki — k3 — kiks + koky + kiky — koks) )

"/'2

If two layers have the same mechanical properties, by simplifying the above relations it can
be shown that this stress distribution is the same as one layer plate in Ref. [5, 18].
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Appendix |1
Using Egs. (35), (Al.3) and (Al.2) it can be shown that
1

1
—Yzln< >+A2

where A; and A, are constants that can be found with applying proper boundary conditions as
following

(All.1)

(All.2)

epl
|r b — Gr |r b
ep2

Ir b — ar |r b
Inserting A; and A, from Eq. (All.2) into Eqg. (All.1) yields the plastic stress distribution in
each layer
f Vi (b) am?(kik, — kyk3)p
) 1 [k2 — k2 + k2 — k2 + 2(k1 ks — kpk,)](1 — m2)
GZ=Y [ln( ) 1] 4m?(kiky — koks)p
. [k2 — k2 + k2 — k2 + 2(k1 ks — kpk,)](1 — m2)
Vin (b) am?(kik, — kok3)p

2 [k2 — k2 + k2 — k2 + 2(k1ks — kpk,)](1 — m2)

_v [ln( ) _ 1] 4m?(kyky — koks)p
L % = Yo [k2 — k2 + k2 — k2 + 2(k,k3 — koky)](1 — m2)

(All.3)

Again, if two layers have the same mechanical properties, by simplifying the above relations
it can be shown that the stress distribution is the same as one layer plate in Ref. [5, 18].
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