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1   Introduction 

 

Today, functionally graded materials (FGMs) play an important role in the aerospace industry 

due to their high thermal and mechanical properties.The main application of FGMs is in high 

temperature such as automotive, aircrafts, turbine rotors, flywheels, gears etc. In these 

materials, the volume fraction of the two or more materials is varied steadily and 

nonhomogeneously as a function of position along thickness. Usually, a ceramic is used 

attheouter surface and a metal is used to anothersurface, which the volume fraction changes 

steadily. Within FGMs the different microstructural phases have differentfunctions, and the 

overall FGMs attain the multistructural status from their property gradation. By gradually 

varying the volume fraction of constituent materials, their material properties exhibit a smooth 

and continuous change from one surface to another [1]. 

Rotating discs are widely used in various applications in aerospace industries such as gas 

turbines, jet engines, flywheels, cars, pumps, compressors etc. Rotating discs are usually 

operating at high angular velocities and subjected to thermo-mechanical loadings. Recent 
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studies have shown that, at the same angular velocity, the stresses developed in a rotating disk 

(hollow or solid) with variable thickness are much lower than those of a disk with uniform 

thickness [2]. 

Naghdabadi and HosseiniKordkheili [3] have derived a finite element formulation for the 

thermoelastic analysis of FG plates and shells. They assumed the power law distribution 

model for the composition of the constituent materials in shell thickness direction. 

Bayat et al. [4] implemented a semi-analytical method to elastic analysis of functionally 

graded rotating disk with variable thickness (see Figure (1)). The material properties and disk 

thickness profile are assumed to be presented by two power-law distributions. Results 

revealed that, in functionally graded rotating disk with parabolic or hyperbolic convergent 

thickness profile, stresses and displacements are smaller than that with uniform thickness 

profile. 

This work aims to use variable material properties theory for analyzing the stress behavior 

of rotating discs made of functionally graded with variable thickness and constant angular 

velocity under thermo-mechanical loading. For this purpose, the domain is divided into some 

finite sub-domains in the radial direction, in which the properties are assumed to be constant 

and the form of the elastic response is used to solve elastic-plastic problems. The results 

obtained by the VMP method are then compared with the results obtained by the finite 

element analysis using ANSYS software. 

Finally, the effect of various parameters including the thermal distribution andthickness 

profile on the stress behavior of disk was investigated. 

 

 
Figure 1Configuration of a thin disk with variable thickness [4]. 

 

 

2  Mathematical model 

 

2.1 Gradation relation 

 

A functionally graded rotating disk (inner radius ir , outer radius or , and angular velocity  ) 

made by mixing two distinct material phases, for example a metal and a ceramic, is 

considered with cylindrical polar coordinates r, θ, and z (see Figure (1)). It is assumed that, 

the volume fraction of metal and ceramic follow a simple power law: 
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Where 
CV and 

mV are the volume fractions ofceramic and metal, respectively the volume 

fraction index N dictates the material variations profile through the FGM. 

So, the effective material properties of the FGM layer, 
fP , such as Young’s modulus, 

Poisson's ratio, thermal expansion coefficient, density, yield strength, and tangent modulus 

can then be expressed as: 

f m m C CP P V P V   (2) 

Where 
mP  and 

CP  are the material properties of ceramic and metal, respectively. 

 

2.2 The Disk Model 

 

A functionally graded rotating disk (inner radius
ir , outer radius 

or and angular velocityω) 

made by mixing two distinct material phases, for example a metal and a ceramic, is 

considered with cylindrical polar coordinates r, θ,and z. Its thickness profile vary radially in a 

form given by 

( ) (( ) )m

o

o

r
h r h

r

  (3) 

Where m and 
oh are geometric parameters. m can be negative or positive and

oh  is the 

thickness at the axis of the disk.  

Different forms of thickness profile of disk with negative, zero, and positive values of m  are 

shown in Figure (2). It can be seen that the profile is convergent for 0m   and divergent for 
0m  . By considering 0m  , constant thickness is obtained. 

 

 
Figure 2 Thickness profile of disk (a) convergent, (b) divergent, and (c) constant. 

3 Formulation of the problem 

 

3.1 Governing equations 
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Despite the thickness and properties of the rotating disk, the relations between the radial 

displacement, u , and the strains are 

r

du

dr

u

r










 


 (4) 

Where r and  are the total radial and hoop strain, respectively. 

For disk with cylindrical coordinate system, the stress components are defined on the 

differential element shown in Figure (3).   

 
Figure3  Stress components in cylindrical coordinates. 

 

 

Because the thickness of disk is considered to be small in comparison with its diameter, the 

problem is assumed to be plane stress. On the other hand, the inertia force due to the angular 

velocity of the disk is the only body force and because of symmetry, r vanishes. Thus, the 

equilibrium equation is reduced to [5] 

The equation of equilibrium is [5]: 

2 2( ) 0r

d
hr h hr

dr
       (5) 

Where ,, rh  and  are thickness, radial stress and hoop stress, respectively. 

The deformation of the rotating disk consists of three components: elastic (
e ), plastic (

p ), 

and thermal (
T ) strains. Total strains are the sum of these components: 

e p T
ij ij ij ij       (6) 

((1 ) ) ,e
ij ij kk ij E        (7) 

( 3), 3 2p p

ij ij ij kk eq eq           (8) 

T
ij T    (9) 

p

eq is the equivalent plastic strain and eq is the equivalent stress. Our analysis is based on von 

Misses yield criterion and eq is given by: 

2 2

eq r r         (10) 

 

Eq. (6) can be rewritten in the following form: 
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1 eff efftot

ij ij kk ij
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(11) 

 

In this work, an elastic linear hardening [5] model is used for modeling the stress–strain 

relationship of the material (Figure (4)). 
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Where 
0  and 

tE are the yield strength of the material and tangent modulus, respectively. 

Therefore following relation is obtained for total strain: 

 

1 1

3

tot
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(13) 

 

Here, eff and effE  the effective Poisson ratio and effective Young’s modulus, depend on 

the final state of stress at a point and given by 

3 3
,

3 2 3 2
eff eff

E E
E

E E

 


 


 

 
 (14) 

 

 

Figure 4  Idealized stress-strain curve for linear hardening materials [5] 

 

 

3.2 Variable material property theory 

 

In variable material property theory, the domain is divided into some finite uniform sub-

domains in the radial direction (see Figure (5)), each annulus having the constant thermo-

mechanical properties and boundary conditions with internal and external pressures as well as 

temperatures. Then, the form of the elastic response is used to solve elastic-plastic problems 

[6]. 
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Figure 5 (a) Rotating disk with boundary condition, (b) a ring of rotating disk with its boundary condition. 

 

 

In this theory, the form of the elastic solution is used to solve the inelastic problem [5]. 

For this purpose, first, we should obtain the thermoelastic solution of the disk. 

For plane stress: 
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where ,E ,  and   are the mechanical and physical properties of each annulus,   is the 

angular velocity of disk, h is the uniform thickness of each annulus, 1r  and 2r  are the inner 

and outer radiuses, 1F  and 2F  are the internal and external forces, and T is the temperature 

profile in each annulus.  

By setting 1r r and 2r r , 
1u (displacement at inner radius of each annulus) and 

2u

(displacement at outer radius of each annulus) can be obtained, respectively. 

Boundary conditions of disk are continuity of displacements and forces in common radiuses 

of  neighbor strips and total boundary conditions of disk, namely:
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All of above matrix equations for each strip and boundary conditions in interior and 

exterior radiuses of each annulus and disk a set of linear equations is constituted. By solving 

this set of equations, displacements and forces at common boundary be obtained. 

After obtaining the forces in each layer, radial and hoop stresses can be determined by: 
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Thermal loading are assumed in this form: 
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To employ the VMP method, effE and eff should be substituted in the relations of elastic 

solution. 

To evaluate the 
effE and

eff , an iterative manner is needed [7]. This iterative manner will 

be continued until the eq eq  matches on the true stress-strain curve with a small tolerance. 

There are three schemes to evaluate the spatial distribution of 
effE and eff

: (a) Projection 

method, (b) Arc-length method, and (c) Neuber's rule [7]. 

In this study, to evaluate the effE and eff in each strip, projection method is used to update the

effE and eff . In this method, as shown in Figure (6), first, after obtaining elastic solution of 

disk and comparing of equivalent stress and yield stress, if eq is greater than 
0 (yield stress) 

point “a” is developed in true stress-strain curve. From point “a” with the same value of 
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strain, point “a’” is produced by projecting on curve of plastic region of material. Then new 

effE is determined by ' '( ) ( ) ( )eff new a aE   . By using of new effE , this procedure will be 

continued until the eq - eq matches on true stress-strain curve with a small tolerance. It 

should be noted that if eq is smaller than yield stress, previous determined effE and eff

should be used. 

 

 
Figure 6  Projection method [4] 

 

 

4   Finite element analysis 

 

In the analysis of the disk, which thickness is small in comparison with its diameter, plane 

stress state is considered. In finite element analysis, commercially availabe software, ANSYS, 

is employed. PLANE42 elements are used to geometric model of disk. In the software, the 

disk is divided into some finite sub-domains in the radial direction, in which the properties are 

assumed to be constant. By use of APDL (ANSYS Parametric Design Language), the disk 

layers with different properties are modeled and boundary conditions are applied. 

Subsequently, the results of the finite element model are compared with the results of VMP 

method. 

 

5  Numerical Results and Discussion 

 

For numerical illustrations, one set of material mixture is considered. Theinner and outer 

surfaces of the FG disk are assumed to be metal-rich and ceramic-rich, respectively. Material 

properties of constituents in the inner and outer radiuses are presented in Table 1, referred to 

as mat_1 and mat_2, respectively. For this example, the disk geometric parameters are 

0.1mir  and 0.5 mor   as the inner and outer radiuses, respectively. Thickness profile is 

assumed to be nonlinear function of radius value of eq. (3), with 0.02oh  and 0.5m  . 

Table 1 Properties of constituents of FG rotating disk. 

 Young's 

modulus 

(GPa) 

Tangent 

modulus 

(GPa) 

Poisson's 

ratio 

Density 

(kg/m3) 

Yield 

strength 

(MPa) 

Thermal expansion 

coefficient (1 °C ) 

mat_1 69 27 0.34 2715 150 23×10-6 

mat_2 115 57 0.293 4515 1030 8×10-6 
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We first study the convergence of the VMP theory and FE analysis for the given properties 

between the inner and the outer surface of the disk. It’s find that for n=30 (number of 

divisions), in VMP theory and FE analysis, the responses are converged. 

Then, in Figures (7) and (8), we obtained the effective modulus and Poisson’s ratio of disk 

at T=350°C. In these figures, we compared the elasticity and effective modulus and Poisson’s 

ratio. As mentioned before, if the radius of disk does not inter to plastic region, the effective 

and elasticity modulus will be the same. As shown in this figures, from inner radius to 

0.147r m , the disk is under plastic strain. It’s obvious that in this region, duo to plasticity, 

effective modulus is smaller than elasticity modulus and effective Poisson’s ratio is more than 

Poisson’s ratio.   

Then, by use of these values for effective modulus and effective Poisson’s ratio, the results 

obtained from VMP theory and FE analysis are presented and compared in Figure (9) for 

radial and hoop stresses, respectively. As observed in these figures, these two methods are in 

good agreement. Maximum differences between them are 4.5% and 9% for radial and hoop 

stresses, respectively. 

 

 
Figure 7  Effective modulus of disk at T=350°C 

 

 

 

 
Figure 8  Effective Poisson’s ratio of disk at T=350°C 
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Figure 9 Comparison of VMP and FE results for stresses 

 
 

In addition, radial and hoop strains of the mentioned disk are plotted in Figure (10). 

Clearly, the comparison is reasonably well and the maximum difference between two 

methods are 1.8% and 1.4% for radial and hoop strains, respectively. 

 

 
Figure 10 Comparison of VMP and FE results for strains 

 

Radial displacement of the disk are plotted in Figure (11). Clearly, the comparison is 

reasonably well and the maximum difference between two methods is 0.16%. 

 

 
Figure11  Comparison of displacement between the finite element method and VMP  
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The effect of temperature gradient on the effective Young's modulus, radial stress, and hoop 

stress has been shown in Figures (12-14), respectively. For simplicity of numerical 

calculations, the temperature at the inner surface remains unchanged, i.e. 0°CiT  ; and the 

temperature at the outer surface is changed. 

The previous research on the uniform rotating disk reveals that the yielding initiates from 

the inner radius [5], while as is presented in Figure (12), plasticity in FG disk could be 

initiated at any point.        

 
Figure 12  Effect of temperature gradient changes on the effective Young's modulus of FG rotating disk. 

 

From  Figure (13), it can be seen that in lower temperature gradient, the value of hoop 

stress at the inner radius are larger than that at the outer radius and with increases in 

temperature gradient, the maximum value of hoop stress occurs at the outer surface of the 

disk. 

Furthermore, there exists two points on the domain, i.e., 0.216mr   and 0.46mr  in 

which the changes in the temperature gradient have no effect on the hoop stresses.   

 

 

 
Figure 13  Effect of temperature gradient changes on the hoop stresses of FG rotating disk. 
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From Figure (14), it is found that the radial stresses increase as the temperature gradient 

between the inner and outer surfaces of the disk increases; and the location of maximum stress 

approaches to the inner radius. It can also be seen that radial stresses have the same value at

0.4mr  . That means there is an interior radius in the disk in which the temperature gradient 

has the least effect on radial stresses. Passing through this point, the effect of temperature 

gradient on radial stress reverses. 

 
 

 
Figure 14  Effect of temperature gradient changes on the radial stresses of FG rotating disk. 

 

 

Figure (15) shows the effect of different profile thickness on radial stress with changing m

in eq. (3). In this hyperbolic profile, for 0m  , the profile is divergent and for 0m  , the 

profile is convergent. The constant thickness is obtained for 0m  . This figure shows that the 

disk with divergent or convergent profile, have smaller maximum radial stress than that with 

constant thickness. It can also be seen that for both divergent and convergent thickness profile 

of disk, the radial stress decreases as the order of hyperbola, m , increases.  

 
 

 
Figure 15 Effect of disk profile on radial stress 
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6 Conclusions 

 

In this paper, thermoplastic analysis of FGM rotating disk with variable thickness is solved by 

using the variable material property theory. In this method, we use of elastic response to solve 

the inelastic problem, with substitution appropriate effective modulus that obtained from true 

stress-strain curve. The results obtained by the VMP method are then compared with the 

results obtained by the finite element analysis using ANSYS software. The results reveal that 

mentioned methods are in very good agreement in both elastic and plastic states.  

Finally, the effect of temperature gradient and thickness profile on the stress behavior of 

disk was investigated. The results show that these parameters have significant effects on stress 

behavior of the disk and discs with variable thickness profile have smaller stresses than those 

with constant thickness. 
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Nomenclature 

E Young’s modulus 

Et tangent modulus 

F force per unit of length 

h thickness profile 

ho thickness at the axis of disk 

m geometry property 

mat_1 refer to material at the inner radius of disk 

mat_2 refer to material at the outer radius of disk 

N grading index 

r refer to radial direction 

ri inner radius of disk 

ro outer radius of disk 

Pc material property of ceramic 

Pf FG effective property 

Pm material property of metal 

u radial displacement 

Vc ceramic volume fraction 

Vm metal volume fraction 

 

Greek symbols 

T thermal gradient 

e elastic strain 

p plastic strain 

T thermal strain 

r radial strain 

θ hoop strain 

θ refers to hoop direction 

 Poisson’s ratio 

 mass density 

σ0 yield strength 

σr radial stress 

σθ hoop stress 

ω angular velocity of disk 
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 چكيده
 

با ضخامت متغیر و تحت سرعت زاویه ای  FGM تحلیل ترموپلاستیک دیسک های دواردر این مقاله، 

( بدست می آید. در این VMPیکنواخت ارائه می شود. پاسخ ها با استفاده از تئوری خواص مادی متغیر )

شعاعی تقسیم بندی می شود. در این تئوری، ابتدا دیسک مورد بررسی به چندین زیر محدوده در راستای 

-زیر محدوده ها خواص ثابت فرض می شود و از فرم پاسخ الاستیک برای برای حل مسائل الاستیک

پلاستیک استفاده می شود. این نتایج با نتایج به دست آمده از تحلیل اجزای محدود حاصل از نرم افزار 

روش های مذکور هم در حالت ترموالاستیک و هم در انسیس مقایسه می شود. این نتایج نشان می دهد که 

حالت ترموپلاستیک، تطابق خوبی با یکدیگر دارند. در پایان، تاثیر پارامترهای متعدد شامل توزیع حرارتی و 

 پروفیل ضخامت بر رفتار تنشی دیسک بررسی می شود.

 

 


