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Calculating Stress Intensity Factor for
b Ghaffar Somese: Small Edge Radial Cracks on an
' w.scsudent fOrthotropic  Thick-walled  Cylinder
Subjected to Internal Pressure using

the Average Stress

In this paper, the problem of calculating the stress intensity
factor (SIF) for an orthotropic thick-walled cylinder with a
small radial crack subject to internal pressure is considered.
The crack is assumed to be an edge crack on the external radius
of the cylinder. The stress intensity factor is calculated by
superposition of an uncracked cylinder with uniform stress
distribution and a cylinder with a small radial crack. To
calculate the stress distribution in the small radial crack, basic
assumptions of the Linear Elastic Theory have been used. Due
to the small length of the crack, an average stress method with
a proper weight function is then used to evaluate the stress
H. Mahbadi* fintensity factor of the assumed crack problem. Simplifying the
Assistant Professor @l nroposed formula for orthotropic cylinder to the isotropic one,
the results are validated against data given in the literature
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1 Introduction

Brittle fracture is considered a serious threat to structures, particularly important structures
such as aircrafts, bridges, pressure vessels, etc. Problems associated with cylindrical
geometries having small cracks have wide applications in industry and many researches have
been done on these problems. Shannon’s work [1] is as an example of such works, where the
stress intensity factor is calculated for a radial crack on a thick-walled cylinder with two
cracks on the two ends of the diagonal of the cylinder, for various radial ratios using the finite
element method.

Delale and Erdogan [2] presented the exact formulation of the plane elasticity problem for a
hollow cylinder or a disk with a radial crack, and considered all three cases of the crack being
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on the external edge, internal edge, and embedded crack in their work. Sekine and Kuizumi
[3] solved the problem of stress intensity factor for an embedded crack on a homogeneous
orthotropic thick-walled cylinder subject to internal pressure, using the dislocation method.
Ma et al. [4] applied the weight function method to obtain the stress intensity factor of a
hollow cylinder. Pastrama and de Castro [5] exploited the fact that if a complete solution (the
crack face displacement and the stress intensity factor) to a crack problem for one loading
system is known, then the solution for the stress intensity factor for the same cracked
configuration, but with any other loading, may be obtained directly from the known solution.
Shlyannikov et al. [6] used the finite element method in two and three dimensions to study the
fatigue crack growth and calculated the stress-strain relations and stress intensity factor of
turbine disks. Wang [7] used the finite element method to calculate the dynamic stress
intensity factor in a cracked thick-walled cylinder, presenting interesting computational
patterns. Papadopoulos et al. [8] calculated the stress intensity factor for first crack mode on a
reinforced crack, using the finite element method and the ANSYS FE program. Mahbadi [9]
considered stress intensity factors of rotating hollow cylinders and disks made of functionally
graded material (FGM) with small radial cracks, using the average stress method.

In this paper, the stress intensity factor for an orthotropic thick-walled cylinder with a small
radial crack on its external edge, subject to uniform internal pressure is estimated, using the
average stress of the cylinder along the crack length. The simple equations proposed here
predict the stress intensity factor for the described geometrical configuration with engineering
precision. These relations are obtained by combining the weight function and average stress
methods. In the validation section, the relations from this paper are validated against relations
obtained from the literature.

2 Mathematical Formulation

Consider an orthotropic hollow thick-walled cylinder with internal radius r; and external
radius 7, having a radial crack of length a on the external edge, subject to internal and
external pressures P; and P,, respectively. The principle axis of the fibers in this cylinder
make angle 8 with the axis of the cylinder. First, the radial and hoop stresses of the uncracked
thick-walled cylinder is calculated. Then, using the superposition method, the stress intensity
factor of the crack is determined. To this end, consider the uncracked cylinder as in Figure

(1).

Figure 1 Isotropic thick-walled cylinder with internal and external
radii r; and r,,, and internal and external pressures P; and P,, respectively.

Assuming axial symmetry, the equilibrium equation in the r direction of polar coordinates
becomes:
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The stress-strain and strain-displacement relations lead to the equation below:
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Where [Q] is the stiffness matrix for orthotropic materials in plane stress conditions and in an
arbitrary direction. Now, substituting the strain-displacement relations into the stress-strain
equations and plugging them into the equilibrium equation, Euler’s differential equation is
obtained as follow:

= d>2 1, = = = d 1 = = =
Q115 +5(Qiz+ Qi1 — Q1) -+ 5 (—Quz + Q2 — Qa2)u = 0 3)
Solving the above equation, the displacement equation is obtained:
u = Ar—'™M 4 pr'M 4
where
_ Q2
M N Qll (5)

The coefficients A and B are determined using the boundary conditions described at the
beginning of this section:

— —Por,"MHL_B(Q1,+ Qp VM), 2™ (6)
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Finally, for the radial and hoop stresses we get:
Og = A(sz - Q12N)r_m_1 +B(Qz + lem)rm_l (8)
oy = A(Qu - Qnm)r_m_l +B(Q12 + Qn\/ﬁ)r\/ﬁ—l )

Now according to Figure (2), the stress intensity factor for a cracked cylinder with internal
pressure would be equivalent to the stress intensity factor for a cracked cylinder with the
stress distribution g, on the crack surface.
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Figure 2 The superposition method used in solving the crack problem

On the other hand, if we take the crack length to be small, we can consider the stress
intensity factor to be approximately equal to the stress intensity factor of a cracked cylinder
whose crack edge is subject to the uniform stress o,,., the average of the circumferential
stress along the edge of the crack (see Figure 3).
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Figure 3 Equalizing the crack problem with non-uniform stress distribution and
the crack problem with the average stress distribution

Therefore, taking the average of gy along the crack length, the average stress on the edge of
the crack is calculated thus:

1 p7o
Oave = a fro—a ogdr (10)
Hence, the average stress would be:
_1 A(sz—lem)[ro_m—(ro—a)_m] + B(Qz2+ Q12VM) 1o ™M= (ro-a)M] (11)
Uave - a _m m

Since the stress intensity factor of the first mode is given by:
K; = F.opVma (12)
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Where g, is the stress distribution at the crack tip and F_ is a function that determines the
geometrical coefficient of the crack, in the given problem, stress intensity factor can therefore
be written as:

K; = F.04p.Vma (13)

Having the appropriate geometrical coefficient for the problem at hand, one can be able to
approximately calculate the stress intensity factor. Ma et al. [4], Pastrama and de Castro [5],
and Andrasic and Parker [10] have calculated stress intensity factors on the edges of the crack
for edge cracks on a cylinder subject to uniform traction stress. Therefore, having the stress
intensity factor, the geometrical coefficient of the crack is calculated using Eq. (12) as
follows:

Ky

OgveVTta

F. = (14)
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Figure 4 Comparison of various geometrical coefficients

Geometrical coefficients based on the results by Ma et al., De Castro and Pastrama, and
Andrasic and Parker are given in Fig. (4), withv = 0.3, a/t = 0.5, and r; /1, = 0.5.

Now, the stress intensity factor for the problem mentioned in this paper is calculated,
choosing the weight function proposed by Ma et al. which demonstrates good agreement with
the other weight functions, and has been written as:

Fo =22 4 241 (ao, W) + 242 (a0, W) (15)
In the equation above, the coefficients A* and A2, which are functions of dimensionless
crack length and the ratio of internal and external coefficients W = % are calculated.

i 5 6 i (@ \"'om-1 16
A (aOP W) = Zm:l Zn:l Cmn (m) W 7 1:1/ 2 ( )

Numerical values for the coefficients C,,, and C2,, for a hollow cylinder with a radial crack
on the external surface are given in Tables (1) and (2), respectively. The first mode of stress
intensity factor for the given problem will eventually be calculated from Eq. (17).
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K = (22 +24%ao, W) +2 42(ao, W)) 0, V7a (17)

ave

Table 1 Coefficients C1,, for a radial crack on the external edge of the thick-walled cylinder

N
M 1 2 3 4 5 6
1 2.5501031E-1 0 0 0 0 0
2 5.4080143E+1 -5.6152875E+2 2.2443203E+3 -4.3442256E+3 4.0749150E+3 -1.4852133E+3
3 -5.0961920E+2 5.3548418E+3 -2.1458539E+4 4.1624289E+4 -3.9122293E+4 1.4290093E+4
4 1.2670717E+3 -1.3267471E+4 5.3177668E+4 -1.0316833E+5 9.7056742E+4 -3.5495023E+4
5 -9.2447144E+2 9.6765908E+3 -3.8768777E+4 7.5214820E+4 -7.0813688E+4 2.5934543E+4

Table 2 Coefficients C2,, for a radial crack on the external edge of the thick-walled cylinder

M 1 2 3 4 5 6

1.3602442E-1 0 0 0 0 0

2 -6.2564392E+1 6.5881152E+2 -2.6154922E+3 5.0134692E+3 -4.6529854E+3 1.6780341E+3
3 6.0184979E+2 -6.2566255E+3 2.4853787E+4 -4.7702477E+4 4.4335598E+4 -1.6012451E+4

4 -1.4538805E+3 1.5061571E+4 -5.9776449E+4 1.1467289E+5 -1.0651307E+5 3.8437199E+4

5 1.0249813E+3 -1.0583187E+4 4.1929215E+4 -8.0310359E+4 7.4472859E+4 -2.6815914E+4

3 Results and discussion

In this section, first, applying isotropic conditions to the derived equations, the stress intensity
factor for a radial crack on the external edge of an isotropic cylinder is calculated and the
validity of the results is checked. Then, stress intensity factors in various cases for the
orthotropic material Graphite Epoxy with similar geometries are compared.
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Figure 5 Dimensionless stress intensity factor with respect to K,,, for an edge crack of length a, on the external

surface of a thick-walled cylinder subject to uniform internal pressure Py, as a function of the dimensionless
crack length with respectto t =1, —1;

In Figure (5), the stress intensity factors are normalized with respect to K, = Pyv/ma, where
v =0.3,a/t = 0.5, and r; /1, = 0.5. The result show that the formula proposed in this paper
is close to the result by Ma et al., even for large cracks. The maximum difference is less than
6.5 %.
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Figure 6 Dimensionless stress intensity factor with respect to K, for an edge crack of length a, on the external

surface of a thick-walled cylinder subject to uniform internal pressure Py, as a function of the dimensionless
crack length with respect to t = r, — r;, at various values for E; /E, < 1
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Figure 7 Dimensionless stress intensity factor with respect to K, for an edge crack of length a, on the external
surface of a thick-walled cylinder subject to uniform internal pressure P, as a function of the dimensionless
crack length with respect to t = r, — r;, at various values for E; /E, > 1

The plots in Figures (6) and (7) are obtained from the orthotropic relations derived in this
paper, evaluated at a O degree angle, with the parameters a/t = 0.5, and r;/r, = 0.5.
Glancing at these plots it is evident that as the ratio of the elasticity module approaches unity,
the material behavior approaches the isotropic case. Also, it may be seen that by increase in
ratio of E,/E, for values of E;/E, > 1, the stress intensity factor will increase, while
decreasing the ratio of E,/E,, for the values of E;/E, < 1, the stress intensity factor will
decrease.

Now using the derived relations for orthotropic material, the stress intensity factor for an
edge crack on an orthotropic thick-walled cylinder made of Graphite Epoxy is evaluated. In
computing the numerical value of the stress intensity factor, the following parameters have
been used: E; = 181 GPa, E, = 10.3 GPa, v;, = 0.28,and G,, = 7.17 GPa.

Figure (8) shows that: as the angle of fibers in the orthotropic material increases, the stress
intensity factor decreases, and the rate of this decrease is lower at degrees closer to zero. The
parameters in this case are a/t = 0.5, and r;/r, = 0.5. In Figure (9), the decrease of W =
1;/1, in the orthotropic thick-walled cylinder made of Graphite Epoxy leads to a decrease in
the stress intensity factor. Here, the formula is evaluated at a 0 degree angle of fiblers.
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Figure 8 Dimensionless stress intensity factor with respect to K, for an edge crack of length a, on the external

surface of a thick-walled cylinder subject to uniform internal pressure P, as a function of the dimensionless
crack length with respect to t = r, — r;, at various fiber angles
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Figure 9 Dimensionless stress intensity factor with respect to K, for an edge crack on the external surface of a

thick-walled cylinder subject to uniform internal pressure P,, as a function of the dimensionless crack length
with respect to t = r, — ;, at various radial ratios W = r; /1,
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4 Conclusion

In this research, an approximate formula is proposed for computing the stress intensity factor
of radial cracks on an orthotropic cylinder. A comparison between results based upon this
formula and results from numerical methods in other sources shows that the relations derived
for small cracks can satisfactorily predict the stress intensity factor for small cracks. Also, the
results obtained for cracks with medium length show good agreement with results from
numerical methods. But since this is an approximate method, the error increases for medium
and large cracks. The plotted curves demonstrate that the stress intensity factor decreases as
the fiber angle increases. Also, a decrease in the ratio of internal to external radii, or more
generally an increase in the thickness of the cylinder would lead to a decrease in the stress
intensity factor. Another conclusion is that, increase in difference of axial and transverse
modulus of elasticity will affect to stress intensity factor of the mentioned problem, in such a
way that increase in ratio of axial modulus of elasticity to transverse modulus of elasticity of
the orthotropic cylinder with zero fibers angle, will increase the stress intensity factor of the
mentioned problem.

Nomenclatures

a: Crack Length

C},: m, n-th Coefficient in Table 1

C2,,: m,n-th Coefficient in Table 2

h;: Weight Function for Mode |

K: Stress Intensity Factor Relative to Average Stress
Kj,: Stress Intensity Factor

P;: Internal Pressure

P,: External Pressure

Q.nn: M, n-th Component of Stiffness Matrix
r;: Internal Radius

1,. External Radius

t: Cylinder Thickness

u: Displacement Function

W: Internal to External Radius Ratio

Greek Symbols

&g Strain in Polar Coordinates

v: Poisson Ratio

o: Stress

Oqve- Average Stress

og: Hoop Stress in Polar Coordinates
T,r¢. Shear Tension in Polar Coordinates
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