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1 Introduction

In recent years, the functionally graded materials have widely been introduced and applied in
the environments with extremely high temperature. The study of dynamic fracture mechanics
of non-homogeneous orthotropic materials is therefore an active research area. In many
engineering applications, non-homogeneous structures may be subjected to dynamic
behaviors. The dynamic manipulation of such structures may lead to crack formation and
eventually the failures of the structures. The knowledge of crack propagation in non-
homogeneous orthotropic material is important in designing components of FGMs and
improving their fracture toughness. Problems of crack propagation at constant speed can be
classified into three classes depending on the boundary conditions [1]. The first class is the
steady-state crack growth. Here, the crack tip moves at constant speed for all the time and the
mechanical fields are invariant with respect to an observer moving with the crack tip. The
prototype problem in this category is the two-dimensional Y offe problem of a crack of fixed
length propagating in a body subjected to uniform far field tensile loading, [2]. The second
class of problems is the self-similar crack growth subject to time-independent loading. In this
case, the crack tip has been moving at constant speed since some initia instant, and certain
mechanical fields are invariant with respect to an observer moving steadily away from the
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process being observed. The third category of problems corresponds to crack in a body
initially at rest and subjected to time-independent loading. There has been significant progress
in the study of fracture behavior of FGMs is considered mainly on static cases. There is a yet
alack of dynamic fracture mechanics study of FGMs due to the complexity in solution. Sih
and Chen. [3] studied the dynamic behavior of a moving crack in layered composites. Wang
and Meguid [4] introduced a theoretical and numerical treatment of afinite crack propagating
in an interfacial layer with spatially varying elastic properties under the anti-plane loading.
The dynamic crack propagation in FGMs under the plane elastic deformation using Fourier
transform technique was investigated by Meguid et a [5]. Jiang and Wang [6] studied the
dynamic behavior of a Yoffe type crack propagating in a functionally graded interlayer
bonded to dissimilar half planes. The dynamic stress intensity factor and strain energy density
for moving crack in an infinite strip of functionally graded material subjected to antiplane
shear was determined by Bi et a. [7]. Li [8] solved the dynamic problem of an impermeable
crack of finite length propagating in a piezoelectric strip. The dynamic propagating of anti-
plane shear cracks in functionally graded piezoelectric strip was investigated by Kwon [9]. A
finite crack with constant length propagating in the functionally graded orthotropic strip under
in plane loading was investigated by Ma et a. [10]. The effects of material properties, the
thickness of the functionally graded orthotropic strip and the speed of the crack propagating
upon the dynamic fracture behavior were studied. Das [11], investigated the interaction
between three moving collinear Griffith cracks under antiplane shear stress situated at the
interface of an elastic layer overlying a different half plane. The problem of a Griffith crack of
constant length propagating at a uniform speed in a non-homogeneous plane under uniform
load was studied by Singh et a. [12]. Wang and Han [13], considered the problem of a
moving crack in a non-homogeneous material strip. They found that the maximum anti-plane
shear stress around the crack tip is a suitable failure criterion for moving cracks. In the next
work, Wang and Han investigated the dynamic behavior of a crack moving at the interface
between an FGM layer and homogeneous substrate [14]. The finite crack with constant length
(Yoffe-type crack) propagating in a functionally graded strip with spatially varying elastic
properties between two dissimilar homogeneous layers under in-plane loading was studied by
Cheng and Zhong. [15]. The solution procedures devised in all above studies are neither
capable of handling multiple cracks nor arbitrary arrangement. Bagheri and Ayatollahi [16]
investigated the problem of several finite cracks with constant length propagating in a
functionally graded strip. The effects of the geometric parameters, the crack length, and the
speed of the propagating cracks upon the stress intensity factors were investigated.

The objective of the present study is to provide a theoretical analysis of the dynamic
fracture behavior of a Y offe type crack propagating in a non-homogeneous orthotropic strip.
The elastic stiffness constants and mass density of materials are assumed to vary
exponentially perpendicular to the direction of the crack propagation. This paper presents a
procedure to analyze the dynamic stress intensity factors and strain energy density factors of
multiple moving cracks with arbitrarily patterns located at the functionally graded orthotropic
strip. The Galilean transformation is employed to express the wave equations in terms of
coordinates that are attached to the moving crack. To confirm the validity of formulations,
numerical values of dynamic stress intensity factors for a crack is compared with the resultsin
literature. Numerical results are given for the different shear moduli gradient, moving crack
speed, non-homogeneous coefficient, and ratios of shear moduli.

2 Methodology and formulation

A non-homogeneous orthotropic strip with thickness h is shown in figure (1).
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Figure 1 Schematic view of afunctionally graded orthotropic strip with a screw dislocation

The distributed dislocation technique is an efficient means for treating multiple moving
cracks with smooth geometry. However, determining stress fields due to a single dislocation
in the region has been a major obstacle to the utilization of this method. We now take up this
task for an orthotropic functionally graded strip containing a moving screw dislocation. The
basic equations which govern the anti-plane deformation of the orthotropic functionally
graded strip can be expressed in a Cartesian coordinate system as:

oo, 0o o'W
=) —3
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o, (XY, t)= ,uX(Y)a—X
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O-zy(X’Y’t) = ;uy(Y)W

Where Wis the component of displacement in the z—direction and ., (Y), 1, (Y) are the

shear modulus of the material. Dynamic anti-plane governing equations of motion for non-
homogeneous orthotropic materials can be expressed by displacement component as:

OW 210W 1 0W 1 W 2)
t——t— =
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Where p(Y) is the material mass density, It should be noted that body forces are not

considered in the present work. In order to over come the complexity of the mathematics
involved, we shall focus in this study on a special class of non-homogeneous materials in
which the property variations are in the same proportion and have exponential forms which
equilibrium has an analytical solution. Therefore, we assume

[/ux Y), M, (Y), p(Y)] = [lu0></uoy 1 po]ezzy

Cx = #Ox/f ! f :\[ﬂOX/IUOy (3)
Where u,,, 14,0, and A are material constants. In order to simplify Eq. (2), the Galilean

transformation is taken
X=x+WVt, Y=y, i:Vi. “)
ot 0 X
Substituting Eq. (3) and (4) into Eg. (2) results in the following governing equations for the
non-homogeneous orthotropic strip
2 2
8\/2v+8v2v+2/18_vv:0 (5)
ox* oy oy
For the dislocation solution, since no traction is applied on both the upper and the lower
boundary, the following conditions on the strip boundaries must be satisfied

f2(1-V?/C/)
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0,(%0) = 0,0, (x,h) =0 (6)

For the strip depicted in figure (1), the continuity and limiting conditions may be expressed

x, X
A

Figure 1 Schematic view of afunctional ly graded orthotropic strip
with a screw dislocation
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Here, H(y) is the Heaviside step-function. The first Eq. (7) shows the multi valuedness of

displacement while the second implies the continuity of traction along the dislocation line. It
is worth mentioning that the above conditions for screw dislocation were utilized by several
investigators, e. g., Weertman and Weertman [17]. Equation (5) is solved by means of the
Sine Fourier transform. The Fourier sine transform is defined as

F(&) = sin(¢x) f (x)clx (8)

Theinversion of (8) yields:
2 oo 9)
==, Sn(EIF()de

The solution to Eq. (5) in the two regions O<y<h-h and h—h <y<h is achieved by
means of the Fourier sine transform to eliminate the x variable yielding a second order
ordinary differential equation forw (£, y) . Following a routine methodology the transformed
displacement field in the whole region reduces to

i A (h-y) S
W (g, y)=-LIMUINE Ty 5 4 yemepliriied

4/ sinh(ph)
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Where ,B:\//12+§ 2£2(1-V?/C.?) . The displacement component in view of (9) and (10)
leads to:
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It is elementary to show that Egs. (11) satisfy the first condition (7). The stress components by
virtue of Egs. (1) and (11), are expressed as:
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The stress fields (12) are singular at the location of dislocation. To examine the singular
behavior asymptotic analysis of integral as  — «, is carried out leading to the following

expressions for stress components.
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All integrals in Eq. (13) decay reasonably fast as || — o . Consequently, integrals are regular
and stress fields exhibit the familiar Cauchy type singularity at dislocation location.
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Alternatively, the contour integration is utilized to evaluate integrals in Egs. (12). Choosing
the proper contours of integration, the final results are
SON(X) o, &7

2h

O-zy(x’ y) =-
(14)
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Where sgn(x) isthe sign function. For the sake of brevity, the details of manipulation are not
given here. For small values of |X the series solutions (14) converge slowly and a large

number of terms are required to obtain accurate results. To circumvent this difficultly the
integrations in (13) should be performed differently. It is easy to show that stress fields, decay
exponentially as n — .

3 Thesingular integral equation

To derive the integral equations for the crack problem, the distributed dislocation technique is
employed. The distributed dislocation technique is an efficient means to carry out the task, see
for instance [18].

Let screw dislocation with density b, is distributed on a moving crack in a functionally

graded orthotropic strip. The stress fields caused by the above mentioned distribution of
dislocation become

k: (x,y,0,h), 0<y<
azy<x,y>=bz><{ 2K YA y=h (15)
kzy(x, y,0,h), h<y<h
Where k (x,y,0,h), =12 are the coefficients of b,and may be deduced from (13) and

(14) for the two different formulations. The moving cracks configuration may be described in
parametric form as

X =X +|iS
Y = Yo i=12,..,N -1<s<1 (16)

We consider local coordinate systems moving on the face of i-th crack. The anti-plane traction
on the face of thei-th crack in terms of stress components in Cartesian coordinates becomes:

O-nz()g ) y.) =T, (17)

Suppose dislocations with unknown density B, (p) isdistributed on the infinitesimal segment
dl, located at the face of the j-th crack where the parameter —1< p<1 and prime denotes

differentiation with respect to the relevant argument. The traction on the face of i-th crack due
to the presence of distribution of dislocations on the face of all N cracksyields

6@ YE=2[KEPLB @D =12\, (18

The kernel of integral (18) becomes:
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The function k'zy(x ¥ X, Y,), | =12 areintroduced in (15), we should point out that in (19)

quantities with subscript i are functions of s whereas those with subscript j are functions of p.
The crack problem has been treated by means of the super position technique. By virtue of the
Buckner’s principal [19], the elasticity problem of a strip without any cracks has been solved
and equal and opposite values of the stresses have been used as the traction on the cracks
surfaces. Therefore, the left-hand side of Eq. (18) may be specified. In order to determine the
singular behavior of Eq. (18), the behavior of kernel needs to be examined. For this, it is

sufficient that r goes to zero, Where r = \/(x (8)—x,(P))* + (Y,(s) - y,(p))* . Consequently,
Eq. (18) is Cauchy singular integral equations for the dislocation densities.

Where from Egs. (14), the kernel of integral equation is

sgn(% (8) ~ X; (P)) o, € 017

2h

ki (% (9), ¥; (9),%; (P), Y, (P) = —
x 2[0S (3} (P) = Y1 (9) - oSt (3 (P) + Yy () we
n=1
X% @) [z,
eHave (20)
Substitute Eq. (17) and (20) into Eqg. (18), we obtain the following singular integral equations:

A(Yi (s)+Yj (P)

-t SO (S) = X (P, €
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w h h
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It isworth mentioning that kernelsin integral Eq. (21) are Cauchy singular integral equations.
Employing the definition of the dislocation density function, the equation for the crack
opening displacement across the j-th crack becomes

w; (s) - w; () = [1,B, (p)dp j=123...,N, (22)

The displacement field is single-val l;ed for the faces of cracks. Consequently, the dislocation
density functions are subjected to the following closure requirements

Ijszj(p)dp:O, j=123..,N (23)

The Cauchy singular integra Equations (21) and (23) are solved simultaneously. To
determine dislocation density functions this task is taken up by the methodology developed by

Erdogan et a. [20]. The stress fields in the neighborhood of crack tips behave like ]/ Jr
where r isthe distance from the crack tip. Therefore, the dislocation densities are taken as
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9,(p)
B, (p) = —2——,
7 ( p) W
Substituting Eq. (24) into Egs. (18) and (23) and discretizating of the domain, —1< p<1, by
m+1 segments, we arrive at the following system of N x m algebraic equations

-1<p<1 j=123..,N (24)

Ah A12 AN gzl(pn) Gu(sr)

Ae Ay o Ay 9.(p) || as) (23)
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Where the collocation points are
zr
= — =12,...,.m-1
S cos(m) r=12,..,m (26)
p, = cos 22—, n=12,...m
2m
The components of matrix [n (25) are .
kij (Sl’ pl) kij (Sl’ pz) kij (Sl’ pm)
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ol ol ol
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In (27), o, inthe last row of A designates the Kronecker delta. The components of vectors

in(25)arel
9,(p)=lg,(p) 9,(p) -~ g, (P,

28
0,(5) =[0, (¢ ()Y,(8)) T, (% (S).Y, (S (X (S Y, (Su)) OTT, (8)

Where superscript T stands for the transpose of a vector. The stress intensity factors at the tip
of i-th crack in terms of the crack opening displacement reduce to [21]

V2 W (9) - W (3)
kLi :Tﬂ(yLi)!L!TOT’ (29)

k, =—— ) lim ,
Ri 4 ﬂ(yR')rR -0 \/E
Where L and R designate, the left and right tips of a crack, respectively. The geometry of a
crack implies:

r =[x () - % (1) + (v,(9) - v, (-1)) ], )
r =[x (9= x @) + (%,(9) - v, W)}

In order to take the limits for r, —» 0 and r, — 0, we should let, in Eq. (31), the parameter
s—-1 and s—1, respectively. The substitution of (24) into (22), and the resultant
equations and Eq. (30) into Eqg. (29) in conjunction with the Taylor series expansion of
functions x; (s) and y,(s) around the points s — +1 yields:
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The solutions of (27) are plugged into (31) thereby the stress intensity factors are obtained. As
well known, the stress intensity factor alone is not sufficient to estimate the dynamic behavior
of crack initiation of the material. Therefore, the energy density factor is employed combining
with the stress intensity factor to evaluating the ability of the crack propagation. According to
the theory of strain energy density criterion [22,23], the strain energy density factors S at the
crack tip can be expressed as

S=a,kK, +2a,KK, +a,K,’+a.,K,’ (32)

Where the coefficients a,, =1/4zu, with 4 the shear modulus of elasticity. Since there exist

only K,, in this study, crack front can be obtained by substituting the functions of the stress
intensity factor K,, into Eqg. (32); wearrive at

S=/4ru) K’n (33)

4 Numerical calculations and discussion

In this section, several cases were examined to illustrate the validity and accuracy of the
proposed method. The analysis developed in the preceding sections allows the consideration
of a functionally graded orthotropic strip with multiple moving cracks. The attention will be
focused on the effect of the speed of crack propagating and the gradient of the materia
properties upon the dynamic fracture behavior of material. The applied load in all examplesis
the anti-plane shear traction on the top and bottom face of the strip.

The first example is the problem of a crack located at the point (0,h/2) with different ratios

of shear moduli. For the case 1/h=0.25, the effects of material properties on the stress
intensity factors are studied. The crack is propagating paralel to the strip surfaces with
constant velocity V at time t =0, in the positive x—direction. It is observed that dynamic
stress intensity factor is increased with the increasing of the speed of propagating crack V/C.

The trend of variation remains the same by changing the FGM constant and ratios of shear
moduli.
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Figure 2 Variation of normalized stress intensity factor with crack propagation speed
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Figure (3) shows the effects of gradient parameter Al , upon normalized stress intensity factor
k/k,,for a crack with different crack propagation speeds V/C. As it was expected, k/k,

increases significantly with the increasing of the material parameter Al and k/k,, increases

with the increasing of V/C . It can be concluded that for functionally graded orthotropic strip

parameter Al and the ratio of shear moduli have a great influence on the dynamic stress
intensity factor.

1.8 ‘ ‘
Y 3 - f=1.2,V/C=0.1

| . ---f=1.2,V/C=0.2
’ —f=1.2,V/C=0.3

1.5
Al

Figure 3 Variation of normalized stress intensity factor with gradient parameter Al

For studying the interactions between the multiple cracks, plots of stress intensity factors and
strain energy density factors through figures (3-9) have been made. Consider the case where,
the two collinear moving cracks with equal-length 2| are located on the center-line of the
strip. Figure (4) shows the variation of the normalized dynamic stress intensity factor with the
material parameter Al for the case Where V/C =0.8. As it might be observed the maximum

stress intensity factors for the crack tips R and L, occur when the distance between them is
minimal.

k/kO

|
0 0.5 1 1.5 2 2.5 3
M

Figure 4 Variation of normalized stress intensity factor with gradient parameter for two collinear cracks

In the next work, we studied the variation of dimensionless SED, versus V/C with different

FGM constants. Figure (5) shows the effect of the crack length upon the normalized strain
energy density factor for FGM constant speed for the case where f =1.0 . The distance of the

centers of cracks remains fixed while the cracks lengths are changing with the same rate. For
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static problem, where V/C =0.0, changing the crack length shows the weakest effect on

k/k, . Here, the dynamic stress intensity factors for both adjacent tips are increased with crack
length.
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Figure5 Variation of strain energy density factors with crack propagation speed
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Figure (6) displayed, the variation of normalized stress intensity factors with the crack length
for the case of V/C = 0.0 andV/C = 0.8. Note that as the velocity of the cracks increase, the
amplitudes of the normalized stress intensity factors increase with a faster rate. For other
values of material parameter same trend of variation of k/k, with different values may be
obtained.
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k/kO

1/h
Figure 6 Variation of stress intensity factor of two collinear cracks versus |/h .

In the next example, we studied the dynamical behavior of functionally graded orthotropic
strip with parallel cracks which figure (7) and (8) displayed, respectively, the variation of the
normalized stress intensity factors versus material parameter Al and I/h for the case of

f =1.2. Figure (7) shows the effects of gradient parameter Al upon normalized stress
intensity factor. It is observed that k/k, increases with increasing of the material parameter.
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Figure 7 Variation of stressintensity factor of two parallel cracks with gradient parameter Al

Figure (8) shows the effect of the crack length upon the normalized stress intensity factor for
the case where V/C = 0.8. Here, the dynamic stress intensity factor increases with increasing

of I/h.
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Figure 8 Variation of stressintensity factor of two parallel crackswith | /h.

Numerical results of strain energy density for two parallel cracks as a function of the crack
speed ratio V/C for f =1.0 and 1=2.0 are depicted in figure (9). It is seen that SEDs

increases as V/C isincreased.
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Figure 9 Variation of strain energy density factor of two parallel cracks versus V / C.

5 Conclusions

In this study, we have developed on the stress analysis of a functionally graded orthotropic
strip weakened by screw dislocation. The stress components are used as the Green’s function
to derive integral equations for the analysis of multiple moving cracks. The dependence of the
fracture behavior on the crack propagation velocity and gradient of the material properties
was shown in the numerical results. Reasonable agreement between the present study and the
other solutions were obtained. To show the applicability of the procedure more examples are
solved where in the interaction between cracks is investigated.
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Nomenclature

I half lengths of straight crack

A coefficients matrix
b, Burgers vector
B, complex dislocation densities
C, shear wave velocity
g5 (p) regular terms of dislocation densities
H(y) Heaviside step function
Kii Kgi stress intensity factors of eft and right side of crack
Ko stress intensity factor of acrack in infinite plane
ki (S, p) kernel of integral equations
i wi distance from left and right crack tips
w out of plane displacement component
Xy coordinates
J; Kronecker delta
Hox> Hoy elastic shear modulus
P mass density
o traction vector
Ox1 Oy out of plane stress components
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