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1 Introduction 
 
In recent years, the functionally graded materials have widely been introduced and applied in 
the environments with extremely high temperature. The study of dynamic fracture mechanics 
of non-homogeneous orthotropic materials is therefore an active research area. In many 
engineering applications, non-homogeneous structures may be subjected to dynamic 
behaviors. The dynamic manipulation of such structures may lead to crack formation and 
eventually the failures of the structures. The knowledge of crack propagation in non-
homogeneous orthotropic material is important in designing components of FGMs and 
improving their fracture toughness. Problems of crack propagation at constant speed can be 
classified into three classes depending on the boundary conditions [1]. The first class is the 
steady-state crack growth. Here, the crack tip moves at constant speed for all the time and the 
mechanical fields are invariant with respect to an observer moving with the crack tip. The 
prototype problem in this category is the two-dimensional Yoffe problem of a crack of fixed 
length propagating in a body subjected to uniform far field tensile loading, [2]. The second 
class of problems is the self-similar crack growth subject to time-independent loading. In this 
case, the crack tip has been moving at constant speed since some initial instant, and certain 
mechanical fields are invariant with respect to an observer moving steadily away from the 
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The problem of several finite moving cracks in a functionally 
graded material is solved by dislocation technique under the 
condition of anti-plane deformation. By using the Fourier 
transform the stress fields are obtained for a functionally 
graded strip containing a screw dislocation. The stress 
components reveal the familiar Cauchy singularity at the 
location of dislocation. The solution is employed to derive 
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material properties, the crack length and the speed of the crack 
propagating upon the stress intensity factor and strain energy 
density factor. 
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process being observed. The third category of problems corresponds to crack in a body 
initially at rest and subjected to time-independent loading. There has been significant progress 
in the study of fracture behavior of FGMs is considered mainly on static cases. There is a yet 
a lack of dynamic fracture mechanics study of FGMs due to the complexity in solution. Sih 
and Chen. [3] studied the dynamic behavior of a moving crack in layered composites. Wang 
and Meguid [4] introduced a theoretical and numerical treatment of a finite crack propagating 
in an interfacial layer with spatially varying elastic properties under the anti-plane loading. 
The dynamic crack propagation in FGMs under the plane elastic deformation using Fourier 
transform technique was investigated by Meguid et al [5]. Jiang and Wang [6] studied the 
dynamic behavior of a Yoffe type crack propagating in a functionally graded interlayer 
bonded to dissimilar half planes. The dynamic stress intensity factor and strain energy density 
for moving crack in an infinite strip of functionally graded material subjected to antiplane 
shear was determined by Bi et al. [7]. Li [8] solved the dynamic problem of an impermeable 
crack of finite length propagating in a piezoelectric strip. The dynamic propagating of anti-
plane shear cracks in functionally graded piezoelectric strip was investigated by Kwon [9]. A 
finite crack with constant length propagating in the functionally graded orthotropic strip under 
in plane loading was investigated by Ma et al. [10]. The effects of material properties, the 
thickness of the functionally graded orthotropic strip and the speed of the crack propagating 
upon the dynamic fracture behavior were studied. Das [11], investigated the interaction 
between three moving collinear Griffith cracks under antiplane shear stress situated at the 
interface of an elastic layer overlying a different half plane. The problem of a Griffith crack of 
constant length propagating at a uniform speed in a non-homogeneous plane under uniform 
load was studied by Singh et al. [12]. Wang and Han [13], considered the problem of a 
moving crack in a non-homogeneous material strip. They found that the maximum anti-plane 
shear stress around the crack tip is a suitable failure criterion for moving cracks. In the next 
work, Wang and Han investigated the dynamic behavior of a crack moving at the interface 
between an FGM layer and homogeneous substrate [14]. The finite crack with constant length 
(Yoffe-type crack) propagating in a functionally graded strip with spatially varying elastic 
properties between two dissimilar homogeneous layers under in-plane loading was studied by 
Cheng and Zhong. [15]. The solution procedures devised in all above studies are neither 
capable of handling multiple cracks nor arbitrary arrangement. Bagheri and Ayatollahi [16] 
investigated the problem of several finite cracks with constant length propagating in a 
functionally graded strip. The effects of the geometric parameters, the crack length, and the 
speed of the propagating cracks upon the stress intensity factors were investigated. 
   The objective of the present study is to provide a theoretical analysis of the dynamic 
fracture behavior of a Yoffe type crack propagating in a non-homogeneous orthotropic strip. 
The elastic stiffness constants and mass density of materials are assumed to vary 
exponentially perpendicular to the direction of the crack propagation. This paper presents a 
procedure to analyze the dynamic stress intensity factors and strain energy density factors of 
multiple moving cracks with arbitrarily patterns located at the functionally graded orthotropic 
strip. The Galilean transformation is employed to express the wave equations in terms of 
coordinates that are attached to the moving crack. To confirm the validity of formulations, 
numerical values of dynamic stress intensity factors for a crack is compared with the results in 
literature. Numerical results are given for the different shear moduli gradient, moving crack 
speed, non-homogeneous coefficient, and ratios of shear moduli. 
 
2   Methodology and formulation 
 
A non-homogeneous orthotropic strip with thickness h  is shown in figure (1). 
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Figure 1 Schematic view of a functionally graded orthotropic strip with a screw dislocation 

 
 The distributed dislocation technique is an efficient means for treating multiple moving 
cracks with smooth geometry. However, determining stress fields due to a single dislocation 
in the region has been a major obstacle to the utilization of this method. We now take up this 
task for an orthotropic functionally graded strip containing a moving screw dislocation. The 
basic equations which govern the anti-plane deformation of the orthotropic functionally 
graded strip can be expressed in a Cartesian coordinate system as : 
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Where W is the component of displacement in the z direction and )(),( YY yx   are the 

shear modulus of the material. Dynamic anti-plane governing equations of motion for non-
homogeneous orthotropic materials can be expressed by displacement component as: 
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Where )(Y  is the material mass density, It should be noted that body forces are not 
considered in the present work. In order to over come the complexity of the mathematics 
involved, we shall focus in this study on a special class of non-homogeneous materials in 
which the property variations are in the same proportion and have exponential forms which 
equilibrium has an analytical solution. Therefore, we assume  
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Where 000 ,,  xy  and   are material constants. In order to simplify Eq. (2), the Galilean 

transformation is taken 
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Substituting Eq. (3) and (4) into Eq. (2) results in the following governing equations for the 
non-homogeneous orthotropic strip 
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(5)  

For the dislocation solution, since no traction is applied on both the upper and the lower 
boundary, the following conditions on the strip boundaries must be satisfied 
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0),(,0)0,(  hxx zyzy                                                          (6) 

 
For the strip depicted in figure (1), the continuity and limiting conditions may be expressed  
 

 
Figure 1 Schematic view of a functionally graded orthotropic strip 

 with a screw dislocation 
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 Here, )(yH  is the Heaviside step-function. The first Eq. (7) shows the multi valuedness of 
displacement while the second implies the continuity of traction along the dislocation line. It 
is worth mentioning that the above conditions for screw dislocation were utilized by several 
investigators, e. g., Weertman and Weertman [17]. Equation (5) is solved by means of the 
Sine Fourier transform. The Fourier sine transform is defined as 
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The solution to Eq. (5) in the two regions 10 hhy   and hyhh  1  is achieved by 
means of the Fourier sine transform to eliminate the x variable yielding a second order 
ordinary differential equation for ),(* yw  . Following a routine methodology the transformed 
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Where )1( 22222

xCVf   . The displacement component in view of (9) and (10) 

leads to: 
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It is elementary to show that Eqs. (11) satisfy the first condition (7). The stress components by 
virtue of Eqs. (1) and (11), are expressed as : 
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(12) 

 

The stress fields (12) are singular at the location of dislocation. To examine the singular 
behavior asymptotic analysis of integral as  , is carried out leading to the following 
expressions for stress components. 
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     (13) 
All integrals in Eq. (13) decay reasonably fast as  . Consequently, integrals are regular 

and stress fields exhibit the familiar Cauchy type singularity at dislocation location. 
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Alternatively, the contour integration is utilized to evaluate integrals in Eqs. (12). Choosing 
the proper contours of integration, the final results are 
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Where )sgn(x  is the sign function. For the sake of brevity, the details of manipulation are not 

given here. For small values of x  the series solutions (14) converge slowly and a large 

number of terms are required to obtain accurate results. To circumvent this difficultly the 
integrations in (13) should be performed differently. It is easy to show that stress fields, decay 
exponentially as n . 
 
 
3 The singular integral equation 
 
To derive the integral equations for the crack problem, the distributed dislocation technique is 
employed. The distributed dislocation technique is an efficient means to carry out the task, see 
for instance [18]. 
Let screw dislocation with density zb  is distributed on a moving crack in a functionally 
graded orthotropic strip. The stress fields caused by the above mentioned distribution of 
dislocation become  
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Where 2,1),,0,,( 1 lhyxk l

zy  are the coefficients of zb and may be deduced from (13) and 

(14) for the two different formulations. The moving cracks configuration may be described in 
parametric form as 
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We consider local coordinate systems moving on the face of i-th crack. The anti-plane traction 
on the face of the i-th crack in terms of stress components in Cartesian coordinates becomes: 
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Suppose dislocations with unknown density )( pBzj  is distributed on the infinitesimal segment 

jdl  located at the face of the j-th crack where the parameter 11  p  and prime denotes 

differentiation with respect to the relevant argument. The traction on the face of i-th crack due 
to the presence of distribution of dislocations on the face of all N  cracks yields 
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The kernel of integral (18) becomes: 
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zy  are introduced in (15), we should point out that in (19) 

quantities with subscript i are functions of s whereas those with subscript j are functions of p. 
The crack problem has been treated by means of the super position technique. By virtue of the 
Buckner’s principal [19], the elasticity problem of a strip without any cracks has been solved 
and equal and opposite values of the stresses have been used as the traction on the cracks 
surfaces. Therefore, the left-hand side of Eq. (18) may be specified. In order to determine the 
singular behavior of Eq. (18), the behavior of kernel needs to be examined. For this, it is 

sufficient that r  goes to zero, Where 22 ))()(())()(( pysypxsxr jiji  . Consequently, 

Eq. (18) is Cauchy singular integral equations for the dislocation densities. 
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Substitute Eq. (17) and (20) into Eq. (18), we obtain the following singular integral equations: 
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 It is worth mentioning that kernels in integral Eq. (21) are Cauchy singular integral equations. 
Employing the definition of the dislocation density function, the equation for the crack 
opening displacement across the j-th crack becomes 
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The displacement field is single-valued for the faces of cracks. Consequently, the dislocation 
density functions are subjected to the following closure requirements 
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The Cauchy singular integral Equations (21) and (23) are solved simultaneously. To 
determine dislocation density functions this task is taken up by the methodology developed by 

Erdogan et al. [20]. The stress fields in the neighborhood of crack tips behave like r1  
where r  is the distance from the crack tip. Therefore, the dislocation densities are taken as 
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Substituting Eq. (24) into Eqs. (18) and (23) and discretizating of the domain, 11  p , by 
1m  segments, we arrive at the following system of mN   algebraic equations 
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Where the collocation points are 
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The components of matrix in (25) are 
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In (27), ij  in the last row of ijA  designates the Kronecker delta. The components of vectors 

in (25) are 
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Where superscript T stands for the transpose of a vector. The stress intensity factors at the tip 
of i-th crack in terms of the crack opening displacement reduce to [21] 
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Where L  and R  designate, the left and right tips of a crack, respectively. The geometry of a 
crack implies: 
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(30) 

 
In order to take the limits for 0Lir  and 0Rir , we should let, in Eq. (31), the parameter 

1s  and 1s , respectively. The substitution of (24) into (22), and the resultant 
equations and Eq. (30) into Eq. (29) in conjunction with the Taylor series expansion of 
functions )(sxi  and )(syi  around the points 1s  yields: 
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(31) 

The solutions of (27) are plugged into (31) thereby the stress intensity factors are obtained. As 
well known, the stress intensity factor alone is not sufficient to estimate the dynamic behavior 
of crack initiation of the material. Therefore, the energy density factor is employed combining 
with the stress intensity factor to evaluating the ability of the crack propagation. According to 
the theory of strain energy density criterion [22,23], the strain energy density factors S at the 
crack tip can be expressed as 

2

33

2

2212

2

11 2 IIIIIIIII KaKaKKaKaS                              (32) 

Where the coefficients 4133 a , with   the shear modulus of elasticity. Since there exist 

only IIIK  in this study, crack front can be obtained by substituting the functions of the stress 

intensity factor IIIK  in to Eq. (32); we arrive at  

IIIKS 2)41(                                                      (33) 
 
4   Numerical calculations and discussion 
 
In this section, several cases were examined to illustrate the validity and accuracy of the 
proposed method. The analysis developed in the preceding sections allows the consideration 
of a functionally graded orthotropic strip with multiple moving cracks. The attention will be 
focused on the effect of the speed of crack propagating and the gradient of the material 
properties upon the dynamic fracture behavior of material. The applied load in all examples is 
the anti-plane shear traction on the top and bottom face of the strip. 
   The first example is the problem of a crack located at the point )2/,0( h  with different ratios 

of shear moduli. For the case 25.0hl , the effects of material properties on the stress 
intensity factors are studied. The crack is propagating parallel to the strip surfaces with 
constant velocity V  at time ,0t  in the positive x –direction. It is observed that dynamic 

stress intensity factor is increased with the increasing of the speed of propagating crack CV . 
The trend of variation remains the same by changing the FGM constant and ratios of shear 
moduli. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Variation of normalized stress intensity factor with crack propagation speed 
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Figure (3) shows the effects of gradient parameter l , upon normalized stress intensity factor 
,/ 0kk for a crack with different crack propagation speeds CV . As it was expected, 0/ kk  

increases significantly with the increasing of the material parameter l  and 0/ kk , increases 

with the increasing of CV . It can be concluded that for functionally graded orthotropic strip 
parameter l  and the ratio of shear moduli have a great influence on the dynamic stress 
intensity factor. 
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Figure 3 Variation of normalized stress intensity factor with gradient parameter l  

 
For studying the interactions between the multiple cracks, plots of stress intensity factors and 
strain energy density factors through figures (3-9) have been made. Consider the case where, 
the two collinear moving cracks with equal-length l2  are located on the center-line of the 
strip. Figure (4) shows the variation of the normalized dynamic stress intensity factor with the 
material parameter l  for the case Where 8.0CV . As it might be observed the maximum 

stress intensity factors for the crack tips 1R  and 2L  occur when the distance between them is 
minimal.  
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Figure 4 Variation of normalized stress intensity factor with gradient parameter for two collinear cracks 

 
In the next work, we studied the variation of dimensionless SED, versus CV  with different 
FGM constants. Figure (5) shows the effect of the crack length upon the normalized strain 
energy density factor for FGM constant speed for the case where 0.1f  . The distance of the 
centers of cracks remains fixed while the cracks lengths are changing with the same rate. For 
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static problem, where 0.0CV , changing the crack length shows the weakest effect on 

0kk . Here, the dynamic stress intensity factors for both adjacent tips are increased with crack 

length.  
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Figure 5 Variation of strain energy density factors with crack propagation speed 

 
 
Figure (6) displayed, the variation of normalized stress intensity factors with the crack length 
for the case of 0.0CV  and 8.0CV . Note that as the velocity of the cracks increase, the 
amplitudes of the normalized stress intensity factors increase with a faster rate. For other 
values of material parameter same trend of variation of 0kk  with different values may be 

obtained. 
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Figure 6 Variation of stress intensity factor of two collinear cracks versus hl . 

 
In the next example, we studied the dynamical behavior of functionally graded orthotropic 
strip with parallel cracks which figure (7) and (8) displayed, respectively, the variation of the 
normalized stress intensity factors versus material parameter l  and hl  for the case of 

2.1f . Figure (7) shows the effects of gradient parameter l  upon normalized stress 

intensity factor. It is observed that 0kk  increases with increasing of the material parameter. 
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Figure 7 Variation of stress intensity factor of two parallel cracks with gradient parameter l  

 
Figure (8) shows the effect of the crack length upon the normalized stress intensity factor for 
the case where 8.0CV . Here, the dynamic stress intensity factor increases with increasing 

of hl . 
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Figure 8 Variation of stress intensity factor of two parallel cracks with hl . 

 
Numerical results of strain energy density for two parallel cracks as a function of the crack 
speed ratio CV  for 0.1f  and 0.2  are depicted in figure (9). It is seen that SEDs 

increases as CV  is increased. 
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Figure 9 Variation of strain energy density factor of two parallel cracks versus CV . 

 
 
5 Conclusions 
 
In this study, we have developed on the stress analysis of a functionally graded orthotropic 
strip weakened by screw dislocation. The stress components are used as the Green’s function 
to derive integral equations for the analysis of multiple moving cracks. The dependence of the 
fracture behavior on the crack propagation velocity and gradient of the material properties 
was shown in the numerical results. Reasonable agreement between the present study and the 
other solutions were obtained. To show the applicability of the procedure more examples are 
solved where in the interaction between cracks is investigated.  
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Nomenclature 

l  half lengths of straight crack 

ijA  coefficients matrix 

zb  Burgers vector 

zjB  complex dislocation densities 

xC  shear wave velocity 

)( pgzj  regular terms of dislocation densities  

)(yH  Heaviside step function 

RiLi kk ,  stress intensity factors of left and right side of crack 

0k  stress intensity factor of a crack in infinite plane 

),( pskij  kernel of integral equations 

RiLi rr ,  distance from left and right crack tips 

w  out of plane displacement component 
yx,  coordinates 

ij  Kronecker delta 

yx 00 ,  elastic shear modulus 

  mass density 

nz  traction vector 

yzxz  ,  out of plane stress components  
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  چكيده
چندين ترك حاوي  باريكه ساخته شده از مواد تابعي ارتوتروپيك از روش توزيع نابجايي براي تحليل تنش در

ميدان تنش در اثـر   تبديل فوريهابتدا با استفاده از . استفاده شده است پاد صفحه اي تحت بارگذاري متحرك
ت انتگرالي توزيـع نابجـايي روي تـرك هـا     معادلا ،با داشتن اين حل در باريكه بدست مي آيد، سپس نابجايي

حل معادلات تكين از نوع كوشي بصـورت   .اين معادلات داراي تكينگي از نوع كوشي هستند. تعيين مي شود
اثـر خـواص مـاده، طـول تـرك، هندسـه        هاكه در آن در پايان تعدادي مثال حل شده. است عددي انجام شده

  .شده استبررسي  ضرايب شدت تنش ديناميكي روي محيط و نيز سرعت حركت ترك بر
  

 


