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1 Introduction 
 

It has been estimated that mankind currently devotes over 10 million man-years each year to 
driving the automobile, which on demand provides a mobility unequaled by any other mode 
of transportation. And yet, even with the increased interest in traffic research, we understand 
relatively little of what is involved in the "driving task" [1]. Various theories attempt to 
describe the vehicular traffic flow process. One class of such theories, called car-following 
theories, is based on the follow-the-leader concept, in which rules of how a driver follows 
his/her immediate leading vehicle are established based on both experimental observations 
and theoretical (i.e., psychological) considerations [2]. Car following is quite common in 
many traffic fields such as railway, highway and etc. Car following is a crucial tactical-level 
model for a microscopic simulation system. Car following describes the longitudinal action of 
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Model Predictive Control System 
Design using ARMAX Identification 
Method for Car-following Behavior 
The control of car following is essential due to its safety and its 
operational efficiency. For this purpose, this paper builds a 
model of car following behavior based on ARMAX structure 
from a real traffic dataset and design a Model Predictive 
Control (MPC) system. Based on the relative distance and 
relative acceleration of each instant, the MPC predicts the 
future behavior of the leader vehicle and according to this 
behavior, the acceleration of the follower vehicle is controlled. 
Validation of the presented controller is done by comparing the 
behavior of the controller with the human drivers. Results show 
that the MPC controller has a behavior much safer than that of 
real drivers and it can provide a pleasant trip for passengers. 
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a driver when it follows another car and tries to maintain a safe distance to the leading car, as 
shown in figure (1). 
One of the major achievements is the control laws for collision avoidance while the front car 
brakes suddenly in emergency in the course of their following operation [3-5]. However, due 
to the complexity of the car following problem, the current control of car following operation 
mainly dependents on the drivers’ subjective judgment and their corresponding behavior. Its 
complexity could be summarized as follow [4]. The control of car following is a 

  

Figure 1 Driver-Vehicle Unites; follower vehicle (FV) and leader vehicle (LV)  
in car following behavior

 
 
problem with more constraints and multi-objective optimization; the control of car following 
is similar to the pursuit and escape problem in differential game, but somehow different from, 
which study the bilateral dynamic optimal control laws between the pursuer and the escapee; 
the control of car following belongs to the problems of keeping the safe distance in the 
reasonable value so that the time of pursuit be minimum. 

Apart from the impacts of road and vehicle on driving, in car following behavior, the effects 
of the human driver have a major role in how the process is performed. Some examples of 
human drivers on driving behaviors are age, gender, emotional factors, and etc. It is almost 
impossible to define all these factors to place them in one model, and either if it is possible, 
the resulting model will be very complex.  

The problem of designing a good control system is basically that of matching the dynamic 
characteristics of a process by those of the controller. In other words, if the dynamics of the 
process and the characteristics of the disturbances affecting it are known, then the controller 
that will provide the desired closed loop performance can be designed. Modern approaches to 
controller design therefore presuppose that a suitable description (model) of the process to be 
controlled is available [6]. But the desired model isn’t always available and instead the 
incumbent data are accessible, so the next step is to estimate the model with identification 
methods. 

A time series is a sequence of data points, measured typically at successive time instants 
spaced at uniform time intervals. We can construct time series from several sub-series and in 
a variety of configurations. In modeling process, the major task is to determine the most 
appropriate time-series structure and estimating the parameters of the polynomials. 

Model predictive control is a form of control in which the current control action is obtained 
by solving, at each sampling instant, a finite horizon open-loop optimal control problem, 
using the current state of the plant as the initial state. The optimization yields an optimal 
control sequence and the first control in this sequence is applied to the plant. An important 
advantage of this type of control is its ability to cope with hard constraints on controls and 
states [7]. 
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The MPC is probably the most applied advanced control technique in the industry due to 
several reasons: 

• It handles multivariable control problems naturally. 
• It can take account of actuator limitation. 
• It can handle constraints on the inputs and the outputs of the process in a systematic way 

during the design and the implementation of the controller. 
• It can handle changes in system parameters or system structure (including sensor or 

actuator failures) by regularly updating the parameters and the structure of the prediction 
model [8]. 
However, the use of MPC is not limited to the industry. The many advantages that MPC 
offers are also relevant for traffic control. In fact, MPC has already been extended to 
conventional roadside-based non-intelligent vehicle traffic management, traffic management 
and intelligent vehicles control [9-11]. It has also been used as driver assistant for ecological 
driving [12] and an approach to design adaptive cruise control [13]. In spite of mentioned 
cases, it seems that MPC has been widely used in vehicle platoon control, autonomous 
vehicles in Intelligent Vehicle Highway Systems (IVHS) and control systems such as 
Advanced Cruise Control (ACC). But it hasn’t been used for driving behaviors including the 
human driver, e.g., for car following behavior [14]. 

Stability analysis is a very important task in the mathematical control theory and its 
practical application. It is a fundamental property of a dynamic system that summarizes the 
long-term behavior of that system. In engineering practice the control systems are designed so 
that stability is preserved in various classes of uncertainties – this property is known as the 
robust stability [15]. The stability problem of MPC based control can be solved by correct 
designing [8]. The MPC has been successfully applied to motorway traffic management too 
[11, 16]. 

Also, in this study, robustness analysis, i.e. analysis of the robustness properties of standard 
MPC designed for a nominal model is distinguished without taking into account uncertainty, 
and synthesis of MPC algorithms which are robust by construction. The robustness analysis of 
MPC control loops is more difficult than the synthesis, where the controller is designed in 
such a way that it is robustly stabilizing. This is not unlike the situation in the nominal case, 
where the stability analysis of a closed loop Multiple-Input-Multiple-Output (MIMO) system 
with multiple constraints is essentially impossible. On the other hand, the MPC technology 
leads naturally to a controller such that the closed loop system is guaranteed to be stable [17]. 

In this study, identification of a human driving behavior based on actual measured car 
following data is performed and a model predictive controller will be designed to control the 
car following behavior as the most common behavior in real traffic flow. Then the result of 
the controller will be compared with actual traffic data. The remaining parts of this paper are 
organized as follows: Section 2 describes the procedures of designing a car following 
behavior model based on ARMAX identification structure which will be employed as the 
plant of the control system. Section 3 presents the model predictive control system design and 
in section 4, the proposed controller will be evaluated. At last, the conclusion is given in 
section 5. 

 

2 Model structure 
 
2.1 Alternative for Modeling 
 
Automotive first principle models range from precise computational (distributed) fluid 
dynamics models, in which the flows and possibly combustion is modeled precisely, to mostly 
lumped models for vehicle control in multi-body languages like ADAMS, or partly produced 
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directly from 3D drawings product e.g. in CATIA. In the case of modeling human driving 
behavior, if it were to contain all parameters and behavior, models may become very complex. 
First principle models have always been the first choice of designers as they allow physical 
insight in the systems and to experiment with design changes. 

This result from a common characteristic of all first principle models; because they contain 
the information known a priori, i.e., what the modeler is aware of at the start of the project. 
While this is unavoidable in some cases, e.g. when the system does not yet exist, it bears the 
enormous disadvantage that all deviations from expectation will not include. As a 
consequence, this approach will work with systems which are relatively easy to model, like the 
basic vehicle dynamics (2-DOF bicycle model) or the effect of speaking with cell phone on 
driving performance while driving [18, 19].  

The industrial community has mostly a different approach, especially in the case of engine 
control. Control candidates with high parameter numbers are set up, and tuned experimentally 
with an enormous effort, yielding in practice an approximated inverse model and is used to 
design a reliable, yet utterly heuristic controller. The main reason for this is that first principle 
models tend to be too simple to describe the real systems to the necessary degree of precision 
necessary to meet the increasing performance requirements. Also in the case of human driving 
behavior, this kind of approach isn’t effective and cannot include all scenarios and behaviors. 

This essential difference in modeling is mirrored in the practical development of the models 
and successful applications: while control of longitudinal dynamics as in [20], or the lateral 
approaches as in [21] can be built upon first principle models with few unknown parameters, 
the same is not true for car following behavior. Even though first principle models are always 
the most complete information source, frequently they cannot be used for control design or 
simulating human behavior, as they are too complex for on-line use, they must be 
approximated. So, a natural question could be: why bother for a good first principle model and 
not look directly for a good approximation? 

  
 
3.1 Data-Based Model 
 
The natural alternative to first principle models are data-based models, which typically fix a 
parameterized candidate model without reference to the physics of the real plant and requires 
large quantities of data in order to compute the optimal estimation of the parameters. The 
main drawbacks of purely data-based models are, of course, the need of data, but also the 
frequently unknown extrapolation properties: as in all nonlinear identification problems, the 
choice of the excitation is critical, because actually all moments of the exciting signal are 
critical. For some cases, the candidate model structure will in general not contain the true 
model; therefore system identification becomes essentially an approximation tool. Also 
“practical” approximators ,e.g. linear parameter varying methods as well as simple structures 
which can be easily included in the optimization like the one used by have been used in the 
quest for suitable models, i.e., for those who capture the main nonlinearities while remaining 
sufficiently simple. Moreover, the dimension of data-based models increases significantly (in 
comparison to a linear approach). 

Against this background, there is a rationale for combining both approaches so to get simple 
and high performing models. There are at least two ways to do this, the first one, the so called 
gray-box model, uses physical understanding to describe explicitly aspects of the models 
which can be described analytically and combines them with data-based models. A second 
possibility consists in looking for global patterns in the observed data which can be expressed 
analytically (with few parameters) and thus infer not only the parameters of a given model but 
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also its structure from the data. It is interesting to note that the real critical issue is not the 
method used for the identification, not even the class of functions, but the specific data [22]. 

 
4.1 Dataset 
 
In order to design a car following behavior model, a dataset of car following behavior is 
needed. So, real car following data from US Federal Highway Administration’s NGSIM 
dataset is used [23]. In June (2005), a dataset of  trajectory data of vehicles travelling during 
the morning  peak period on a segment of Interstate 101 highway in Emeryville (San 
Francisco), California has been made using eight cameras on top of the 154m tall 10 
Universal City Plaza next to the Hollywood Freeway US-101. As shown in figure (2), on a 
road section of 640m, 6101 vehicle trajectories have been recorded in three consecutive 15 
minute intervals. 
 

 
Figure 2 A Segment of Interstate 101 Highway in Emeryville,  

San Francisco, California [24] 
 
 

This dataset has been published as the “US-101 Dataset”. The dataset consists of detailed 
vehicle trajectory data on a merge section of eastbound US-101. The data is collected in 0.1 
sec intervals. Any measured sample in this dataset has 18 features of each Driver-Vehicle 
Unites (DVU) in any sample time, such as longitudinal and lateral position, velocity, 
acceleration, time, number of road, vehicle class, front vehicle and etc. [24]. 

Based on a thorough analysis of this dataset, the data of the vehicles which had a car follow 
behavior were extracted. This datasets was comprised of the data of three vehicle classes; 
motorcycles, autos and trucks. For this study, the data of only autos was used. 

The data extracted from the datasets, seem to be unfiltered and exhibit some noise artifacts, 
so these data must be filtered like [25, 26]. A moving average filter has been designed and 
applied to all data before any further data analysis. A comparison of the unfiltered and filtered 
data of the acceleration of the FV in one maneuver is shown in figure (3). 
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Figure 3 Comparison of unfiltered and filtered data

5.1 ARMAX model 
 
The ARMAX is a linear polynomial structure to model time series data (For frequency-
domain data, Output-Error model must be used). In this section, the structure of ARMAX will 
be looked at briefly.  

Time series data have a natural temporal ordering. This makes time series analysis distinct 
from other common data analysis problems, in which there is no natural ordering of the 
observations. A general time series representation can be given as Eq. (1): 

1 1

1

1 1

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

B q C q
A q y t u t e t

F q D q

 


 
   (1) 

Time series models are special cases of polynomial models for systems without measured 
inputs. Auto Regressive Moving Average Models with exogenous inputs (ARMAX) are 
typically applied to auto correlated time series data. ARMAX is a generalized model for 
discrete, time-varying systems. The ARMAX model structure is stated in Eq. (2): 
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 


 (2) 

where ( )y t is the output at time t , an is the number of poles, bn is the number of zeroes plus 1, 

cn is the number of C coefficients, kn is the number of input samples that occur before the 

input affects the output, also called the dead time in the system, ( 1) ( )
a

y t y t n  is the 

previous outputs on which the current output depends, ( ) ( 1)
k k b

u t n u t n n    is  the 

previous and delayed inputs on which the current output depends and ( 1) ( )
c

e t e t n  is 

white noise disturbance value. A more compacted way to represent the ARMAX model in 
discrete form is shown in Eq. (3). 

1 1 1( ) ( ) ( )k k kA q y B q u C q e     (3) 

which 1( )A q  , 1( )B q   and 1( )C q   are polynomials in the backward shift operator. The notation 
ARMAX refers to the model with A autoregressive terms, C moving average terms and B 
exogenous inputs terms as in Eq. (4): 
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 (4) 

Equation (3) may be identified from input-output data ( , )
k k

y u using system identification 
methods [27-33]. Equation (1) is sufficiently general to include FIR, ARX, ARMAX, and 
Box-Jenkins models. Like models identified using sub-space methods, Eq. (3) can be realized 
as a state space model in an innovation form [34]. There are several ways and codes in 
MATLAB to convert to state space or other forms. The Eq. (3) may be realized as a linear 
time invariant state space model in innovation form as in Eq. (5): 

1k k k

k k

x Ax Bu

y Cx
  


 (5) 

In order to estimate the car following model with an ARMAX model, a dataset of car 
following behavior that presented in the preview subsection is used. To estimate the model, 
the system identification tool of MATLAB is used [35]. The accelerations  and  

represent the accelerations of the LV and FV respectively and  represents the traveled 

distance of FV. The two accelerations are used as the ku  and the position FVX  is used as ky . 

There are several criteria to obtain the model that describes the car following behavior the 
best. The best model is the simplest model that accurately describes the dynamics. To 
compare models and choose the model with the best performance, the normalized root mean 
square error for overall best fit criterion has been considered. 

Almost half of the extracted car following data was used for model identification stage. 
Several models were designed and the results obtained were compared with real dataset. After 
considering the influence of models coefficients on the performance of the behavior and an 
extensive review on the models behavior, the most appropriate model was selected. The 
identified model is a car following behavior model. It means that the model can simulate the 
behavior of an unknown human driver that is performing a car following behavior in the 
traffic flow. The obtained model does not have any parameter which needs to be tuned. The 
model overall best fit criterion is 99.59 and despite the driver parameters such as age, gender, 
driving condition and etc., the model simulates driver behavior very well. So it can be said 
that the model is a generalized model for car following behavior. This model was evaluated 
using the remaining half of the car following data. The comparisons of the output of the 
model with real data for one vehicle which had a car following behavior for the entire period 
of the maneuver are shown in figure (4). 
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Figure 4 Comparison between the real data and the output of the FV model. 
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This result shows that the output of the proposed model and real data for a vehicle with a car 
following behavior are very similar. Here, the output of only one car following behavior is 
shown. In order to have a better understanding of the performance of this model, in figure (5) 
the error between the output of the model and real data is shown. 
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Figure 5 Error between the real data and the simulation 
 results for ARMAX model 

 
This result shows that the simulated output of the model has high accordance with the real 

data and the model simulated the behavior of the human driver very well. 
To examine the performance of the obtained model with other data, various criteria were 

used to calculate errors. The criterion mean absolute percentage error (MAPE), according to 
Eq. (6), shows the mean absolute error that can be considered as a criterion to model risk to 
use it in real-world conditions. Root mean squares error (RMSE), according to Eq. (7), is a 
criterion to compare error dimension in various models. Standard deviation error (SDE), 
according to Eq. (8), indicates the persistent error even after calibration of the model. In these 
equations, ix shows the real value of the variable being modeled (observed data), x̂ denotes 

the real value of variable modeled by the model and N is the number of test observations [36]. 
Errors of the obtained car following model using several data considering these error criteria 
are summarized in Table 1 for the randomly selected vehicles. 
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Table 1 Result of error in the ARMAX car following model 

Test Vehicle MAPE RMSE SDE 
Data1 
Data2 
Data3 
Data4 
Mean 

0.3803 
0.1969 
0.4140 
0.1435 
0.2836 

2.9393 
0.8724 
2.9644 
0.5932 
1.8423 

0.0045 
0.0011 
0.0042 
0.0014 
0.0028 
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As it can be seen from Table (1), the car following model has low error values. The results 
show that the proposed model has a high compatibility with real car following behavior data. 

  
 
3 Model predictive control system design 
 
In this section, the design of the MPC system will be described. At first, a brief review on 
MPC is explained. Then, the MPC will be designed. 
 
3.1 Model Predictive Control Basics 
 

The MPC is the only advanced control methodology which has made a significant impact on 
industrial control engineering, the reason cited most often for the success of predictive control 
in the process industries is that the most profitable operation is often obtained when a process 
is running at a constraint, or even at more than one constraint. Often these constraints are 
associated with direct cost, frequently energy cost [8]. 

The general design objective of model predictive control is to compute a trajectory of a 
future manipulated variable u to optimize the future behavior of the plant output y. The 
optimization is performed within a limited time window by giving plant information at the 
start of the time window [37]. We will now briefly summarize the main ideas behind MPC. 
Figure (6) shows a schematic representation of MPC. 

 

Figure 6 Schematic representation of MPC [9]

 
The MPC is based on (on-line) optimization and uses an explicit prediction model to obtain 

the optimal actions for the control measures. Let cT  be the control sampling interval, i.e., the 

(constant) time interval between two updates of the control signal settings. At each time step 
k  (corresponding to the time instant ct kT ), the controller measures or determines the 

current state ( )x k  of the system and uses a model of the system to predict the behavior of the 

system over an interval [ , ]pk k N , where pN  is called the prediction horizon, as shown in 

figure (7). Next, the controller solves an open-loop optimal control problem to determine the 
optimal control inputs ( ),..., ( 1)pu k u k N   that minimize a performance criterion ( )j k  

over the prediction period [ , ]pk k N , subject to the operational constraints. To reduce the 

computational complexity of the problem, one often introduces a constraint of the form 
( ) ( 1)u k j u k j     for ,..., 1c pj N N  , where ( )c pN N  is called the control horizon. 

When the optimal values are found by the controller, the control actions are applied in a 
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receding horizon fashion. This is done by applying only the first control sample ( )u k  of the 
optimal control sequence to the system. Next, the prediction horizon is shifted one step 
forward and the prediction and optimization procedure over the shifted horizon are repeated 
using new system measurements. The receding horizon approach introduces a feedback 
mechanism, which allows reducing the effects of possible disturbances and mismatching 
errors between the actual output and the predicted output [9]. 

 

 
Figure 7 Representation of the MPC control scheme [9] 

 
4.1 Model Predictive Control System Design 
 
The MPC refers to a class of algorithms that compute a sequence of manipulated variable 
adjustment in order to optimize the future behavior of a plant. In this subsection, MPC is 
designed. One of the important parameters which have a significant role in tuning the MPC is 
weighting matrices which are defined in cost function. The cost function used in MPC is 
given by the scalar function according to Eq. (7). 

(7)  1

2

( ) ( ( | ) ( | )) Q( ( | ) ( | )) ( 1) R ( 1)
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PN
T T
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     


 

The cost function can be written in the matrix form. The main point of doing this is to remove 
the summation sign from the problem and the solution. This will simplify the discussion 
considerably and the problem of solving the control law is transformed to an on-line quadratic 
program (QP) problem, which can be solved using a mathematical programming solver [38]. 
Also solving the control law must satisfy the following constraint Eq. (8). 
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min min max max
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 

 

 

    

       

    

 

The constraints on u, Δu, and y are relaxed by introducing the slack variable 0  . The 
weight   on the slack variable   penalizes the violation of the constraints. The larger   
with respect to input and output weights, the more the constraint violation is penalized. The 
equal concern for the relaxation vectors * *

min max,V V  have nonnegative entries which represent 
the concern for relaxing the corresponding constraint; the larger V, the softer the constraint. 
V=0 means that the constraint is a hard one that cannot be violated. 
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Here, Q, R and P are symmetric and positive semi-definite weighting matrices specified by 
the designer. The more general choice is to specify Q, P and R as diagonal weighting 
matrices. Often, P is chosen as zero in order to obtain MPC with offset-free control, i.e., y = r 
in steady state. The smaller the weighting matrices, the less important is the behavior of the 
corresponding variable to the overall cost function. The problem of choosing the weighting 
matrices are usually process dependent and must usually be chosen by trial and error. 
However, if Q, P and R are chosen as diagonal positive definite matrices and if the prediction 
horizon pN  is large (infinite) then it can be proved that the closed loop system with the 

optimal control is guaranteed to be stable even if the open loop system is unstable. 
The goal of our MPC is to keep the future relative distance in a safe region by computing 

the appropriate acceleration of the FV. The Pipes law [39] defines this safe region as stated in 
Eq. (9). 

1
4.47

FVV
S L

   
 

 (9) 

This distance is the safe distance that must be kept between FV and LV. As shown in figure 
8, the value of the Pipe’s law is applied to the controller as a dynamic reference. This value 
changes according to the instantaneous value of velocity in each instant and it is not a 
constant reference for the controller. Hence, the controller tries to control the acceleration of 
FV in order to keep the relative distance in the safe region. Also, the acceleration of LV is fed 
to the controller as a disturbance, therefore any changes in the behavior of the LV is reflected 
to the controller. 

 
Figure 8 Schematic of the control system with MPC.

 
Here, since the system output (i.e. maintaining the safe distance) is more important that its 

input (i.e. produced acceleration from the controller), the weighting matrices are defined as 
mentioned in Eq. (10). 

(10)

Diagonal Unit Q

R 0.1

P 0

Matrix

I





 

By setting the weighting matrix R as mentioned in Eq. (10), the input increments 
{ ( | ), ( 1 | )}u k k u m k k     get more important than its input. This fact doesn’t indicate 
that the acceleration generated by the controller does not have importance; but instead it is 
expressing that acceleration is controlled with another parameter, i.e. constraint, which has a 
better impact on its performance. 
The constraint on the acceleration and its increments are defined as soft constraint as in Eq. 
(11). 
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(11)
2 ( ) 2

0.5 ( ) 0.5
i

i

0.5 u k 0.5

0.1 u k 0.1

   
   

 

 
The slack variable is displayed in italic. Since MPC requires the solution of an optimization 

problem at each time step, the feasibility of that problem must be ensured. If the on-line 
optimization problem is not feasible, then some constraints would have to be weakened. 
Finding which constraints to weaken is an extremely difficult process to do, since it is an nNp-
hard problem. A possible (and partial) remedy to the problem is to consider constraint 
softening variables   on process output constraints (as shown in Eq. (11)) and include a 
penalty term such as 2  in the cost function. Feasibility, in addition to being a practical 
consideration, is also important for closed-loop stability of MPC [8, 40]. 

The performance of the designed MPC is evaluated in the next section. 
 
 

4 Results and discussion  
 

In this section, the performance of the designed controller will be investigated. To assess this 
performance, a dataset of real traffic is required. The dataset used here was introduced in 
section 2. 

The performance of the designed controller will be investigated through simulation. In the 
available dataset, the data of hundreds of vehicles which had the car follow behavior are 
provided. In this paper, the simulation results of only one vehicle from the data set are 
presented. However, the simulation was done for many other test vehicles too, but it is 
impossible to provide all of them in one paper.  

For the simulation of the randomly chosen test FV vehicle, the necessary data for this 
vehicle and its preceding vehicle (LV) was extracted from the dataset. The initial conditions 
(VFV and XFV) for the FV model was set similar to that of the real driver behavior, therefore 
the conditions at the start of the simulation for both the model and the driver are the same.  

The behavior of the FV was simulated for a period of 41 sec. The sampling time (Tc) of the 
simulation was set to 0.1 sec. For the prediction horizon (Np) and the control horizon (Nc) 
which were explained in section 3, 20 sec and 4 sec were selected respectively. The 
performance of the designed controller was evaluated through investigation of several 
variables. Then, the results of the simulation were compared with the data of the test vehicle 
that was used.  

One of the variables of the system was the output of the controller as the acceleration of the 
FV. In order to limit the variations of acceleration, a numerical constraint was applied to its 
rate of changes (as mentioned in Eq. (11)). It was an essential constraint since the variations 
of acceleration could get so high. This constraint was applied to ensure the comfort of 
passengers and prevent the sudden movements of the vehicle. Figure (9) shows the 
comparison between the result of the simulation and that of the real vehicle. 
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Figure 9 Comparison between the acceleration of the simulation 

 and FV’s real behavior. 

The comparison shows that the controller’s output follows that pattern of the real behavior 
to a satisfactory extent and indeed it has a smoother rate of changes. Fewer variations in the 
same period of time assure the comfort of vehicle and passengers.  
Other variables that were obtained from the simulation were the velocity and position of FV. 
These results are shown in figure (10). 
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Figure 10 Comparison between the results of simulation and FV’s real  
behavior, (a) Velocity, (b) Position 

In figure (10a), the comparison shows that the velocity of the controller also has a smoother 
rate of changes and fewer variations in the same period of time. These factors result in lower 
consumption of energy and steadier travel of the vehicle which also guarantee the comfort of 
passengers. About figure (10b), it can be seen that the position resulted from simulation 
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almost has a similar pattern with the position of the real vehicle. But the position of the 
vehicle is closer to LV in comparison with the position of real driver. However, though it is 
closer to LV, but it is keeping a safe distance with its preceding vehicle. This result can be 
concluded from figure (10) too. Being in a closer position, in comparison with real position, 
leads to smaller length of the platoon of vehicles in the traffic flow. In addition, figure (11) 
shows the relative distance between the FV and LV. 
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Figure 11 Comparison of the relative distance between 

 the result of MPC and real driver
 
 
The results show that the real driver kept a very long unnecessary distance with its LV. But 
the controller kept a sufficient distance and avoided the unnecessary gap. It also confirms that 
the controller decreases the length of the platoon of vehicles in the traffic flow.   

As stated in section 3, the relative distance must be kept in a safe region which is computed 
through Pipe’s law. In other words, Pipe’s law presents the safe distance value of each instant. 
This law acts like a constraint on relative distance to ensure the safety of the vehicles. In order 
to evaluate the performance of the MPC, the relative distance from the controller and the 
driver is compared with the value of Pipe’s law for the entire behavior. This result is shown in 
figure (12) as the error between the safe and relative distance. 
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Figure 12 Comparison of the relative distance between 

 the result of MPC and real driver 

 
As it can be seen from the figure, the behavior of the real driver has a significant difference 

with Pipe’s law. But the result of the controller has such a low error (around zero). Notice that 
at the start point, the error of the controller is similar with the error of real driver. It is due to 
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the fact that the initial conditions are set similar and it takes a while for the controller to 
reduce the error. 

To conclude, it can be said that the MPC controller has safer behavior than that of a human 
driver. It’s due to the fact that MPC keeps the safe distance with its preceding vehicle, i.e., the 
FV keeps a safe distance with its preceding vehicle. Also the MPC produces the acceleration 
and velocity with have much fewer variations than the human driver. As a result, the FV 
travels with a steadier motion which leads to less fuel consumption. The human driver kept 
longer distance with its preceding vehicle than the distance which Pipe’s law suggested 
according to its velocity. This unnecessary long distance will increase the traffic queue and 
leads to more driving risks for other vehicles in the traffic. 

To evaluate the robustness of the controller, in different time intervals of the entire period 
of the behavior, the controller is applied to the model. It is expected that no matter when the 
controller was applied to the system, it must be able to keep the relative distance in the safe 
region, and keep the error around zero. So, different initial conditions for the controller will 
be selected.  

For a vehicle chosen randomly from the dataset, the 1st initial condition was selected at the 
moment of the start of the maneuver. The two other initial conditions were randomly selected 
at seconds 8 and 17 of the entire behavior. The simulation result of the controller for this 
vehicle is shown in figure (13). 
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Figure 13 Comparison between the real driver behavior and result of MPC for 
different initial conditions, (a) Relative Distance, (b) Error 

 
 

As shown in figure (13a), no matter when the controller was applied, it is able to keep the 
relative distance in the safe region, and as shown in figure (13b), it is also able to keep the 
error around zero. So, different initial conditions do not disturb the performance of the 
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controller. In other words, the designed MPC controller is perfectly compatible to the changes 
of initial conditions. 

In the next step, the stability of the MPC will be investigated. Two broad classes of stability 
definitions are associated with (a) stability with respect to initial conditions and (b) input-
output stability, respectively. The two classes are complementary to each other and can also 
be combined. From the result of figure (13), it can be said that the controller has stability with 
respect to the initial conditions. The concept of stability is fundamental in the study of 
dynamical systems. Loosely speaking, stability is a dynamical system’s property related to 
“good” long-run behavior of that system. While stability by itself may not necessarily 
guarantee satisfactory performance of a dynamical system, it is not conceivable that a 
dynamical system may perform well without being stable. There are several methods to 
perform stability test. First we examine our controller’s stability through ‘REVIEW’ code in 
MATLAB. REVIEW checks for the potential design issues in the Model Predictive Controller 
design and generates a report. Review performs the following diagnostic tests:  

-Is the optimization problem to be solved online well defined? 
-Is the controller internally stable? 
-Is the closed loop system stable when no constraints are active and there is no model 

mismatch? 
-Is the controller able to eliminate steady-state tracking error when no constraints are 

active? 
-Is there a likelihood that constraint definitions will result in an ill-conditioned or infeasible 

optimization problem? 
The result of this diagnostic is showed in table (2). 
 

Table 2 Summary of Performed Tests 
Test Status 

MPC Object Creation Pass 
QP Hessian Matrix Validity Pass 
Controller Internal Stability Pass 
Closed-Loop Nominal Stability Pass 
Closed-Loop Steady-State Gains Pass 
Hard MV Constraint Pass 
Other Hard Constraints Pass 
Soft Constraint Pass 

 
 
As the table shows, the controller passes all the diagnosis of tests. Therefore, it can be 

concluded that the MPC is designed correctly. 
In MATLAB, the MPC block receives the current measured output signal ( )x , reference 

signal (Ref), and measured disturbance signal ( )LVa . The block computes the optimal 

manipulated variables ( )FVa  by solving a quadratic program (QP). The Quadratic Problem 

(QP) Hessian matrix validity shows that our choice of cost function parameters and horizon is 
acceptable that results in positive definite QP Hessian matrix.  Passing internal stability of a 
controller shows that the eigenvalues of the MPC controller is designed properly. The closed-
loop steady-state shows that the controller drives the output variables to their targets at steady 
state. The diagnoses about constraint indicate that there isn’t a potential hard-constraint 
conflict with MV ( )FVa  bounds or its rate of changes, and there is proper balance between 

hard and soft constraint. If the constraint is designed too hard, the controller might pay too 
much attention. Moreover, making a constraint harder cannot prevent a violation if the 
constraint is fundamentally infeasible. The Controller internal stability and closed-loop 
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stability along with other test, all pass the diagnosis. Of course these tests cannot detect all the 
possible performance factors. So, additionally we will test our design using techniques such 
as simulations. Impulse-response or step-response is simple but practical tests that can 
provide result about stability [41]. Knowing the step response of a dynamical system gives 
information on the stability of such a system, and on its ability to reach one stationary state 
when starting from another [42]. 

Therefore, as the next step, a constant set-point is applied to the controller to investigate 
how well the controller is able to track the input with the existence of disturbance in the 
system. Instead of applying a normal step test, a constant input is applied to the control 
system to simulate a situation as if the LV is moving with a constant velocity and it is 
expected that FV keeps the relative distance with its LV in a constant value. In this situation, a 
relative distance of 10 meters is chosen and this input is applied to two different initial 
conditions. In the first case, the FV is too close to the LV and in the second case; the FV is 
too far from it. 
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Figure 14  Result of the response test, (a) FV close to LV, (b) FV far from LV 
 
 
As it is show in figure (14a) and (b), in both cases, the Controller can easily track the input 

without any overshot. The result is exactly the one expected from the MPC. In the first case, 
the FV was too close to the LV and the controller lead the distance to the value of the safe 
distance that has been designated. In the second case, the FV kept an unnecessary distance 
from the LV and the controller leads it to the safe distance that has been designated. 

To investigate the robustness of the MPC, the impulse-response or step-response are used 
which provide a practical description in many applications, as they can be easily determined 
from experimental tests, and allow a reasonably simple way to compute robust predictions. 
Impulse and step response descriptions are only equivalent when there is no uncertainty. If 
there is uncertainty, they behave rather differently [43]. 
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In the next step, a robustness check was performed by testing our controller's sensitivity to 
prediction errors. To do such test, a second model was designed similar to the one explained 
in section II, but some small coefficient in its state were interfered in a way that the behavior 
of the second model have some perturbation and behave differently to the same input. It was 
named the perturbed model, and it act as if the vehicle is in an unbalanced car following 
condition. Then, a step input containing noise was applied to the controller to both the 
accurate model and the perturbed model. Both models used the same controller. First, the step 
is applied to the system and in the middle of signal, on a random time, an impulse is also 
inducted on the step. The result of such test is shown in figure (15). 
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Figure 15 Robustness test 

 

As it can be seen, the controller guides the accurate model and the perturbed model to the 
set-point defined for the system and it performs well despite the fact that the second model 
has a perturbation in the design. In the second part of the test, when the impulse influences on 
the set-point, the controller quickly return both the accurate and the perturbed model to the 
set-point. The accurate model reaches the set-point smoothly and without overshot, that was 
expected because the controller has been designed to do such a behavior. Injecting such an 
impulse to the system is like the situation that the FV suddenly accelerates or the LV suddenly 
brakes and the FV recedes from its safe distance target. In this situation the controller returns 
it to set-point as well. The perturbed model has an overshot because the perturbed model was 
designed in a way to show instability in the conditions of the FV. As a result, the controller’s 
performance is robust against noise and changes in model behaviors. It can be said that 
another advantage of the controller is its durability to cope with instantaneous changes of the 
disturbance which in this case is the changes of the acceleration of the LV. 
 

 
5 Conclusion 
 

In this study, at first, an ARMAX model for car following behavior is designed based on real 
traffic data. This model is employed as the plant of the control system. The control of car 
following behavior is achieved through model predictive control approach. Based on the 
relative distance and relative acceleration of each instant, the MPC predicts the future 
behavior of the LV and according to this behavior, the acceleration of the FV is controlled. 
The MPC tries to control this acceleration in a way to keep the relative distance at a safe 
region. The important aspect of this type of control is MPC’s ability to deal with constraints 
on controls. For this behavior, safety acts like a constraint on the relative distance between FV 
and LV. It’s due to the fact that the value for safe distance is obtained at each time instant 
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from Pipe’s law and this value varies according to the velocity of FV at each time interval and 
the controller must try to predict it and then keep up with it during the entire period of the 
maneuver. Also, a numerical constraint is applied to the rate of changes of acceleration to 
ensure the smooth movement of the vehicle. To investigate the performance of the designed 
controller, the result of the system is compared with the behavior of real drivers with similar 
initial conditions. The simulation results show that the MPC controller has a behavior much 
safer than that of the real driver and it provides a pleasant trip for passengers. Fewer 
variations of acceleration and velocity in the same period of time assure the comfort of 
vehicle and passengers. Also, the controller results lead to lower consumption of energy and 
steadier travel. In addition, by keeping the FV in a proper distance with its LV, the controller 
decreases the length of the platoon of vehicles in the traffic flow. In addition for more 
evaluation, controller stability and robustness against noise were also studied. This proposed 
model can be applied in future studies related to car following behavior, since it can help to 
study different features of driver’s behavior at maintaining safe distance. The presented 
control system can be used to improve the current control system’s performances in driver 
assistant devices, safe distance keeping observers, collision prevention systems and etc. 
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Nomenclature 
 a : Vehicle acceleration 

1 1 1( ), ( ), ( )A q B q C q    : polynomials in the backward shift operator 
 e : Noise Disturbance 
 FV : Follower Vehicle 
J   : Performance criterion 
k   : Time step 
L : Vehicle length 
LV : Leader Vehicle 
MAPE : Mean absolute percentage error 
N : Number of test observations 
Nc  : Control horizon 
Np : Prediction horizon 
P, Q, R : Weighting Matrix 
r : Reference 
RMSE : Root mean squares error 
S : Safe distance 
SDE : Standard deviation error 
Tc   : Control sampling interval 
u : Input 
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V : Vehicle velocity 

ix   : Real value of the variable being modeled (observed data) 
x̂    : Real value of variable modeled by the model 
x    : Real mean value of the variable 
X : Vehicle running distance 
y : Output 
  
Greek Symbols  

u  : Input increments 
x  : Longitudinal distance Between FV and LV 

  : Slack variable 

  : Weighting Matrix 
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 چكيده

 و علمي مجامعبه افزايش روز افزون تردد وسايل نقليه، معيار ايمني و كنترل حجم ترافيكي از سوي  باتوجه
 همچنين و رانندگي خطاهاي تصادفات، كاهش براياز اينرو . بسيار مورد توجه قرار گرفته است تحقيقاتي

 به رو هاي كنترليهاي مدلسازي و سيستمبا استفاده از روش نقليه وسايل آوريفن ترافيكي جريان بهبود
كنترل طولي خودرو براي اصلي اين پژوهش طراحي سيستم هوشمند  فهد. رودمي پيش شدن هوشمند

سازي در اين پژوهش براي كنترل كردن حركت طولي خودرو، ابتدا به مدل. باشدرفتار تعقيب خودرو مي
ها واقعي رفتار براي ساخت اين مدل از داده .شودپرداخته مي ARMAXفرآيند تعقيب خودرو بر مبناي مدل 

مترهاي مورد نياز از مجموعه داده استخراج شده است و براي اين امر، پارا. خواهد شدتعقيب خودرو استفاده 
هاي سپس عملكرد خروجي مدل به دست آمده با داده. مدلسازي بر مبناي شناسايي مدل صورت گرفته است

دهند كه مدل به دست نتايج نشان مي. شودواقعي مجموعه داده توسط معيارهاي مختلف خطا سنجيده مي
با  در گام بعدي اين پژوهش، .كندسازي ميآمده با كمترين خطا به خوبي رفتار تعقيب خودرو را شبيه

. شودبين براي مدل ارائه شده ميكننده پيش بين مدل اقدام به طراحي كنترلاستفاده از تئوري كنترل پيش
مقايسه نتايج . نيز دارد فرآهم كردن لذت رانندگي رااين سيستم كنترلي علاوه بر حفظ فاصله ايمن سعي در 

م تدهند كه حفظ فاصله ايمن توسط سيسنشان مي سازي سيستم كنترلي طراحي شده با مقادير واقعيشبيه
گر را در خودرو تعقيب ،اين سيستم كنترلي با توليد سيگنال بهينه شتاب. كنترلي به خوبي انجام شده است

تر شدن اين امر منجر به نزديك. و از تمامي فضاي ايمن موجود استفاده كرده است داشتهمنطقه ايمن نگه
. باشدگر به خودرو راهنما شده است كه نتيجه آن كاهش صف ترافيكي در پشت خودرو ميخودرو تعقيب

نرخ تغيرات كمتري نسبت به شتاب و سرعت همچنين شتاب و سرعت توليد شده توسط سيستم كنترلي 
تر خودرو و صرف سوخت و حركت يكنواختموسط راننده انساني دارد، كه اين امر منجر به كاهش توليدي ت

 و كنترلي پايداري سيستم بيشتر، ارزيابي براي اين بر علاوه .شوددر نتيجه لذت بردن سرنشينان از سفر مي
دهند كه سيستم بي نشان ميارزيا اين نتايج .گرفت قرار مطالعه مورد نيز مقاوم بودن آن در برابر اغتشاشات
هاي ورودي مقاوم بوده و در حفظ فاصله ايمن در شرايط در سيگنال كنترلي در مقابل تغييرات ناگهاني

  .كندگوناگون بصورت پايدار رفتار مي


