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In this paper, the nonlinear vibration of functionally graded
(FGM) cylindrical shells subjected to radial harmonic
excitation is investigated. The nonlinear formulation is based
A.A. Jafari"fon a Donndl’s nonlinear shallow-shell theory, in which the
Ph.D B geometric nonlinearity takes the form of von Karman strains.
The Lagrange equations of motion were obtained by an energy
approach. In order to reduce the system to finite dimensions,
the middle surface displacements were expanded by using trial
SM.R. Khalili* J functions. These functions were expressed in terms of Fourier
Ph.D B series containing linear mode shapes, which were obtained
from free vibration analysis. The large-amplitude response and
amplitude frequency curves of shell were computed by using

numerical method for both linear and nonlinear analysis.
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1 Introduction

FGMs are microscopically inhomogeneous materials, in which the mechanical properties vary
smoothly and continuously from one surface to the other. This is achieved by continuous
change in composition of the FGMs. Composition is varied with continuous change in the
volume fraction of constituent materials. Material properties of the FGMs are tailored with the
variation of the volume fraction of the constituent materials. These materials are considered as
potential structural materials for the space crafts [1-4]. These graded materials are introduced
by Shiota [5] and Koizumi [6]. Usually these materials are made from a mixture of ceramic
and metal(s) with a continuously varying volume fraction [2, 6-9]. The advantages of using
these materials are that they can withstand therma shocks while maintaining structural
integrity. Ceramic constituent of the material provides the high temperature resistance while
the metal part prevents the fracture caused by high stresses. Studies on FGMs have been
extensive but are largely confined to analysis of thermal stress, deformation and fracture [10—
15].

In addition to the linear analyses (small strains), the nonlinear response of FGMs has also
attracted research interest. Praveen and Reddy [16] conducted a geometrically nonlinear
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transient analysis of FGM plates under thermal and mechanical loading, and Park and Kim
[17] carried out a thermal post buckling and vibration analysis of FGM plates based on the
first-order shear deformation plate theory. Reddy [18] proposed a theoretical formulation for
FGM plates using the third-order shear deformation plate theory, and developed a
corresponding finite element model that accounts for thermomechanical coupling, time
dependency, and von Ka'rma n type geometric nonlinearity. Yang et al. [19] presented a
formulation for the thermomechanical post buckling analysis of FGM shell panels based on
the classical shell theory with von Karma n-Donnell type nonlinearity, and Hosseini
Kordkheili and Naghdabadi [20] derived a finite element formulation for the geometrically
non- linear thermoelastic analysis of FGM plates and shells using the updated Lagrangian
approach. Arciniega and Reddy [21] presented a tensor-based finite element formulation for
the large deformation analysis of FGM shells, and Woo and Merguid [22] reported an
analytical solution for the coupled large deflection of FGM plates and shallow shells under a
mechanical load and in a temperature field. The nonlinear post buckling behaviors of
functionally graded cylindrical shells (FGCSs) under uniform radial pressure and torsion load
are investigated by using the nonlinear large deflection theory of cylindrical shells[23, 24].

In the present work, analytical studies on the non-linear dynamic of simply supported, circular
cylindrical shells composed of functionally graded material under periodic radial loading is
presented. The properties were graded in the thickness direction according to a volume
fraction power law distribution. The linear mode shapes and natural frequencies were
obtained by using linear analysis. In this study, the middle surface displacements were
expanded by using trial functions. These functions were expressed in terms of Fourier series
containing linear mode shapes, which were obtained from free vibration analysis. The
Lagrange equations were used to reduce nonlinear partial differential equations to a set of
ordinary differential equations, from the potential and kinetic energies, and the virtual work of
the external forces, and then these equations were solved by using numerical method.
Numerical results of the amplitude-frequency for both linear and nonlinear analysis were
obtained. The effects of external load on the nonlinear frequency response were investigated.
The influence of material composition (power law exponent) and load value on the dynamic
response was investigated. Other studies and FEM analysis were used for verification of the
result.

2 Fundamental equations
As shown in figure (1), consider a functionally graded cylindrical shell, with length L and

radius R and simply supported boundary conditions. The shell of the FGM considered is
assumed to be of uniform thickness h.

Figure 1 The geometry of a FG cylindrical shell
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In order to accurately model the material properties of FGMs, the properties must be both
temperature and position dependent. This is achieved by using a simple rule of mixtures for
the stiffness parameters coupled with the temperature dependent properties of the
constituents. The volume fraction is spatial function and the properties of the constituents are
functions of the temperature. The combination of these functions gives rise to the effective
material properties of FGMs and can be expressed as [25]:

Fer(T, z) = F(T)V(2) + Fr(T)(1 — V(2)) 1)

In which F is the effective material property of FGMs, F. and F,, are the temperature
dependent properties of the ceramic and metal respectively, and V is the volume fraction of
FGMs. In addition, a simple power law exponent of the volume fraction distribution is used to
provide a measure of the amount of ceramic and metal in FGMs. In the present case, the
volume fraction is defined as [25]:

V()= (

B
z+ h/2> @

h

Where  is the power law exponent (0 < 3 < o). The equation of motion according to
Donnell’ s theory can be written as:

1
NX,X+ ﬁ NX6,9+FX=ptu,tt (3)
1
Noxx+ R Ngo+Fo=pV (4)
2 1 1
Mx,xx+ ﬁ MXG,X9+ ﬁ MG,GG' ﬁ N9+Fz=ptw,tt (5)
Where:
h/2
o= o (6)
-h/2

The stress and moment resultant is defined as:
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Where:

h/2
(Ay;By.Dyj)= f h/2 Qj(1.z2z?)dz (ij=1,2,6) (8)

and
Eeff
2
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Q11=Q22= 9
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Eeff
. 10
Q12 Veff 1'V§ff ( )
Eeff
_ 11
Q16=Q26=0 (12)

Where E ¢ and v are the effective elastic modulus and effective Poisson’s ratio of the
functionally graded shell, respectively, and are accounted according to Eq. (1)-(2). The strain
componentse,, eg and eyg Which are the strains in the x-direction, the circumferential
direction and the shear strain in the x8-plane of the middle surface, respectively, can be

expressed as.
€x €1
{ €g (= {ez} +z
€x0 Y

The linear deflection and curvatures are defined by Donnell’ s theory as:

ky
kz} (13)

T

du
€1= % (14)
1 /0v
er=c (% +w) (15)
10u ov
=778 5% (16)
0°w
ky=— %2 (17)
1 9°w
k, RZ 302 (18)
2 0%w
"~ T Roxa0 (19

The nonlinear strain-displacement relations for the large deflection by Donnell’ s theory are:

du 1 /0w\>
i =53 (5) 20
1 /v 1 /0w\?
e2 =55+ ")+ 20 (50 D)
y=la_u+@+la_wa_w (22)
R3O  dx R dx 00
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3 Linear vibration

The boundary conditions for the cylindrical shell, which is simply supported along its curve
edgesat x =0and x =L, are considered as:

w=v=M,=N, =0 atx=0, (23)

In order to satisfy the boundary conditions, u, v and w are defined by the following double
Fourier series[26]:

u= Z 2 A T (f)= Z Z A, d";—f() cos(n0) T (t) (24)
v= Z Z Bonn Trn () = Z Z Bonnly () 5N (10) T (0 2
W= Z Z Co T () = Z Z Conn Ty (%) €0S(n8) T () (26)

AnX AmX AmnX AmX
n;(x) = a;cosh (%) + a,cos (%) —Om <a35inh( IE ) — a4sm< L )) i=uv,w)

(27)
In Eq. (24)-(26), T,,,(t) is function of time. Also A,,,, By, axd C,,, are the constant
coefficients of the natural mode shapes associated with the free vibration problems, m is the
axial half wave number and n is the circumferential wave number. Values of a;, o, and A, in
Eq. (27) could be obtained from corresponding boundary conditions

ag,=0,=03=0, a,=1,0,=1, Ay=mT (28)
To solve the free vibration analysis the function of time is treated asT,,,(t) = e!®mn(®,
Where w,,, is the natural frequency. By considering external loads (F,, Fg, F,) equal to zero

in Eq. (3)-(5), natural frequencies and mode shapes are obtained. By applying a Galerkin
method, the following set of equations is derived as follows:

[[Ki]’] - wrznn[Mij]] {Amn an Cmn}T =0 (i'j = 1' . -'3) (29)

Where Kj;, My; are stiffness and mass matrices. By setting determinant of coefficients equal to
zero, the characteristic frequency equation is derived as:

81(1)6 + 62(1)4+83(1)2 + 84 = O (30)
Where §; are constant coefficients. By solving Eq. (30), natural frequencies are calculated,
and by substituting these frequenciesin Eg. (29), the constant coefficients of mode shapes are

obtained.
For linear dynamic response analysis the applied loads are defined as:

F,(x,0,t) = P(x, 0)f(t) = X, mnsm( )cos(ne)f(t) (31)
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In the above equations, f(t) is function of time P,,, is the constant coefficient that can be
calculated from applied loads. Substituting the displacements and assumed exciting forces and
moments in the equilibrium equations, and using the results of free vibration we have:

_pthnwgnnTmn(t) = pthnTmn(t) (32)
_ptEmn(’OrznnTmn(t) = ptEmnTmn(t) (33)
_ptamnwlznnTmn(t) = ptamnTmn (t) - FZ(X: e: t) (34)

After summation of two sides of the above equation and simplifying, we find a second
order ordinary differential equation as follows:

Tmn(t) + (*)Zmn (t)Tmn(t) = Gmn(t) (35)
Cmn (1)Pmnf(t)
Gmn(t) - (Azmn+Bzmn+C2mn)pt (36)

For zero initia conditions, the solution of Eq. (35) will be obtained by using Laplace
transformation.

4 Nonlinear vibration

Most of studies on large-amplitude (geometrically nonlinear) vibrations of circular cylindrical
shells used Donnell’ s nonlinear shallow-shell theory to obtain the equations of motion. In this
study, nonlinear analysis was carried out by using energy approach.

The kinetic energy (T) and strain energy (U) of a circular cylindrical shell, by neglecting
rotary inertia but retaining in-plane inertia, is given by:

T = gpt SIT[(@2 + 9% + Ww?) dxRde (37)

U=2J." [ e}"[s] {e}dxRd6 (38)

The virtual work W done by the external forcesis written as:
W = [ [*(F,u + Fov + F,w)dxRd6 (39)

Where F,, Fg and F, are the distributed forces per unit area acting in axial, circumferential
and radial directions, respectively.

In order to reduce the system to finite dimensions, the middle surface displacements u, v
and w were expanded by using trial functions. The boundary conditions imposed at the shell
ends, x = 0, L, are given by equation (23). According to these considerations, the
displacements u, v and w were expanded by using the eigenmodes of the simply supported,
empty shell:
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(x,6,0) = Amncos(nb) Tinn (D) (40)
u(x,0,t mzlnz cos(n cos( ) t

v(x,0,t) = Z Z Bnsin(nd) sm( ) Ton (V) (41)
w(x,0,t) = Z Z Crncos(n0) sm( ) T (O (42)

Where A, B and C,,,, are the linear mode shapes, which are obtained from free vibration
analysis. T, (t) are unknown functions which are dependent to time. The Lagrange equations
of motion for the cylindrical shell are:

d aT aT ou ow _ _
(m=1..i,n=1..j) (43)

T\TTn(©) ~ 9Ton(® 9Ty (® 3Ty (O

The set of nonlinear differentia equation will be obtained from Eq. (42). The solution of
these equations will be obtained by using numerical method.

5 Finite element modeling

For validating the result of nonlinear analysis the finite element modeling is proceed by
ABAQUS software and the results of FEM are compared with analytical result. The FEM
analysis is carried out according to nonlinear (large deflection) dynamic anaysis in
ABAQUS.

6 Results and discussion

To validate the analysis, results for simply supported cylindrical shells compared with Loy et
a. [27], Table (1). The functionally gradient material (FGM) considered composed of
stainless steel and nickel and its properties graded in the thickness direction according to a
volume fraction power-law distribution. The comparisons show that the present results for the
frequency characteristics agreed well with the Loy result.

Table 1 Comparison of natural frequency (Hz) with Loy (N=1, m=1, h/R=0.002, L/R=20)

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

Psrtiss)r/]t 13.211 | 44799 | 4.1569 | 7.0383 | 11.241 | 16455 | 22.635 | 29.771 | 37.861 | 46.904
rlé;)};t 13211 | 44742 | 4.1486 | 7.0330 | 11.238 | 16453 | 22.633 | 29.77/0 | 37.861 | 46.904

In this section, the nonlinear vibrations of simply supported functionally graded circular
cylindrical shellswith different constituent volume fractions and configurations analyzed. The
functionally graded material composed by stainless steel and nickel, its properties graded in
the thickness direction according to a volume fraction distribution, where 8 is the considered
power-law exponent. The material properties reported in Table (2).
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Table 2 Properties of stainless steel and nickel

Stainless steel nickel
E(Nm™) | v |plkgm™)| E(Nm™) plkgm™3)
2.08 x 1011 | 0.318 8166 2.05 x 101 | 031 8900

27

The circular cylindrical shell excited by means of an external modally distributed radial
force F, = 2cos (21 X 231.4 X 0.998 x t). It assumed that the force is exerted on the
middle of shell (x =L/2, 6 =0). The amplitude-time response for middle point of a
FGM shell with L=0.519 mm, R=149.4 mm and L=520 mm shown in figure (2). As shown
in figure (2), the 18 number of degrees of freedom found to have a good accuracy for the

nonlinear response.
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Figure 2 Comparison of nonlinear amplitude-time curves
(L=0.519 mm, R=149.4 mm, L=520,8 = 1)

1285 1256
Time (s)

In figure (3), a comparison of nonlinear amplitude-frequency curves of the FGM
cylindrical shell shown: the nonlinear 6 dofs model describes a wrong hardening nonlinear
behavior, the higher-order nonlinear expansions converge to a strongly softening nonlinear
behavior, that is the correct character of the shell response.
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omega / 1454

Figur e 3 Comparison of nonlinear amplitude- frequency curves
(L=0.519 mm, R=149.4 mm, L=520,8 = 1)

In figure (4), alinear amplitude-frequency curve of the FGM cylindrical shell is shown. As
shown in figure (4), the maximum of amplitude jumped at natural frequency of FGM
cylindrical shell (231.4 Hz). That is, the correct character of the shell response for linear
analysis.

4 -
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= 25 -
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é 15 -
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0.9 0.95 1 1.05 1.1

omega / 1454

Figure 4 linear amplitude- frequency curves
(L=0.519 mm, R=149.4 mm, L=520, = 1)

In figure (5), it is found that by increasing the amplitude of excitation force the peak point
of nonlinear amplitude-frequency curve moves to the left and the amplitude of radial
displacement increased. So the effect of the nonlinearity (large deflection) can be obtained
from figure (5) by increasing the amplitude of excitation force.
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Figure 5 nonlinear amplitude- frequency curves for different amplitude of excitation force

(L=0.519 mm, R=149.4 mm, L=520,8 = 1)

The time history of the radial displacement at the middle length of the cylindrical shell is
shown in figure (6) for internal pressure loading. It is seen that with increasing the power law
exponent ( = N) maximum deflection of curves move to the right and increase smoothly,

because the portion of nickel and stainless steel is varied and result in changing the natural
frequency of FGM shell.
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Figure 6 nonlinear time history of the radial displacement for different power

law exponent of FGM material

For validation of analytical results, which were obtained from nonlinear analysis (large
deformation assumption) the finite element model is developed by using ABAQUS software.
The time history curve for both analytical and FEM are shown in figure (7) and (8). Asseenin
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these figures, there is a good agreement between analytical and FEM analysis for nonlinear
vibration of functionally graded cylindrical shell under harmonic radial load.
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Figure 7 nonlinear amplitude-time curves from analytical analysis
(L=0.519 mm, R=149.4 mm, L=520,5 = 0)
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Figure 8 nonlinear amplitude-time curves from FEM model
(L=0.519 mm, R=149.4 mm, L=520, B = 0)
7 Conclusion

In this paper, the nonlinear vibrations of FGM circular cylindrical shells are anayzed.
Different configurations and constituent volume fractions are considered. Nonlinear large
deflection Donnell’s theory is applied to model nonlinear dynamics of the system in the case
of finite amplitude of vibration. The shell deformation is described in terms of longitudinal,
circumferential and radial displacement fields. Simply supported boundary conditions are
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considered. Displacement fields are expanded by means of a double mixed series based on
harmonic functions for the circumferential and longitudinal variable.

Numerical analyses are carried out in order to characterize the nonlinear response of the
shells. A convergence analysis is developed by introducing in longitudinal, circumferential
and radial displacement fields a different number of linear modes; the correct number of
modes to describe the actual nonlinear behaviour of the cylindrical shells was determined.
Freguency-response curves for both linear and nonlinear analysis were obtained and the effect
of nonlinear terms was investigated via these curves. As shown in frequency-response curves,
the softening behavior of nonlinear terms is due to the nonlinear terms in equations (Large
deformation). Also the effect of external force was studied and by increasing the amplitude of
external the peak of frequency-response curves move to the left and the amplitude of radial
displacement isincreased. In other words, by additional force the influence of nonlinear terms
increased.

The influence of the constituent volume fractions and the effect of the configurations of the
constituent materials on the natural frequencies and nonlinear responses of the shells were
analyzed.
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Nomenclature

F : material properties

V :volume fraction of FGM

B : power law exponent

h : thickness of shell

L : length of shell

R : radios of shell

E : elastic modulus

v : Poisson’'sratio

N,, Ng, N, : force resultants

M,, Mg, Mg : moment resultants

u, v, w : displacementsvectorsin x, 8, z direction respectively
x, 8,z : directions of coordinate systme

€y, €, €xg . Strain components of the middle surface
Wy - hatura frequency

Fy, Fg, F, : external loads

Kjj, Mj; :stiffness and mass matrices

T : kinetic energy

U : strain energy

W : virtual work done by the external forces
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