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Elastoplastic Analysis of Functionally
Graded Beams under Mechanical Loads
Elastic-plastic behavior of a beam made of functionally graded mate-
rial is investigated in this work. The beam is subjected to the constant
axial and bending loads and the critical values of these loads for yield,
collapse and elastic-plastic conditions are obtained. The variation of
elastic modulus and yield strength through the height of the beam is
determined with an exponential rule. The perfect plastic curve is used
to model the plastic behavior of the beam. The interaction diagrams
between the bending moment and axial load are obtained for both of
the yield and collapse conditions. The effect of power law function
on yield and collapse loads is estimated. The results are reduced to
the homogeneous beam and validated with data given in the literature
search.
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1 Introduction

Functionally graded materials (FGMs) are a class of materials which are characterized by grad-
ual variation in composition, micro structure and material properties in pre-determined profile.
Accordingly, while FGM benefits the advantage of composite materials in efficient designing
of structures, they eliminate various shortcomings resulting from stepwise property mismatch
inherent in piecewise homogeneous composite medias [1, 2]. The FGM initially was designed
as thermal barrier in spacecrafts, but due to advantage and technical potential of these materials,
they have been widely used in transportation, energy, electronics and biomedical engineering
[3, 4].

The mathematical modeling of these materials in order to study the behavior of the struc-
tures under thermo mechanical loads in elastic region is developed by researchers. The general
solution presented for the one-dimensional steady-state thermal and mechanical stresses in a
hollow thick sphere made of functionally graded material by Eslami and et al., [5] and study of
the coupled thermoelasticity of an FG cylinder subjected to the thermal shock load by Bahtui
and Eslami [6] are examples of such works. On the other hand, the mathematical modeling of
structures made of functionally graded materials in plastic region is less developed due to the
literature search performed by the author. Shakedown analysis of FG Bree plates subjected to
the thermomechanical loading performed by Peng and et al. [7, 8] and elastic-plastic analysis
of two-dimensional functionally graded materials under thermal loading given in [9] are among
such works.
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Figure 1 Assumed geometry and coordinate system of the FGM beam

The plastic collapse load of a beam made of functionally graded material is analyzed in this
work. The beam is subjected to the constant axial and bending loads. The variation of elastic
modulus and yield strength through the height of the beam is determined with an exponential
rule. The perfect plastic stress-strain curve is used to evaluate the plastic strains. The elastic
boundary and collapse load boundaries are identified by solution of the corresponding equations.
The effect of power law function on the yield, collapse and elastic-plastic behavior of the beam
is investigated. The results are reduced to the homogeneous beam and validated with data given
in the literature search.

2 Mathematical Concepts

A beam of rectangular section with the height h and thickness of b is considered under axial
load P on its neutral axis and a bending moment M in the xz plane. The length of the beam
is laid through the x− axis and its height is laid through the z− axis with downward positive
direction, as shown in Fig. (1). The directions shown in this figure for bending moment M and
axial load P are positive. The opposite directions of axial and bending loads are represented
by −M and −P , respectively. The beam material at z = −h/2 and z = h/2 is fully metal
and fully ceramic, respectively, while the material between these two surfaces is graded and so
the material parameters are spatial function of z. Assuming the power law function [10] for the
material parameters, the elastic modulus E(z) and yield strength Sy(z) of the beam obey the
following equations:

E(z) = Em + (Ec − Em)

(
2z + h

2h

)n

(1)

Sy(z) = Sym + (Syc − Sym)

(
2z + h

2h

)n

(2)

where Em and Ec are elastic modulus and Sym and Syc are the yield strength of the metal and
ceramic, respectively. The total mechanical strain ϵx(z) at the beam cross section considering
the yielding of the beam is:

ϵx(z) = ϵex(z) + ϵpx(z) (3)

where ϵex(z) and ϵpx(z) are elastic and plastic strain distribution in cross section of the beam,
respectively. Assuming the perfect plastic behavior of the beam material in the plastic region,
the stress distribution in the elastic and plastic regions are:

σx(z) = E(z) ∗ ϵex(z) in elastic region (4)
σx(z) = Sy(z) in plastic region (5)
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The compatibility differential equation is:

d2ϵx(z)

dz2
= 0 (6)

Equilibrium of the axial load P and bending moment M at the ends of the strip, results:

b

∫ h/2

−h/2

σx(z)dz = P (7)

b

∫ h/2

−h/2

σx(z)zdz = M (8)

In next sections, the beam is analyzed for three different conditions. In the first condition it is
assumed that the beam begins to yield, wherein, the cross section of the beam is fully elastic.
In the second condition, it is assumed that the cross section of the beam has been yielded but it
is not fully plastic yet, wherein, the cross section of the beam is partly in elastic and partly in
plastic regions. Finally, the third condition corresponds to collapse of the beam, wherein, the
cross section of the beam is fully plastic. To this aim the compatibility equation (6) is solved
and the constants of integrations are found for each case, separately. The solution of Eq. (6) is:

ϵx(z) = c0 + c1z (9)

The constants of integrations are obtained using the equilibrium of axial and bending loads at
the ends of the strip given by Eqs. (7) and (8). Also, the place of neutral axis zn is estimated by
setting the axial total strain to zero:

zn = −c0
c1

(10)

3 Beam at Beginning of the Yield

In this condition the cross section of the beam is fully elastic. Imposing the conditions (7) and
(8), the constant of integrations are:

c0 =
Be

2

Be
0B

e
2 −Be

1
2 (
P

b
)− Be

1

Be
0B

e
2 −Be

1
2 (
M

b
) (11)

c1 = − Be
1

Be
0B

e
2 −Be

1
2 (
P

b
) +

Be
0

Be
0B

e
2 −Be

1
2 (
M

b
) (12)

Wherein, definition of Be
i ’s are:

Be
0 =

∫ h/2

−h/2

E(z)dz = Emh+ (Ec − Em)
h

n+ 1
(13)

Be
1 =

∫ h/2

−h/2

E(z)zdz = (Ec − Em)
nh2

2(n+ 1)(n+ 2)
(14)

Be
2 =

∫ h/2

−h/2

E(z)z2dz = Em
h3

12
+ (Ec − Em)

(n2 + n+ 2)h3

4(n+ 3)(n+ 2)(n+ 1)
(15)

Substituting the constants of integrations into Eq. (10), the height of the neutral axis zen at
beginning of the yield is:

zen = −Be
2P −Be

1M

Be
1P −Be

0M
(16)
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Depending to the values of yield stress and elastic modulus at top and bottom of the beam, the
yield begins at either zy = −h/2 or zy = h/2. Assuming equal tensile and compressive yield
stress for both the metal and ceramic phase of the beam, the yield condition is:

E(zy)(c0 + c1zy) = Sy(zy) when ϵx > 0

E(zy)(c0 + c1zy) = −Sy(zy) when ϵx < 0 (17)

Now, consider three different load cases corresponding to pure axial loading, pure bending
loading and combination of axial and bending loads.

3.1 Yield Axial Load

Assuming the FG beam is subjected to pure tensile axial load, then strains are also tensile and
the first condition of (17) results to yield axial load Py which brings the beam up to the yield.
That is:

Py = b
(Be

0B
e
2 −Be

1
2)[Sym + (Syc − Sym)(zy/h+ 1/2)n]

(Be
2 −Be

1zy)[Em + (Ec − Em)(zy/h+ 1/2)n]
(18)

where due to the variation of the material property, yield point is at either zy = −h/2 or zy =
h/2. To check this, one can obtain Py for both zy = −h/2 and zy = h/2. The critical axial load
which brings the beam up to the yield is minimum of these two values. For compressive axial
loading, it is possible to repeat the same procedure with the second yield condition of Eq. (17).

3.2 Yield Bending Load

Now, assume the FG beam subjected to pure bending moment in direction as shown in Fig. (1).
Due to the variation of material property, the yield begins from z = −h/2 wherein, the axial
strain is compressive or z = h/2, wherein the axial strain is tensile. If yield begins from the
compressive surface of the beam, then zy = −h/2 and according to the second of Eq. (17), the
yield bending moment My is:

My = b
(Be

0B
e
2 −Be

1
2)[−Sym − (Syc − Sym)(zy/h+ 1/2)n]

(−Be
1 +Be

0zy)[Em + (Ec − Em)(zy/h+ 1/2)n]
(19)

On the other hand, when the yield begins from the regions which the stress distribution is tensile,
then zy = h/2 and according to the second of Eq. (17), the yield bending moment is:

My = b
(Be

0B
e
2 −Be

1
2)[Sym + (Syc − Sym)(zy/h+ 1/2)n]

(−Be
1 +Be

0zy)[Em + (Ec − Em)(zy/h+ 1/2)n]
(20)

As described for the case of pure axial loading, in order to check that the yield begins from
zy = −h/2 or zy = h/2, the yield bending moment is calculated from both of (19) and (20).
Then the minimum of these values is considered as the yield bending moment and the yield
begins from the surface where My is minimum.

3.3 Yield Axial and Bending Load

In this case the yield condition for combination of axial and bending load is obtained (i.e.
P ̸= 0 and M ̸= 0). To this aim it is assumed that an axial load P less than Py is applied to
the structure, then the critical bending moment which brings the beam up to the yield point is
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evaluated. Depending on that, the yield begins at z = −h/2 or z = h/2 and at that point the
strains are compressive or tensile. Four different cases are considered. When the yield begins
from the point where the axial strain is compressive, the yield bending moment according to the
second of Eq. (17) is:

My =
b[Be

0B
e
2 − (Be

1)
2][−Sym − (Syc − Sym)(Zy/h+ 1/2)n]

(−Be
1 +Be

0Zy)[Em + (Ec − Em)(zy/h+ 1/2)n]
− (

Be
2 −Be

1zy
−Be

1 +Be
0zy

)P (21)

When the yield begins from the point where the axial strain is tensile, the yield bending moment
according to the first of Eq. (17) is:

My =
b[Be

0B
e
2 − (Be

1)
2][Sym + (Syc − Sym)(Zy/h+ 1/2)n]

(−Be
1 +Be

0Zy)[Em + (Ec − Em)(zy/h+ 1/2)n]
− (

Be
2 −Be

1zy
−Be

1 +Be
0zy

)P (22)

In each of Eqs. (21) and (22) the yield bending moment My should be calculated for two
different values of zy = −h/2 and zy = h/2. The yield bending moment is minimum of
these four calculated values and the yield begins from the point which the minimum value
corresponds. In order to obtain the yield axial load Py for a bending load M , less than My, one
may solve Eqs. (21) and (22) to obtain P versus the bending moment.

4 Elastic-Plastic Analysis

In this section, the load values which are responsible to flow of the beam into the plastic region
are obtained. Assuming the regions with height z ≤ zy1 and z ≥ zy2 are plastic, the integrals in
conditions (7) and (8) are divided into three parts as follow:∫ zy1

−h/2

σx(z)dz +

∫ zy2

zy1

σx(z)dz +

∫ h/2

zy2

σx(z)dz = P/b (23)∫ zy1

−h/2

σx(z)zdz +

∫ zy2

zy1

σx(z)zdz +

∫ h/2

zy2

σx(z)zdz = M/b (24)

Substituting the stress distribution in elastic and plastic regions form (4) and (5) into Eqs. (23)
and (24), the constants of integration are found. If the regions with z ≤ zy1 be compressive and
the regions with z ≥ zy2 be tensile, then the solution for constants of integration is:

c0 =
(P/b− A′

0 + A0)B
ep
2 − (M/b− A′

1 + A1)B
ep
1

Bep
0 Bep

2 − (Bep
1 )2

(25)

c1 =
−(P/b− A′

0 + A0)B
ep
1 + (M/b− A′

1 + A1)B
ep
0

Bep
0 Bep

2 − (Bep
1 )2

(26)

The place of neutral axis zepn for the case where the beam is partly in plastic region is:

zepn = − (P/b− A′
0 + A0)B

ep
2 − (M/b− A′

1 + A1)B
ep
1

−(P/b− A′
0 + A0)B

ep
1 + (M/b− A′

1 + A1)B
ep
0

(27)

On the other hand, if the regions with z ≤ zy1 be tensile and the regions with z ≥ zy2 be
compressive, then the constants of integration are:

c0 =
(P/b+ A′

0 − A0)B
ep
2 − (M/b+ A′

1 − A1)B
ep
1

Bep
0 Bep

2 − (Bep
1 )2

(28)

c1 =
−(P/b+ A′

0 − A0)B
ep
1 + (M/b+ A′

1 − A1)B
ep
0

Bep
0 Bep

2 − (Bep
1 )2

(29)
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and the place of neutral axis is:

zepn = − (P/b+ A′
0 − A0)B

ep
2 − (M/b+ A′

1 − A1)B
ep
1

−(P/b+ A′
0 − A0)B

ep
1 + (M/b+ A′

1 − A1)B
ep
0

(30)

In Eqs. (25) through (30), the values of Ai, A′
i and Bep

i are defined using the following integrals:

A0 =

∫ zy1

−h/2

Sy(z)dz A1 =

∫ zy1

−h/2

Sy(z)zdz (31)

A′
0 =

∫ h/2

zy2

Sy(z)dz A′
1 =

∫ h/2

zy2

Sy(z)zdz (32)

Bep
0 =

∫ zy2

zy1

E(z)dz Bep
1 =

∫ zy2

zy1

E(z)zdz Bep
2 =

∫ zy2

zy1

E(z)z2dz (33)

Now, the values of axial and bending loads which results the regions bellow the zy1 and above
the zy2 flow to the plastic region, is calculated for three different cases of pure axial load, pure
bending load and their combination.

4.1 Elastic-Plastic Axial Load

Depending on the material properties, the imposed pure axial load may results to beginning of
the yield from z = −h/2 or z = h/2. If sufficient axial load applied to the FG beam and yield
begins from z = −h/2, then in regions with z ≤ zy1 the strain is tensile and stress is equal to
yield stress of the beam. For this case, substituting zy = zy1 in first of the Eq. (17) the critical
axial load Pcr which brings the regions with z ≤ zy1 up to the yield is:

Pcr = b
Sy(z1)

E(z1)

Bep
0 Bep

2 − (Bep
1 )2

Bep
2 −Bep

1 z1
+ b

(−A′
0 + A0)(B

ep
2 −Bep

1 z1) + (−A′
1 + A1)(−Bep

1 +B0z1)

Bep
2 −Bep

1 z1
(34)

It should be mentioned that in Eq. (34), if the edge of the beam with z2 = h/2 does not begin
to yield, then: zy2 = h/2 and so, Eq. (32) results that coefficients A′

0 and A′
1 are zero. If the

axial load increased up to the value that also brings the regions with z ≥ z2y to the yield, then
one may use the second of Eq. (17) to calculate zy1 corresponding to zy2. That is:

zy1 =
Bep

2

Bep
1

− (
Bep

2

Bep
1

− zy2)
N1

N2

(35)

Wherein, N1 and N2 are:

N1 =
Sy(zy1)

E(zy1)
(Bep

0 Bep
2 − (Bep

1 )2) + (−A′
0 + A0)(B

ep
2 −Bep

1 zy1)

+ (−A′
1 + A1)(−Bep

1 +Bep
0 zy1) (36)

N2 = −Sy(zy2)

E(zy2)
(Bep

0 Bep
2 − (Bep

1 )2) + (−A′
0 + A0)(B

ep
2 −Bep

1 zy2)

+ (−A′
1 + A1)(−Bep

1 +Bep
0 zy2) (37)
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On the other hand, if the beam begins to yield from z = h/2, then regions with z ≥ zy2
experience tensile strain. Substituting zy = zy2 in the first of Eq. (17), the critical axial load Pcr

which brings z ≥ zy1 up to the yield is:

Pcr = b
Sy(z2)

E(z2)

Bep
0 Bep

2 − (Bep
1 )2

Bep
2 −Bep

1 z2
+ b

(A′
0 − A0)(B

ep
2 −Bep

1 z2) + (A′
1 − A1)(−Bep

1 +Bep
0 z2)

Bep
2 −Bep

1 z2
(38)

When points above the z2 = zy2 are in plastic region and the other side of the beam has not
begun to yield, then: zy1 = −h/2 and Eq. (32) results that coefficients A0 and A1 be equal to
zero. If the axial load increases until the beam cross section at z1 ≤ zy1 yields, then using the
second of Eq. (17) results the value of zy2 corresponding to the zy1 as follow:

zy2 =
Bep

2

Bep
1

− (
Bep

2

Bep
1

− zy1)
N3

N4

(39)

Wherein, N3 and N4 are:

N3 =
Sy(zy2)

E(zy2)
(Bep

0 Bep
2 − (Bep

1 )2) + (A′
0 − A0)(B

ep
2 −Bep

1 zy2)

+ (A′
1 − A1)(−Bep

1 +Bep
0 zy2) (40)

N4 = −Sy(zy1)

E(zy1)
(Bep

0 Bep
2 − (Bep

1 )2) + (A′
0 − A0)(B

ep
2 −Bep

1 zy1)

+ (A′
1 − A1)(−Bep

1 +Bep
0 zy1) (41)

Since N1 through N4 are nonlinear functions of zy1 and zy2, generally analytical solution for
Eqs. (35) and (39) is not available and they should be solved numerically.

4.2 Elastic-Plastic Bending Load

Now the beam is assumed under pure bending load which results to partial yielding of the beam
cross section. The same as the case for pure axial load, four different conditions are considered.
These conditions are: a) Yield begins form z = −h/2, but the edge z = h/2 has not be begun
to yield. b) Yield begins from z = −h/2 and the edge z = h/2 has begun to yield. c) Yield
begins from z = h/2, but the edge z = −h/2 has not begun to yield. d) Yield begins from
z = h/2 and z = −h/2 has also begun to yield.

Due to the assumed direction of bending load shown in Fig. (1), for case (a) which z ≤ zy1
is yielded but z = h/2 is not yielded, the regions with z ≤ zy1, experience compressive strain.
Assuming zy = zy1 and zy2 = 0 in second of the Eq. (17), the critical bending moment Mcr

which brings the regions with z ≤ zy1 up to yield is:

Mcr = −b
Sy(zy1)

E(zy1)

Bep
0 Bep

2 − (Bep
1 )2

−Bep
1 +Bep

0 zy1

+ b
(−A′

0 + A0)(−Bep
2 +Bep

1 zy1) + (−A′
1 + A1)(B

ep
1 −Bep

0 zy1)

−Bep
1 +Bep

0 zy1
(42)

If the bending moment is increased such that z = h/2 also begins to yield up to the z = zy2 as
described for case (b), then Eq. (42) is applicable to obtain the critical bending moment which
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brings the regions z ≥ zy2) up to the yield. But zy1 corresponding to zy2 have to be obtained
from the first of Eq. (17) as follows:

zy1 =
−Bep

1 +Bep
0 zy2

−Bep
1 +Bep

0 zy1
− N5

N6

(43)

Wherein, N5 and N6 are:

N5 =
Sy(zy2)

E(zy2)
(Bep

0 Bep
2 − (Bep

1 )2) + (−A′
0 + A0)(−Bep

2 +Bep
1 zy2)

+ (−A′
1 + A1)(B

ep
1 −Bep

0 zy2) (44)

N6 = −Sy(zy1)

E(zy1)
(Bep

0 Bep
2 − (Bep

1 )2) + (−A′
0 + A0)(−Bep

2 +Bep
1 zy1)

+ (−A′
1 + A1)(B

ep
1 −Bep

0 zy1) (45)

For the case (c) which z ≥ zy2 is in yield condition but z = −h/2 is not yielded, the region with
z ≥ zy2 experiences compressive strain. Assuming zy = zy2 and zy1 = 0 in the second of Eq.
(17), the critical bending moment Mcr which brings the regions with z ≥ zy2 up to the yield is:

Mcr = −b
Sy(zy2)

E(zy2)

Bep
0 Bep

2 − (Bep
1 )2

−Bep
1 +Bep

0 zy2

+ b
(A′

0 − A0)(−Bep
2 +Bep

1 zy2) + (A′
1 − A1)(B

ep
1 −Bep

0 zy2)

−Bep
1 +Bep

0 zy2
(46)

If the bending moment is increased such that z = −h/2 also begins to yield up to the z = zy1
(i.e as described for case (d)), then Eq. (46) is applicable to obtain the critical bending moment
which brings the regions z ≤ zy1) up to the yield. But zy2 corresponding to zy1 have to be
estimated from the first of Eq. (17). That is:

zy1 =
−Bep

1 +Bep
0 zy1

−Bep
1 +Bep

0 zy2
− N7

N8

(47)

Wherein, N7 and N8 are:

N7 =
Sy(zy1)

E(zy1)
(Bep

0 Bep
2 − (Bep

1 )2) + (A′
0 − A0)(−Bep

2 +Bep
1 zy1) + (A′

1 − A1)(B
ep
1 −Bep

0 zy1)

(48)

N8 = −Sy(zy2)

E(zy2)
(Bep

0 Bep
2 − (Bep

1 )2) + (A′
0 − A0)(−Bep

2 +Bep
1 zy2) + (A′

1 − A1)(B
ep
1 −Bep

0 zy2)

(49)

4.3 Elastic-Plastic Axial and Bending Load

In this case it is assumed that an axial load P less than axial collapse load Pcol is imposed to the
beam, then the critical bending moment Mcr which brings specified regions of the cross section
up to the yield is calculated. To this aim the same four different cases which is considered in
previous load case is considered. For the case (a), described in previous section which z ≤ zy1
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is yielded and experiences compressive strain, the critical bending moment Mcr which brings
z ≤ zy1 up to the yield is:

Mcr = −b
Sy(zy1)

E(zy1)

Bep
0 Bep

2 − (Bep
1 )2

−Bep
1 +Bep

0 zy1

+ b
(P/b− A′

0 + A0)(−Bep
2 +Bep

1 zy1) + (−A′
1 + A1)(B

ep
1 −Bep

0 zy1)

−Bep
1 +Bep

0 zy1
(50)

For case (b) of the previous section which z ≤ zy1 is yielded and experiences compressive
strains and at the same time z ≥ zy2 is yielded, the critical bending moment Mcr with combina-
tion of axial load P , which brings the specified section of the beam up to the yield is calculated
from Eq. (50). Value of zy1 corresponding to specified zy2 have to be calculated from the
following equation:

zy1 =
−Bep

1 +Bep
0 zy2

−Bep
1 +Bep

0 zy1
− N5

N6

(51)

Wherein, N9 and N10 are:

N9 =
Sy(zy2)

E(zy2)
(Bep

0 Bep
2 − (Bep

1 )2) + (P/b− A′
0 + A0)(−Bep

2 +Bep
1 zy2)

+ (−A′
1 + A1)(B

ep
1 −Bep

0 zy2) (52)

N10 = −Sy(zy1)

E(zy1)
(Bep

0 Bep
2 − (Bep

1 )2) + (P/b− A′
0 + A0)(−Bep

2 +Bep
1 zy1)

+ (−A′
1 + A1)(B

ep
1 −Bep

0 zy1) (53)

In case (c) which z ≥ zy2 is yielded and the corresponding strain is tensile, the critical bending
moment with combination of axial load which brings z ≥ zy2 up to the yield is:

Mcr = −b
Sy(zy2)

E(zy2)

Bep
0 Bep

2 − (Bep
1 )2

−Bep
1 +Bep

0 zy2

+ b
(P/b+ A′

0 − A0)(−Bep
2 +Bep

1 zy2) + (A′
1 − A1)(B

ep
1 −Bep

0 zy2)

−Bep
1 +Bep

0 zy2
(54)

and finally for the last case which z ≥ zy2 is yielded and strain is tensile, while the regions
z ≤ zy1 are also yielded, the value of z1y corresponding to z2y is calculated from the following
equation.

zy1 =
−Bep

1 +Bep
0 zy1

−Bep
1 +Bep

0 zy2
− N11

N12

(55)

Wherein, N11 and N12 are:

N11 =
Sy(zy1)

E(zy1)
(Bep

0 Bep
2 − (Bep

1 )2) + (P/b+ A′
0 − A0)(−Bep

2 +Bep
1 zy1)

+ (A′
1 − A1)(B

ep
1 −Bep

0 zy1) (56)

N12 = −Sy(zy2)

E(zy2)
(Bep

0 Bep
2 − (Bep

1 )2) + (P/b+ A′
0 − A0)(−Bep

2 +Bep
1 zy2)

+ (A′
1 − A1)(B

ep
1 −Bep

0 zy2) (57)
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5 Collapse load

In collapse condition, the cross section of the beam is fully plastic. Since in this case there is
not any elastic region across the section of the beam, the conditions (7) and (8) are independent
of the values c0 and c1. So the constants of integration remain undefined. As the results the
strain distribution is undetermined which is in coherence with collapse condition of the beam.
Using boundary conditions, one may find the collapse load of a beam and the point z1 which
the direction of stress is changed. The same as previous sections, three different load cases are
considered in this section.

5.1 Case 1: P ̸= 0 , M = 0

In this case the collapse axial load is obtained in absence of the bending moment. Since the
material property of the beam is nonhomogeneous, although the beam experiences tensile load,
but in some parts of the cross section, it experiences compressive stress in order to satisfy the
condition M = 0. Substituting Eq. (5) into boundary condition (7):∫ z1

−h/2

−Sydz +

∫ h/2

z1

Sydz = P/b (58)

As the results, the collapse axial load is obtained due to the following equation:

Pcol = b{2z1Sym + (Syc − Sym)
h

n+ 1
[2(z1/h+ 1/2)n+1 − 1]} (59)

where z1 is the height of the point which axial stress changes its direction from tension to
compression. Now, the second boundary condition given in Eq. (8) with M = 0 is used to
evaluate z1: ∫ z1

−h/2

−Syzdz +

∫ h/2

z1

Syzdz = 0 (60)

Substituting Eq. (2) into Eq. (60) results:

2
(z1/h+ 1/2)n+2

n+ 2
− (z1/h+ 1/2)n+1

n+ 1
+

(z21 − h2/4)Sym

h2(Syc − Sym)
− 1

n+ 2
+

1

2(n+ 1)
= 0 (61)

Using any numerical iterative method, one may find the solution of Eq. (61) for z1. To obtain
the collapse axial load, it is assumed that yield begins from z = −h/2, however there is not any
difference to result of collapse axial load when yield begins from z = h/2.

5.2 Case 2: P = 0 , M ̸= 0

In this case the beam is under pure bending load. Substituting Eq. (5) into boundary condition
(8): ∫ z1

−h/2

−Syzdz +

∫ h/2

z1

Syzdz = M/b (62)

followed by substitution of Eq. (2) into above equation, results to:

Mcol = b{−Symz
2
1 + Sym

h2

4
− 2(Syc − Sym)h

2 (z1/h+ 1/2)n+2

n+ 2

+ (Syc − Sym)h
2 (z1/h+ 1/2)n+1

n+ 1
+ (Syc − Sym)h

2[
1

n+ 2
− 1

2(n+ 1)
]} (63)
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Table 1 FG beam material properties
Material property Metal Ceramic
Modulus of elasticity 106 (GPa) 131.4 (GPa)
Tensile yield strength 99.7(MPa) 145.6 (MPa)

In order to obtain the height of the point, which stress changes its direction, the boundary
condition (7) is considered. Since the axial load is zero, the boundary condition (7) results to:∫ z1

−h/2

−Sydz +

∫ h/2

z1

Sydz = 0 (64)

Substituting Eq. (2) into above equation, the required condition to obtain the neutral axis is
found. That is:

2Symz1 + 2h(Syc − Sym)
(z1/h+ 1/2)n+1

n+ 1
− h

Syc − Sym

n+ 1
= 0 (65)

5.3 Case 3: P ̸= 0 , M ̸= 0

Finally in the last case an axil load less than the collapse load is applied to the beam. Then
a bending moment Mcol is applied to the beam to make the cross section of the beam fully
plastic. To evaluate the collapse bending load, two different condition which yield begins from
top or bottom surface of the beam is considered. Since the terms in boundary condition (8) are
not changed in both cases, Eq. (63) is applicable for both cases. The only difference is that
the combination of axial load and bending load results to different value of z1 with respect to
previous one. If yield begins from z = −h/2, then using the condition (7), z1 is found as:

2Symz1 + 2h(Syc − Sym)
(z1/h+ 1/2)n+1

n+ 1
− h

Syc − Sym

n+ 1
= P/b (66)

and when yield begins from z = h/2, z1 is:

−2Symz1 − 2h(Syc − Sym)
(z1/h+ 1/2)n+1

n+ 1
+ h

Syc − Sym

n+ 1
= P/b (67)

To check that which of the equations (66) and (67) should be used, Eq. (63) is solved for both
values of these two equations and the collapse bending load is considered as the minimum of
these values.

6 Results and Discussion

In this section using the effective material properties given in Table (1), the yield, elastic-plastic
and collapse behavior of the FG beam due to the imposed axial load, bending load and their
combination are obtained. Setting n = 0 in equations (1) and (2), the FG beam changes to an
isotropic beam with material properties identical to ceramic part of the beam. So, if in equations
represented in previous sections, the value of n is set to zero, then they have to predict the
behavior of the beam the same as an isotropic one with the material properties given for ceramic
part of the FG beam.
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Figure 2 Py/b versus h/b for different values of n

6.1 Results for Pure Axial Load

In first example consider the beam to be subjected to pure axial load. The plot of yield axial
load Py per unit width of the beam b versus the normalized height h/b is shown in Fig. (2) for
n = 0, 0.5, 1 and n = 10 using equation (18). On the other hand, for an isotropic beam the yield
axial load is obtained from the following simple equation:

Py = Sybh (68)

In Fig. (2), the plot of normalized yield axial load versus normalized height for n = 0 is
compared for that of isotropic beam. As it can be seen from this figure, the results of FG beam
for n = 0 are identical with the isotropic ceramic beam. On the other hand, this plot shows
that yield axial load decreases with increasing the values of n. For the beam with dimensions
b = 0.01m and h = 0.01m and n = 0.5, the yield axial load due to Eq. (18) is 10.638 kN
and the stress distribution for this case is plotted in Fig. (3) using Eq. (4). These stresses are
compared with yield stress at cross section of the FG beam. If the load is increased up to the
values that the FG beam collapses, then using Eq. (59), the normalized collapse load versus
normalized height of the beam is obtained from Eq. (59), as shown in Fig. (4). On the other
hand, since the stress distribution for isotropic beam is uniform, the collapse load and yield
load are equal. So, Eq. (68) also shows the collapse axial load of an isotropic beam. It can
be seen from Fig. (4), that the collapse load for the isotropic beam is identical to the FG beam
with n = 0. Also this figure shows that increasing the values of n results to decreasing the
collapse axial load of the FG beam. For a beam with dimensions b = 0.01m and h = 0.01m
and n = 0.5, the collapse axial load due to Eq. (59) is 298.27 kN and the stress distribution is
plotted in Fig. (5). This figure shows that the cross section of the beam below z1 = 0.0048 m
experiences tensile yield stress while the points above z1 = 0.0048 m experience compressive
yield stress. It is interesting since for the applied tensile load, a region with compressive stress
is produced. Now consider that the critical axial load Pcr which is between Py ≤ Pcr ≤ Pcol.
Then the cross section of the beam begins to yield form one edge of the beam cross section
and increasing the load will results to the fully plastic cross section. Figure (6) shows variation
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Figure 3 Stress distribution of the beam due to the yield axial load
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Figure 4 Pcol/b versus h/b for different values of n
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Figure 5 Stress distribution of the beam due to the collapse axial load

of zy1/h with respect to Pcr/b. The figure shows that when n = 0, the results are identical to
those of isotropic beam. On the other hand, it shows that increasing the value of n, results to
decrease in critical yield load. Solving Eq. (35) numerically, zy1 corresponding to beginning
of yield at z = h/2 (i.e. zy2 = h/2) is: zy1 = 0.0046 m, For a beam with previous given
cross section properties. Substitution of these values in Eq. (34) results, Pcr = 12.421 kN .
The stress distribution corresponding to this load case is plotted in Fig. (7). As it can be seen
from the figure, the region z ≤ 0.0046 m is yielded and stress in this region is tensile. The
region between 0.0046 m and 0.005 m is elastic. The point z = h/2 has begun to yield and
stress at this point is compressive. Increasing the axial load more than Pcr = 12.421 kN results
to development of compressive stress in cross section of the beam as described in previous
example.

6.2 Results for Pure Bending Load

Here the results due to the imposed pure bending load is discussed. Figure (8) shows the plot of
normalized yield bending moment My/b versus normalized height h/b of the FG and isotropic
beams. For the isotropic beam, the yield bending moment is simply calculated as follow:

My = Sy
bh2

6
(69)

Figure (8) shows that the results of Eq. (19) for FG beam with n = 0 are identical with isotropic
beam and the yield bending moment of FG beam is lower than isotropic ceramic beam. For the
FG beam with dimensions b = 0.01, h = 0.01 and n = 0.5 the yield bending moment using Eq.
(19) is 18.54 Nm. The stress distribution corresponding to My = 18.54 Nm is shown in Fig.
(9). As it can be seen from this figure the stress at the point z = −h/2 is equal to yield stress
at metal side of the FG beam and is compressive, assuming the bending moment is applied in
positive direction. Using the Eq. (63), the normalized collapse bending moment Mcol/b versus
the normalized hight of the beam is plotted in Fig. (10) for the FG beam. On the other hand the
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Figure 6 Variation of height of plastic region with respect to critical axial load
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Figure 7 Stress distribution of the beam due to the elastic plastic axial load
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Figure 8 Mcol/b versus h/b for different values of n
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Figure 9 Stress distribution of the beam due to the yield bending moment
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Figure 10 Mcol/b versus h/b for different values of n

collapse bending moment for an isotropic beam simply is:

Mcol = Sy
bh2

4
(70)

Fig. (10), shows that the collapse bending moment of the FG beam with n = 0 is identical with
the collapse bending moment of the isotropic beam. This figure shows that increasing the value
of n results to decrease in collapse bending moment. The collapse bending moment of the beam
with previously specified dimensions, is 32.223 Nm. Fig. (11) is plot of stress distribution
for this beam subjected to the collapse bending moment. The height of the beam which the
direction of stress is changed according to numerical solution of Eq. (65) is z1 = 0.0004 m.
The figure shows that the region bellow this point experiences compressive yield stress and
the region above this point experiences tensile yield stress. If the bending moment imposed
to the beam be less than the collapse moment and more than the yield moment, then the cross
section of the beam flows partly into plastic region. In Fig. (12) the height of the yield point
zy2 is plotted against the corresponding critical bending moment Mcr for a beam made of FG
material. The critical bending moment of a beam made of isotropic materials which brings the
beam cross section located above the zy2 up to the yield is:

Mcr = bSy(
h2

4
−

z2y2
3
) (71)

Fig. (12) shows that the critical load of a beam made of FG material with n = 0 is identical to
isotropic ceramic beam. Fig. (13) shows the stress distribution of the beam made of FG material
with dimensions h = 0.01 m, b = 0.01 m and n = 0.5 for the case which the top surface of
the beam has begun to yield. The zy1 corresponding to this plastic region according to Eq. (43)
is −0.0042 m and using the Eq. (42), the bending moment corresponding to zy1 = −0.0042 m
and zy2 = 0.005 is Mcr = 22.84 Nm.
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Figure 11 Stress distribution of the beam due to the collapse bending moment

2 2.5 3 3.5 4

x 10
7

0

0.1

0.2

0.3

0.4

0.5

M
cr

/b

z y2

 

 

Isotrop
n=0
n=0.5
n=1
n=10

Figure 12 Variation of height of plastic region with respect to critical bending moment
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Figure 13 Stress distribution of the beam due to the elastic plastic bending moment

6.3 Results for Combination of Axial and Bending Load

In this section behavior of the beam made of FG materials subjected to combination of axial
and bending load is investigated. For an isotropic beam the yield bending moment My, which
brings the cross section of a beam subjected to the axial load P up to the yield, is:

My =
bh2

6
Sy − P

h

6
(72)

Figure (14), shows the interaction diagram between My and P . This figure is plotted using
results of Eq. (50) through (57). The figure shows that the interaction diagram for isotropic
ceramic beam is identical to the FG beam with n = 0. Also, it shows that increasing the value
of n, results to decrease in ability of the beam to support the combination of bending and axial
load. Figure (15) shows the yield interaction diagram for the case where the location of the
ceramic and metal is replaced. As it can be seen from Fig. (15), increasing the value of n in this
case results to increase in ability of the beam to support the combination of bending and axial
load. In (16) and (17), the collapse interaction diagram is obtained for the same conditions of
Figs. (14) and (15). The collapse bending moment Mcol for an isotropic beam subjected to axial
load P , is:

Mcol = bSy(−z21 +
h2

4
) (73)

Wherein:

z1 = − P

2bSy

(74)

These figures show that the collapse interaction diagram of FG beam with n = 0 is identical to
collapse interaction diagram of the isotropic beam. Also, for the case where metallic part of the
FG beam is located at z = −h/2, increasing the value of n1 results to decrease the ability of
the beam to support the combination of axial and bending loads. Replacing the location of the
metallic and ceramic parts of the FG beam, results to increase in ability of the beam to support
the combination of axial and bending load, as the value of n is increased.
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Figure 14 Yield interaction diagram for combination of axial and bending moment
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Figure 15 Effect of changing the place of metal with ceramic on yield interaction diagram
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Figure 16 Collapse interaction diagram for combination of axial and bending moment
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Figure 17 Effect of changing the place of metal with ceramic on collapse interaction diagram

7 Conclusion

In this paper the required equations to obtain the yield axial load, yield bending load and the
combination of axial and bending loads which bring the cross section of the beam up to the yield,
are obtained. Also the equations required to obtain the elastic-plastic and collapse behavior
of the beam are obtained. Curves plotted in this paper show that predicted results by these
equations for an FG beam with n = 0 are identical with those of the isotropic beam. It is
concluded that for the case where the metallic part of the beam is located at z = −h/2 the values
of yield, elastic-plastic and collapse loads are less than the isotropic beam made of ceramic. On
the other hand, the interaction diagrams between bending moment and axial load for both of
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the yield and collapse conditions show that: increase in values of n results to decrease in ability
of the structure to withstand the imposed loads when the metallic part is located at z = −h/2.
Locating the metallic part of the beam at z = h/2 enhances the ability of the structure to
withstand the imposed loads with increasing the value of n.

References

[1] Lee, Y.D., and Erdogan, F., ”Residual/Thermal Stress in FGM and Laminated Thermal
Barrier Coating”, International Journal of Fracture, pp. 145-165, Vol. 69, No. 2, (1994).

[2] Suresh, S., and Mortensen, A., ”Functionally Graded Metals and Metal-Ceramic Com-
posites: Part 2 Thermomechanical Behavior”, International Materials Review, pp. 85-116,
Vol. 42., No. 3, (1997).

[3] Garino, J.P., ”Modern Ceramic-on-Ceramic Total Hip Systems in the United States: Early
Results”, Clinical Orthopaedics And Related Research, pp. 41-47, (2000).

[4] Fujihara, K., Teo, K., Gopal, R., Loh, P.L., Ganesh, V.K., Ramakrishna, S., ”Fibrous
Composite Materials in Dentistry and Orthopedics: Review and Applications” Composite
Science Technology, pp. 775-788, Vol. 64, No. 6, (2004).

[5] Eslami, M.R., Babaei, M.H., and Poultangari R., ”Thermal and Mechanical Stresses in a
Functionally Graded Thick sphere”, International Journal of Pressure Vessels and Piping,
pp. 522-527, Vol. 82, No. 7, (2005).

[6] Bahtui, A., and Eslami, M.R., ”Coupled Thermoelasticity of Functionally Graded Cylin-
drical Shells”, Mechanics Research Communications, pp. 1-18, Vol. 34, No. 1, (2007).

[7] Peng, X., Hu, N., Zheng, H. and Fang, C., ”Analysis of shakedown of FG Bree Plate
Subjected to Coupled Thermal-Mechanical Loadings”, Acta Mechanica Solida Sinica, pp.
95-108, Vol. 22, No. 2, (2009).

[8] Peng, X, Zhang, H., Hu, N. and Fang, C., ”Static and Kinematic Shakedown Analysis
of FG Plate Subjected to Constant Mechanical Load and Cyclically Varying Temperature
Change”, Composite Structures, pp. 212-221, Vol. 91, No. 2, (2009).

[9] Nemat-Alla, M., Ahmed, K.I.E., Hassab-Allah, I., ”Elastic-Plastic Analysis of Two-
Dimensional Functionally Graded Materials under Thermal Loading”, International Jour-
nal of Solids and Structures, pp. 2774-2786, Vol. 46, No. 14-15, (2009).

[10] Reddy, J.N., Chin, C.D., ”Thermomechanical Analysis of Functionally Graded Cylinders
and Plates”, Journal of Thermal Stresses, Vol. 21, No. 6, pp. 593-626, (1998).



Elastoplastic Analysis of Functionally Graded Beams ... 57

Nomenclature

b: Width of the beam
h: Height of the beam
z1: Height of the point which stress changes its direction in collapse condition
zn: Height of the neutral axis
zy1: Height of the underneath plastic region
zy2: Height of the upper plastic region
zen: Height of the neutral axis at beginning of the yield
zepn : Height of neutral axis in elastic-plastic region
Ec: Modulus of elasticity of ceramic
Em: Modulus of elasticity of metal
M : Bending moment
Mcol: Collapse bending moment
Mcr: Critical bending moment in plastic region
My: Yield Bending moment
P : Axial load
Mcol: Collapse axial load
Pcr: Critical axial load in plastic region
Py: Yield axial load
Syc: Yield strength of the ceramic
Sym: Yield strength of the metal

Greek symbols

ϵx: Axial total strain
ϵex: Axial elastic strain
ϵpx: Axial elastic strain
σx: Axial stress
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 چكيده

پلاستيك يك تير ساخته شده از مواد تابعي مورد بررسي قرار گرفته است. تير -در اين تحقيق رفتار الاستيك

تحت بارهاي ثابت محوري و خمشي قرار گرفته و مقادير بحراني اين بارها در شرايط تسليم، فروپاشي و 

يم در ضخامت تير با استفاده از . تغييرات مدول الاستيسيته و مقاومت تسلاستپلاستيك تعيين شده -الاستيك

رابطه نمايي نشان داده شده است. از منحني پلاستيك كامل براي مدل كردن رفتار پلاستيك تير استفاده شده 

ترسيم شده براي هر دو حالت تسليم و فروپاشي هاي اثر متقابل بين نيروي محوري و ممان خمشي است. منحني

نتايج تير تابعي، به تير هموژن ساده شده  م و فروپاشي تير بررسي شده است. است. اثر تابع نمائي بر شرايط تسلي

 و صحت آنها با مقايسه با نتايج موجود در سابقه علمي، بررسي شده است.

 
 


