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Elastoplastic Analysis of Functionally
Graded Beams under Mechanical Loads

Elastic-plastic behavior of a beam made of functionally graded mate-
rial is investigated in this work. The beam is subjected to the constant
axial and bending loads and the critical values of these loads for yield,
collapse and elastic-plastic conditions are obtained. The variation of

elastic modulus and yield strength through the height of the beam is
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) determined with an exponential rule. The perfect plastic curve is used
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to model the plastic behavior of the beam. The interaction diagrams
between the bending moment and axial load are obtained for both of
the yield and collapse conditions. The effect of power law function
on yield and collapse loads is estimated. The results are reduced to
the homogeneous beam and validated with data given in the literature
search.
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1 Introduction

Functionally graded materials (FGMs) are a class of materials which are characterized by grad-
ual variation in composition, micro structure and material properties in pre-determined profile.
Accordingly, while FGM benefits the advantage of composite materials in efficient designing
of structures, they eliminate various shortcomings resulting from stepwise property mismatch
inherent in piecewise homogeneous composite medias [1, 2]. The FGM initially was designed
as thermal barrier in spacecrafts, but due to advantage and technical potential of these materials,
they have been widely used in transportation, energy, electronics and biomedical engineering
(3, 4].

The mathematical modeling of these materials in order to study the behavior of the struc-
tures under thermo mechanical loads in elastic region is developed by researchers. The general
solution presented for the one-dimensional steady-state thermal and mechanical stresses in a
hollow thick sphere made of functionally graded material by Eslami and et al., [5] and study of
the coupled thermoelasticity of an FG cylinder subjected to the thermal shock load by Bahtui
and Eslami [6] are examples of such works. On the other hand, the mathematical modeling of
structures made of functionally graded materials in plastic region is less developed due to the
literature search performed by the author. Shakedown analysis of FG Bree plates subjected to
the thermomechanical loading performed by Peng and et al. [7, 8] and elastic-plastic analysis
of two-dimensional functionally graded materials under thermal loading given in [9] are among
such works.

* Assistant Professor, Department of Mechanical Engineering, Islamic Azad University, Central Tehran Branch,
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Figure 1 Assumed geometry and coordinate system of the FGM beam

The plastic collapse load of a beam made of functionally graded material is analyzed in this
work. The beam is subjected to the constant axial and bending loads. The variation of elastic
modulus and yield strength through the height of the beam is determined with an exponential
rule. The perfect plastic stress-strain curve is used to evaluate the plastic strains. The elastic
boundary and collapse load boundaries are identified by solution of the corresponding equations.
The effect of power law function on the yield, collapse and elastic-plastic behavior of the beam
is investigated. The results are reduced to the homogeneous beam and validated with data given
in the literature search.

2 Mathematical Concepts

A beam of rectangular section with the height & and thickness of b is considered under axial
load P on its neutral axis and a bending moment M in the zz plane. The length of the beam
is laid through the x— axis and its height is laid through the z— axis with downward positive
direction, as shown in Fig. (1). The directions shown in this figure for bending moment A/ and
axial load P are positive. The opposite directions of axial and bending loads are represented
by —M and — P, respectively. The beam material at z= = —h/2 and z = h/2 is fully metal
and fully ceramic, respectively, while the material between these two surfaces is graded and so
the material parameters are spatial function of z. Assuming the power law function [10] for the
material parameters, the elastic modulus E(z) and yield strength S,(z) of the beam obey the
following equations:

E(2) = By, + (E. — Ey) (222;: h) (1)
22+ h\"
Sy(z) = Sym + (Syc - Sym) ( Z;}; ) (2)

where F,, and E. are elastic modulus and .S, and S, are the yield strength of the metal and
ceramic, respectively. The total mechanical strain €,(z) at the beam cross section considering
the yielding of the beam is:

€x(2) = €(2) + €4(2) (3)
where €£(z) and €?(z) are elastic and plastic strain distribution in cross section of the beam,
respectively. Assuming the perfect plastic behavior of the beam material in the plastic region,
the stress distribution in the elastic and plastic regions are:

0.(2) = E(2) x€.(2) in elastic region 4)

0.(2) = Sy(2) in plastic region (5)
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The compatibility differential equation is:

d*e,(2)
=0 6
1.2 (6)
Equilibrium of the axial load P and bending moment ) at the ends of the strip, results:
h/2
b/ 0.(2)dz =P 7
~h/2
h/2
b/ 0.(2)zdz = M (8)
~h/2

In next sections, the beam is analyzed for three different conditions. In the first condition it is
assumed that the beam begins to yield, wherein, the cross section of the beam is fully elastic.
In the second condition, it is assumed that the cross section of the beam has been yielded but it
is not fully plastic yet, wherein, the cross section of the beam is partly in elastic and partly in
plastic regions. Finally, the third condition corresponds to collapse of the beam, wherein, the
cross section of the beam is fully plastic. To this aim the compatibility equation (6) is solved
and the constants of integrations are found for each case, separately. The solution of Eq. (6) is:

Em(Z) = Cp + 1z (9)

The constants of integrations are obtained using the equilibrium of axial and bending loads at
the ends of the strip given by Eqgs. (7) and (8). Also, the place of neutral axis z,, is estimated by

setting the axial total strain to zero:
Co

Zp = —— (10)
(&1

3 Beam at Beginning of the Yield

In this condition the cross section of the beam is fully elastic. Imposing the conditions (7) and
(8), the constant of integrations are:

B¢ P B¢ M
= Gims - b0 By - BE b v
0b2 — Dy 0Pz — b
Bf P B§ M
=l ()0 (= 12
‘1 BSBS—BT2(b)+BgB§—Bf2(b> ( )
Wherein, definition of B;’s are:
h/2 h
B§ = E(z)dz = E,h+ (E. — E,,)—— 13
= [, BEXE = Buht (B~ By (13)
h/2 nh2
B} = / E(2)zdz = (E. — E,) (14)
h/2 2(n+1)(n+2)
" K (n? +n + 2)h?
BS = E(2)7*dz = Ep— + (B, — E,, 15
2 [MQ(”ZZ TRl St m+Dm+ 1) (15)

Substituting the constants of integrations into Eq. (10), the height of the neutral axis z{ at
beginning of the yield is:
. BSP — B{M

T TP BM

(16)
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Depending to the values of yield stress and elastic modulus at top and bottom of the beam, the
yield begins at either z, = —h/2 or z, = h/2. Assuming equal tensile and compressive yield
stress for both the metal and ceramic phase of the beam, the yield condition is:

E(zy)(co+ c12y) = Sy(zy) when €; > 0
E(zy)(co + c12y) = =Sy(zy) when e, <0 (17)

Now, consider three different load cases corresponding to pure axial loading, pure bending
loading and combination of axial and bending loads.

3.1 Yield Axial Load

Assuming the FG beam is subjected to pure tensile axial load, then strains are also tensile and
the first condition of (17) results to yield axial load P, which brings the beam up to the yield.
That is:

(B§B5 — Bi*)[Sym + (Sye = Sym) (2/h + 1/2)"]
(B — Bfzy)[Em + (Eec — Em)(2y/h +1/2)"]

P,=b (18)
where due to the variation of the material property, yield point is at either z, = —h/2 or 2z, =
h/2. To check this, one can obtain P, for both z, = —h/2 and z, = h/2. The critical axial load
which brings the beam up to the yield is minimum of these two values. For compressive axial
loading, it is possible to repeat the same procedure with the second yield condition of Eq. (17).

3.2 Yield Bending Load

Now, assume the FG beam subjected to pure bending moment in direction as shown in Fig. (1).
Due to the variation of material property, the yield begins from z = —h/2 wherein, the axial
strain is compressive or z = h/2, wherein the axial strain is tensile. If yield begins from the
compressive surface of the beam, then z, = —h/2 and according to the second of Eq. (17), the
yield bending moment M, is:

v — pBEBE = Bi*)[=Sym = (Sye = Sym) (29/h + 1/2)"]

YT (=B + Byzy) B+ (Be — Eu)(2,/h + 1/2)"] (19)

On the other hand, when the yield begins from the regions which the stress distribution is tensile,
then z, = h/2 and according to the second of Eq. (17), the yield bending moment is:

M — b(BSBS - sz)[‘sym + (Sye = Sym)(2,/h +1/2)"]
Y (=Bf + Bizy)[Em A (Ee — Ep)(2y/h +1/2)"]

(20)

As described for the case of pure axial loading, in order to check that the yield begins from
zy = —h/2 or z, = h/2, the yield bending moment is calculated from both of (19) and (20).
Then the minimum of these values is considered as the yield bending moment and the yield
begins from the surface where M, is minimum.

3.3 Yield Axial and Bending Load

In this case the yield condition for combination of axial and bending load is obtained (i.e.
P # 0 and M # 0). To this aim it is assumed that an axial load P less than P, is applied to
the structure, then the critical bending moment which brings the beam up to the yield point is
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evaluated. Depending on that, the yield begins at z = —h/2 or z = h/2 and at that point the
strains are compressive or tensile. Four different cases are considered. When the yield begins
from the point where the axial strain is compressive, the yield bending moment according to the
second of Eq. (17) is:

b[B5Bs — (BF)*][=Sym — (Sye = Sym)(Zy/h +1/2)"] —( B3 — Biz,
(=BS+ B§Zy)|[Em + (E. — Ey)(2y/h+ 1/2)7] —B§ + B§z,

M, = )P (21)
When the yield begins from the point where the axial strain is tensile, the yield bending moment
according to the first of Eq. (17) is:

M, = b[BSBS — (Bf)z][sym + (Syc — Sym)(Zy/h + 1/2>n] B ( B3 — szy
Y (=B + B§Zy) [ B + (E. — Ey)(2y/h +1/2)7] —B§ + Bfz,

In each of Egs. (21) and (22) the yield bending moment M, should be calculated for two
different values of z, = —h/2 and z, = h/2. The yield bending moment is minimum of
these four calculated values and the yield begins from the point which the minimum value
corresponds. In order to obtain the yield axial load P, for a bending load M, less than M, one
may solve Eqgs. (21) and (22) to obtain P versus the bending moment.

P (22)

4 Elastic-Plastic Analysis

In this section, the load values which are responsible to flow of the beam into the plastic region
are obtained. Assuming the regions with height z < z,; and z > z,, are plastic, the integrals in
conditions (7) and (8) are divided into three parts as follow:

Zy1 Zy2 h/2
/ o.(2)dz + / o.(2)dz +/ 0.(2)dz = P/b (23)

h/2 Zy1 Zy2
Zy1 Zy2 h/2
/ 0x(2)zdz + / 0.(2)zdz + / 0.(2)zdz = M/b (24)
—h/2 Zy1 Zy2

Substituting the stress distribution in elastic and plastic regions form (4) and (5) into Egs. (23)
and (24), the constants of integration are found. If the regions with z < z,; be compressive and
the regions with z > z,, be tensile, then the solution for constants of integration is:

(P/b— Ay + Ag) By — (M/b— Ay + Ay B

Co = BSPBSP _ (Btlip)Q (25)
o = ZWP/b = Ayt A0) B + (M/b— Ay + Ay By 26)
BSPBsP — (B{P)?
The place of neutral axis z;” for the case where the beam is partly in plastic region is:
oo — _ \P/b— A+ Ao) By — (M/b — A + Ay By @)

" T T (P — Ay + A)BP + (M]b— A; + Ay By

On the other hand, if the regions with z < z,; be tensile and the regions with 2 > z,, be
compressive, then the constants of integration are:

o _ P+ Ay — A B — (M/b+ A — A B 08)
o By’ By — (BT’
(P/b+ Ay — Ag) By + (M/b+ A, — Ay) By

By By — (BY')

(29)

C1 =
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and the place of neutral axis is:

e (P[b+ Ay = Ao) By’ — (M/b+ A} — A1) By (30)
T (P A= A)BY + (M/b+ Ay - A B

In Egs. (25) through (30), the values of A;, A} and B;” are defined using the following integrals:

Aoz/y Sy(2)dz Alz/y Sy(2)zdz (31)
—h/2 —h/2

h/2 h/2
Aj :/ Sy(2)dz A} :/ Sy(2)zdz (32)
B — / " E(z)d: BT = / " E(2)2dz BY = / " E(2)22d= (33)

Zyl Zyl Zyl

Now, the values of axial and bending loads which results the regions bellow the z,; and above
the 2,0 flow to the plastic region, is calculated for three different cases of pure axial load, pure
bending load and their combination.

4.1 Elastic-Plastic Axial Load

Depending on the material properties, the imposed pure axial load may results to beginning of
the yield from z = —h/2 or z = h/2. If sufficient axial load applied to the FG beam and yield
begins from z = —h/2, then in regions with z < 2,1 the strain is tensile and stress is equal to
yield stress of the beam. For this case, substituting 2z, = z,; in first of the Eq. (17) the critical
axial load P, which brings the regions with z < z,; up to the yield is:

P, —yS0) BB = (B

n b(—AB + Ao)(By” — B 21) 4 (= A} 4+ Ay) (=B’ + Boz1)
(5) B — B2 BT — B>,
(34)

It should be mentioned that in Eq. (34), if the edge of the beam with z, = h/2 does not begin
to yield, then: z,, = h/2 and so, Eq. (32) results that coefficients A, and A are zero. If the
axial load increased up to the value that also brings the regions with z > 25, to the yield, then
one may use the second of Eq. (17) to calculate z,; corresponding to z,,. That is:

By Bs? Ny
21 = B_lep — (pr — zyg)ﬁz 35)
Wherein, N; and N, are:
Sy(zyl) ep pep ep\2 / ep ep
Ny = W)(Bo B5" — (BY")7) + (= Ay + Ao)(By" — By 21)
yl
+ (=AL + A) (=B + Bi’z1) (36)

s
Ny = —262) g per (o) (L 4y 4 Ag)(BY — BiPzy)
E(zy)

+ (=41 + A (=B + By z2) (37)
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On the other hand, if the beam begins to yield from z = h/2, then regions with z > =z,
experience tensile strain. Substituting z, = 2, in the first of Eq. (17), the critical axial load P,
which brings z > z,; up to the yield is:

b S BB — (BYP (A = A)BY — B's) + (A — A)(=BY + B )

E(z) BY — B¥x B — B2,

(38)

When points above the 25 = z,, are in plastic region and the other side of the beam has not
begun to yield, then: z,; = —h/2 and Eq. (32) results that coefficients Ay and A; be equal to
zero. If the axial load increases until the beam cross section at z; < z,; yields, then using the
second of Eq. (17) results the value of z,, corresponding to the z,; as follow:

BSP BSP N3

Zyg = B—% — (B%D — Zyl)m (39)

Wherein, N3 and N, are:

Ny = 20802) (perper (p2) 4 (47— Ag)(BE — BP2,0)
E(zy2)

+ (A} = A1) (=B + By’ zy2) (40)

S,

Ny = 2 (peper _ (Ber)R) 4 (4] — Ag)(BY — BiPzy)
E(Zy1>

+ (A} — A) (=B + B z1) (41)

Since N; through N, are nonlinear functions of z,; and z,», generally analytical solution for
Eqgs. (35) and (39) is not available and they should be solved numerically.

4.2  Elastic-Plastic Bending Load

Now the beam is assumed under pure bending load which results to partial yielding of the beam
cross section. The same as the case for pure axial load, four different conditions are considered.
These conditions are: a) Yield begins form z = —h/2, but the edge z = h/2 has not be begun
to yield. b) Yield begins from z = —h/2 and the edge z = h/2 has begun to yield. c) Yield
begins from z = h/2, but the edge z = —h/2 has not begun to yield. d) Yield begins from
z = h/2 and z = —h/2 has also begun to yield.

Due to the assumed direction of bending load shown in Fig. (1), for case (a) which z < z,;
is yielded but z = h/2 is not yielded, the regions with z < z,;, experience compressive strain.
Assuming z, = z,; and 2,2 = 0 in second of the Eq. (17), the critical bending moment M,
which brings the regions with z < z,; up to yield is:

Sz BBy — (BY)?
E(Zyl) —pr + ngzyl
(—A) + Ao)(—B5” + B z0) + (— AL + A)(BY — By z,1)
—BY + B2yl

MCT -

+b

(42)

If the bending moment is increased such that z = h/2 also begins to yield up to the z = z,, as
described for case (b), then Eq. (42) is applicable to obtain the critical bending moment which
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brings the regions z > z,5) up to the yield. But z,; corresponding to z,, have to be obtained
from the first of Eq. (17) as follows:

—B;p + ngzyg &

Zy1 = € € - (43)
T _BP 4y BPz, Ng
Wherein, N5 and Ny are:
S € € € (&) €
o= S52) e (B + (A + A (B + B2
E(zy)
+ (=41 + A)(BY = By'zp) (44)
N = — vl (B By" — (BF)?) + (—Aj + Ao)(—B5" + Bi"z,1)
6 = E(z1) 0 D2 1 0 0 2 1 Ayl
+ (=A1 + A)(BY — B z1) (45)
For the case (c) which z > z,, is in yield condition but z = —h/2 is not yielded, the region with

z > zy experiences compressive strain. Assuming z, = z, and z,; = 0 in the second of Eq.
(17), the critical bending moment M., which brings the regions with 2 > z, up to the yield is:

_Su(ze) BBy — (BY)?

M = € e
E(Zyg) —Blp + BopZyQ
+ b(A6 B AO)(_BSP + przyQ) + (All B Al)(pr B ngzyQ) (46)
— B’ + By zy2
If the bending moment is increased such that z = —h/2 also begins to yield up to the z = z,;

(i.e as described for case (d)), then Eq. (46) is applicable to obtain the critical bending moment
which brings the regions z < z,;) up to the yield. But z,, corresponding to z,; have to be
estimated from the first of Eq. (17). That is:

—B;p —I— ngzyl N7
zZ.

_ _ 47
T _BP L BPz, Ny “7)

Wherein, N; and Ny are:
S e e e e e e e
No = S0 (B (BP)2) + (g — Ag)(= B + B 0) + (A — A)(BY - BYz)

E(zy1)
(43)

Sy(2y2)
E(2y2)

Ng = — (Be"B3" — (BY")*) + (Ay — Ao)(=B3" + B"22) + (A] — A1)(BY — B 2y2)

(49)

4.3  Elastic-Plastic Axial and Bending Load

In this case it is assumed that an axial load P less than axial collapse load P, is imposed to the
beam, then the critical bending moment M., which brings specified regions of the cross section
up to the yield is calculated. To this aim the same four different cases which is considered in
previous load case is considered. For the case (a), described in previous section which z < z,;
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is yielded and experiences compressive strain, the critical bending moment M, which brings
2 < 2, up to the yield is:

Sy(z1) By’ By” — (BY)?

E(z) —B{" + Bz

(P/b— Ay + Ao)(—=B3" + B z1) + (= A + A)(BY” — B 21)
—BY + Bi"zyl

Mcr =-b

+b

(50)

For case (b) of the previous section which z < z,; is yielded and experiences compressive
strains and at the same time 2 > 2, is yielded, the critical bending moment M., with combina-
tion of axial load P, which brings the specified section of the beam up to the yield is calculated
from Eq. (50). Value of z,; corresponding to specified z,, have to be calculated from the
following equation:

—B{ + Bzs  Ns

= — 51
IR Bz Ne Cb
Wherein, Ny and Ny are:
N _ Sy(zy2) BepBep Bep 2 P b A/ A Bep Bep
Q—M(o s — (BY")") + (P/b— Ay + Ao) (= By’ + 1Zy2)
+ (= AL+ A)(BY — By’ 2y2) (52)
Ny = _Sy<zy1) BPRBP _ (Bep 2) P/b _ A + A _pgep + BeP

10 = E(zyl)( 0 Do 1)7) +( 0 0)(— By 1 Zy1)

+ (AL + A)(BY = B 2) (53)

In case (c) which z > z,, is yielded and the corresponding strain is tensile, the critical bending
moment with combination of axial load which brings z > z,5 up to the yield is:

M = _bSy(ZyQ) B’ Bs" — (BY)?
“ E(Zyg) —pr + ngzyg
(P/b+4 Ay — Ao)(—=B5"” + By zy0) + (A} — A1) (B — Bg"z,2)

—B" + By zy2

+0b (54)

and finally for the last case which z > z,, is yielded and strain is tensile, while the regions
z <z, are also yielded, the value of z;, corresponding to 2, is calculated from the following
equation.

—pr + B(e]pZyl N11

= — 55
Zyl —pr + ngzyg N12 ( )
Wherein, N;; and N, are:
S Z € € € e €
Ny = I BB — (BYF) + (Pfo+ 4y = Ad)(~B + B 2)
y
+ (A} — A)(BY — Bi"z) (56)
Ny — S?J(’Zy?) B Ber B 2 P/b+ A A B BeP
12——m(o o — (BY")7) + (P/b+ Ay — Ao)(—= By’ + B 2y2)

+(A) — A)(BY" — By'z) (57)
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5 Collapse load

In collapse condition, the cross section of the beam is fully plastic. Since in this case there is
not any elastic region across the section of the beam, the conditions (7) and (8) are independent
of the values ¢y and c;. So the constants of integration remain undefined. As the results the
strain distribution is undetermined which is in coherence with collapse condition of the beam.
Using boundary conditions, one may find the collapse load of a beam and the point z; which
the direction of stress is changed. The same as previous sections, three different load cases are
considered in this section.

51 Casel: P#0,M =0

In this case the collapse axial load is obtained in absence of the bending moment. Since the
material property of the beam is nonhomogeneous, although the beam experiences tensile load,
but in some parts of the cross section, it experiences compressive stress in order to satisfy the
condition M = (. Substituting Eq. (5) into boundary condition (7):

21 h/2
/ —S,dz +/ Sydz = P/b (58)

—h/2 21

As the results, the collapse axial load is obtained due to the following equation:
h

Pcol == b{22’18ym + (Syc - Sym)n——H

where z; is the height of the point which axial stress changes its direction from tension to
compression. Now, the second boundary condition given in Eq. (8) with M = 0 is used to
evaluate z;:

2(z1/h+1/2)"*" — 1]} (59)

21 h/2
/ —Syzdz + / Syzdz =0 (60)
—h/2 21
Substituting Eq. (2) into Eq. (60) results:
(z1/h+1/2)"*2  (z/h+1/2)"T (2§ — h?/4)Sym 1 1
2 — — + =0 (61)
n+2 n+1 h2(Sye — Sym) n+2  2(n+1)

Using any numerical iterative method, one may find the solution of Eq. (61) for z;. To obtain
the collapse axial load, it is assumed that yield begins from z = —h /2, however there is not any

difference to result of collapse axial load when yield begins from z = h/2.

52 Case2: P=0,M#0

In this case the beam is under pure bending load. Substituting Eq. (5) into boundary condition

(8):

z1 h/2
/ —Syzdz + / Syzdz = M/b (62)

—h/2 z1
followed by substitution of Eq. (2) into above equation, results to:

h z1/h+1/2)"+?
Mo = b{—Symzf + SymZ —2(Sye — Sym)h2( 1/ _ +é )

(z1/h+1/2)"*!
n—+1

1 1
+ (Sye = Sym)hQ[n +2 2+ 1)]} (63)

+ (Sye — Sym)h?



Elastoplastic Analysis of Functionally Graded Beams ... 45

Table 1 FG beam material properties

Material property Metal Ceramic
Modulus of elasticity 106 (GPa) 131.4 (GPa)
Tensile yield strength 99.7(MPa) 145.6 (MPa)

In order to obtain the height of the point, which stress changes its direction, the boundary
condition (7) is considered. Since the axial load is zero, the boundary condition (7) results to:

21 h/2
/ —Sydz + / Sydz =0 (64)
—h/2 z1

Substituting Eq. (2) into above equation, the required condition to obtain the neutral axis is
found. That is:

(21/h+ 1/2)"™ ) Sy = Sym

2521+ 2h(Sye = Sym) .

=0 (65)

53 Case3: P#0,M#0

Finally in the last case an axil load less than the collapse load is applied to the beam. Then
a bending moment M, is applied to the beam to make the cross section of the beam fully
plastic. To evaluate the collapse bending load, two different condition which yield begins from
top or bottom surface of the beam is considered. Since the terms in boundary condition (8) are
not changed in both cases, Eq. (63) is applicable for both cases. The only difference is that
the combination of axial load and bending load results to different value of z; with respect to
previous one. If yield begins from z = —h /2, then using the condition (7), z; is found as:

(a1/h+1/2™ 8= S

2821 + 2h(Sye = Sym) =Py (66)

and when yield begins from z = h/2, z is:

n+1 _
(a/ht D™ S = Sm _ p, -
n+1 n+1

—2Symz1 — 2h(Syc — Sym)
To check that which of the equations (66) and (67) should be used, Eq. (63) is solved for both
values of these two equations and the collapse bending load is considered as the minimum of
these values.

6 Results and Discussion

In this section using the effective material properties given in Table (1), the yield, elastic-plastic
and collapse behavior of the FG beam due to the imposed axial load, bending load and their
combination are obtained. Setting n = 0 in equations (1) and (2), the FG beam changes to an
isotropic beam with material properties identical to ceramic part of the beam. So, if in equations
represented in previous sections, the value of n is set to zero, then they have to predict the
behavior of the beam the same as an isotropic one with the material properties given for ceramic
part of the FG beam.
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Figure 2 P, /b versus h/b for different values of n

6.1 Results for Pure Axial Load

In first example consider the beam to be subjected to pure axial load. The plot of yield axial
load P, per unit width of the beam b versus the normalized height 4/b is shown in Fig. (2) for
n = 0,0.5,1 and n = 10 using equation (18). On the other hand, for an isotropic beam the yield
axial load is obtained from the following simple equation:

P, = S,bh (68)

In Fig. (2), the plot of normalized yield axial load versus normalized height for n = 0 is
compared for that of isotropic beam. As it can be seen from this figure, the results of FG beam
for n = 0 are identical with the isotropic ceramic beam. On the other hand, this plot shows
that yield axial load decreases with increasing the values of n. For the beam with dimensions
b = 0.0lm and h = 0.0lm and n = 0.5, the yield axial load due to Eq. (18) is 10.638 kN
and the stress distribution for this case is plotted in Fig. (3) using Eq. (4). These stresses are
compared with yield stress at cross section of the FG beam. If the load is increased up to the
values that the FG beam collapses, then using Eq. (59), the normalized collapse load versus
normalized height of the beam is obtained from Eq. (59), as shown in Fig. (4). On the other
hand, since the stress distribution for isotropic beam is uniform, the collapse load and yield
load are equal. So, Eq. (68) also shows the collapse axial load of an isotropic beam. It can
be seen from Fig. (4), that the collapse load for the isotropic beam is identical to the FG beam
with n = 0. Also this figure shows that increasing the values of n results to decreasing the
collapse axial load of the FG beam. For a beam with dimensions b = 0.01m and A = 0.01m
and n = 0.5, the collapse axial load due to Eq. (59) is 298.27 kN and the stress distribution is
plotted in Fig. (5). This figure shows that the cross section of the beam below z; = 0.0048 m
experiences tensile yield stress while the points above z; = 0.0048 m experience compressive
yield stress. It is interesting since for the applied tensile load, a region with compressive stress
is produced. Now consider that the critical axial load F,, which is between P, < P, < P,y.
Then the cross section of the beam begins to yield form one edge of the beam cross section
and increasing the load will results to the fully plastic cross section. Figure (6) shows variation
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Figure 5 Stress distribution of the beam due to the collapse axial load

of 2,1/, with respect to F,./b. The figure shows that when n = 0, the results are identical to
those of isotropic beam. On the other hand, it shows that increasing the value of n, results to
decrease in critical yield load. Solving Eq. (35) numerically, z,; corresponding to beginning
of yield at z = h/2 (ie. zp = h/2)is: 2,1 = 0.0046 m, For a beam with previous given
cross section properties. Substitution of these values in Eq. (34) results, P., = 12.421 EN.
The stress distribution corresponding to this load case is plotted in Fig. (7). As it can be seen
from the figure, the region z < 0.0046 m is yielded and stress in this region is tensile. The
region between 0.0046 m and 0.005 m is elastic. The point z = h/2 has begun to yield and
stress at this point is compressive. Increasing the axial load more than P,.. = 12.421 kN results
to development of compressive stress in cross section of the beam as described in previous
example.

6.2 Results for Pure Bending Load

Here the results due to the imposed pure bending load is discussed. Figure (8) shows the plot of
normalized yield bending moment M, /b versus normalized height 4 /b of the FG and isotropic
beams. For the isotropic beam, the yield bending moment is simply calculated as follow:

bh?
M, = Sy? (69)

Figure (8) shows that the results of Eq. (19) for FG beam with n = 0 are identical with isotropic
beam and the yield bending moment of FG beam is lower than isotropic ceramic beam. For the
FG beam with dimensions b = 0.01, 2~ = 0.01 and n = 0.5 the yield bending moment using Eq.
(19) is 18.54 Nm. The stress distribution corresponding to M, = 18.54 N'm is shown in Fig.
(9). As it can be seen from this figure the stress at the point z = —h/2 is equal to yield stress
at metal side of the FG beam and is compressive, assuming the bending moment is applied in
positive direction. Using the Eq. (63), the normalized collapse bending moment M., /b versus
the normalized hight of the beam is plotted in Fig. (10) for the FG beam. On the other hand the
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collapse bending moment for an isotropic beam simply is:

Mcol =S,— (70)

Fig. (10), shows that the collapse bending moment of the FG beam with n = 0 is identical with
the collapse bending moment of the isotropic beam. This figure shows that increasing the value
of n results to decrease in collapse bending moment. The collapse bending moment of the beam
with previously specified dimensions, is 32.223 Nm. Fig. (11) is plot of stress distribution
for this beam subjected to the collapse bending moment. The height of the beam which the
direction of stress is changed according to numerical solution of Eq. (65) is z; = 0.0004 m.
The figure shows that the region bellow this point experiences compressive yield stress and
the region above this point experiences tensile yield stress. If the bending moment imposed
to the beam be less than the collapse moment and more than the yield moment, then the cross
section of the beam flows partly into plastic region. In Fig. (12) the height of the yield point
2y2 18 plotted against the corresponding critical bending moment M., for a beam made of FG
material. The critical bending moment of a beam made of isotropic materials which brings the
beam cross section located above the 2,5 up to the yield is:

h oz

Fig. (12) shows that the critical load of a beam made of FG material with n = 0 is identical to
isotropic ceramic beam. Fig. (13) shows the stress distribution of the beam made of FG material
with dimensions A = 0.01 m, b = 0.01 m and n = 0.5 for the case which the top surface of
the beam has begun to yield. The z,; corresponding to this plastic region according to Eq. (43)
is —0.0042 m and using the Eq. (42), the bending moment corresponding to z,; = —0.0042 m
and z, = 0.005 is M., = 22.84 Nm.
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6.3 Results for Combination of Axial and Bending Load

In this section behavior of the beam made of FG materials subjected to combination of axial
and bending load is investigated. For an isotropic beam the yield bending moment A, which
brings the cross section of a beam subjected to the axial load P up to the yield, is:

bh? h

Figure (14), shows the interaction diagram between M, and P. This figure is plotted using
results of Eq. (50) through (57). The figure shows that the interaction diagram for isotropic
ceramic beam is identical to the FG beam with n = 0. Also, it shows that increasing the value
of n, results to decrease in ability of the beam to support the combination of bending and axial
load. Figure (15) shows the yield interaction diagram for the case where the location of the
ceramic and metal is replaced. As it can be seen from Fig. (15), increasing the value of 7 in this
case results to increase in ability of the beam to support the combination of bending and axial
load. In (16) and (17), the collapse interaction diagram is obtained for the same conditions of
Figs. (14) and (15). The collapse bending moment M, for an isotropic beam subjected to axial
load P, is:

h2
Moot = bSy (=23 + ) (73)
Wherein:
P
= — 74
T T, 74

These figures show that the collapse interaction diagram of FG beam with n = 0 is identical to
collapse interaction diagram of the isotropic beam. Also, for the case where metallic part of the
FG beam is located at = = —h/2, increasing the value of n; results to decrease the ability of
the beam to support the combination of axial and bending loads. Replacing the location of the
metallic and ceramic parts of the FG beam, results to increase in ability of the beam to support
the combination of axial and bending load, as the value of n is increased.
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7 Conclusion

In this paper the required equations to obtain the yield axial load, yield bending load and the
combination of axial and bending loads which bring the cross section of the beam up to the yield,
are obtained. Also the equations required to obtain the elastic-plastic and collapse behavior
of the beam are obtained. Curves plotted in this paper show that predicted results by these
equations for an FG beam with n = 0 are identical with those of the isotropic beam. It is
concluded that for the case where the metallic part of the beam is located at z = —h /2 the values
of yield, elastic-plastic and collapse loads are less than the isotropic beam made of ceramic. On
the other hand, the interaction diagrams between bending moment and axial load for both of



56 Iranian Journal of Mechanical Engineering Vol. 13, No. 2, Sep. 2013

the yield and collapse conditions show that: increase in values of n results to decrease in ability
of the structure to withstand the imposed loads when the metallic part is located at z = —h/2.
Locating the metallic part of the beam at = = h/2 enhances the ability of the structure to
withstand the imposed loads with increasing the value of n.
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Nomenclature
b: Width of the beam
h: Height of the beam
218 Height of the point which stress changes its direction in collapse condition
Znt Height of the neutral axis
zy1:  Height of the underneath plastic region
zy2:  Height of the upper plastic region
ze: Height of the neutral axis at beginning of the yield
z7P: Height of neutral axis in elastic-plastic region
E.: Modulus of elasticity of ceramic
E,.:  Modulus of elasticity of metal
M: Bending moment
M., Collapse bending moment
M,.: Critical bending moment in plastic region
M,:  Yield Bending moment
P: Axial load
M., Collapse axial load
FP..:  Critical axial load in plastic region
P,:  Yield axial load
Syc: Yield strength of the ceramic
Sym:  Yield strength of the metal
Greek symbols
€,. Axial total strain
eo:  Axial elastic strain
eP: Axial elastic strain

Axial stress
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