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1   Introduction  
 
In studying the fracture mechanics of bonded materials, in recent past considerable attention 
has been directed toward studying the mechanical behavior of the interfacial regions where 
defects usually in the form of voids or cracks often exist. It has been shown that for interface 
cracks the material properties play an important role in their fracture mechanics behavior. 
From microelectronics to structural engineering many physical applications require joining of 
two dissimilar materials. Generally, the main function of the “interface” thus formed is the 
effective transfer of some flux quantity such as stress, heat or electricity. The interface crack 
behavior in dissimilar anisotropic composites under mixed mode condition studied by Wang 
and Choi [1]. Delale and Erdogan [2] investigated interface crack problem between the two 
homogeneous and non-homogeneous half-plane. In this study, they obtained the integral 
equations and the asymptotic behavior of the stress state near the crack tip. Two bonded 
dissimilar homogeneous elastic half-planes under mixed mode loading considered by Delale 
and Erdogan [3]. They obtained modes I and II stress intensity factors, the energy release rate 
and the direction of a probable crack growth. Shih and Asaro [4] investigated the near tip 
elastic-plastic fields of a crack on a bimaterial interface. They found that the oscillations of 
stresses and the overlap of crack surfaces predicted by the original solutions vanish in the 
elastic-plastic field in the vicinity of the crack tip in the case where tensile load is dominant. 
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Mixed Mode Fracture Analysis of Multiple 
Interface Cracks  
This paper contains a theoretical formulation of multiple 
interface cracks in two bonded dissimilar half planes subjected 
to in-plane traction. The distributed dislocation technique is 
used to construct integral equations for a dissimilar mediums 
weakened by several interface cracks. These equations are of 
Cauchy singular type at the location of dislocation, which are 
solved numerically to obtain the dislocation density on the 
faces of the cracks. The dislocation densities are employed to 
evaluate the modes I and II stress intensity factors for multiple 
interface cracks. Numerical calculations are presented to show 
the interaction effects of interface cracks on the stress intensity 
factors. 
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Hutchinson and Suo [5] reviewed about the application of the stress intensity factor to the 
mixed mode fracture of an interface crack. Chen and Erdogan [6] investigated the problem of 
the interface crack in a non-homogeneous coating bonded to a homogeneous substrate. The 
symmetric mode I crack problem in an inhomogeneous orthotropic medium, was examined by 
Ozturk and Erdogan [7]. It has been shown that in the mode I crack problem for an 
orthotropic inhomogeneous medium, Poisson’s ratio has only a negligible influence on the 
stress intensity factors but the effect of the material inhomogeneity was quite significant. The 
mixed mode crack problem in-plane elasticity for an inhomogeneous orthotropic medium was 
treated by Ozturk and Erdogan [8]. It was found that generally the stress intensity factors 
increase with increasing materials inhomogeneous parameter with decreasing stiffness ratio. 
Huang and Kardomateas [9] obtained the modes I and II stress intensity factors in a fully 
anisotropic strip with a central crack. Effects of the materials anisotropy on the mixed mode 
stress intensity factors of a center crack were studied by Long and Delale [10]. It has been 
shown that crack length, orientation and the non-homogeneity parameter of the layer have 
significant effect on the fracture of the FGM layer. Ma et al. [11] analyzed the mixed mode 
crack problem for a functionally graded orthotropic medium under time-harmonic loading. 
Mixed-mode fracture analysis of an orthotropic functionally graded material (FGM) coating-
bond coat-substrate structure was considered by Dag and IIhan [12].  
   In this article, the distributed dislocation technique is employed to derive singular integral 
equations for multiple interface cracks in two bonded dissimilar half plans under in-plane 
traction. The integral equations are of Cauchy singular types which are solved numerically for 
the dislocation density on the cracks faces. Finally, numerical calculations have been carried 
out to show the influences of material properties and crack size upon the modes I and II stress 
intensity factors. 
 
 
2   Dislocation solution  
 
We consider a homogeneous half-plane 0y  is bounded to a non-homogeneous half-plane 

0y  and dislocation path situated along the positive part of the x axis (Figure 1). 
 

 
Hooke’s law in a state of plane stress, linear elastic constitutive relations parameters for the 
each region, can be expressed in the following form 
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Figure1 Schematic view of the medium 
 
 
where the 0E and 0 are the elastic constants of the homogeneous half-plane. The equilibrium 

equations are satisfied by expressing stress components in terms of the Airy stress function 
.2,1),,( iyxi as the following form 
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By using the compatibility conditions in terms of the Airy stress function for medium 1 we 
have 

01
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Young’s modulus for medium 2 are assumed to be in the following exponential forms 
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The stress function for 0y may be shown to satisfy the following differential equation: 
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If we now also assume that 
yey  0)(                     (7) 

It is seen that the last term in Eq. (6) vanishes. The solution of Eqs. (4) and (6) is assumed in 
the form 
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The application of Eq.(8) to Eqs.(4) and (6) in conjunction with the property of decaying 

behavior of the Airy stress function as x  leads to a fourth order ordinary differential 

equation for ( , ), 1, 2,i s y i   where  is the Fourier transform of Airy stress function. The 

solution to differential equations yields 
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where 121 ,, ABB  and 2A  are unknown functions and 2n  is the positive root of the 
characteristic equation obtained from Eq.(6) as 
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The roots of Eq. (10) are  
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The conditions representing climb and glide edge dislocations, with the Bergers vector xb and 

yb , respectively, are: 
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where (.)H  is the Heaviside step function. Moreover, for both types of dislocations the 
following continuity of stress components along the x -axis should be satisfied. Consequently 
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By applying Eq. (8) to Eqs. (1) and (2) via Eqs. (3) and (9), displacements in the Fourier 
domain for the each region may be obtained as 
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By applying Eq. (8) to Eq. (13) and using Eqs. (3) and (9) we find  
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The conditions (12) may now be used to determine the remaining unknowns 1B  and 2B . To do 
this, we the first apply Eq.(8) to Eq. (12) to obtain 
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where (.) is the Dirac delta function. By using Eqs. (16) and (14) it may easily be shown that 
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Substituting Eq.(17) into the first of Eqs. (9) and applying the Fourier transform inversion, the 
Airy stress function for 0y  is expressed as  
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The integral in Eq.(18) can be divided into odd and even parts to arrive at 
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The stress components in view of Eqs. (19) and (3) for 0y  are expressed as 
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In order to specify the singular behavior of the stress components, the asymptotic behavior of 
the integrands in Eqs. (20) should be examined. Since the integrands are continuous functions 
of s  and also finite at 0s , the singularity must occur as s  tends to infinity. We determine 
the leading terms of Eqs. (20) as s , employ the following identities: 
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We may write Eqs. (20) as follow 
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In Eqs. (22) 
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From Eqs. (22), we may observe that stress components exhibit the familiar Cauchy-type 
singularity at dislocation location. Moreover, the integrands in Eqs. (22) decay sufficiently 
rapidly as s , which makes the integrals susceptible to numerical evaluation. 
 
3   Formulation of multiple cracks 
 
The dislocation solutions obtained in Section 2 is utilized to analyze a dissimilar mediums 
weakened by N arbitrary straight cracks with smooth face which are located in interface 
between two dissimilar half planes. Straight cracks configuration may be described in 
parametric form as, 
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where ),( 00 ii yx and ia are the center coordinates and half-length of the ith crack, respectively. 

Suppose climb and glide edge dislocations with unknown densities )(tBxk  and )(tByk , 

respectively, are distributed on the segment dtak  at the surface of kth crack, where 11  t . 

Employing the principal of superposition, the components of traction vector at a point with 
coordinates ( )(),( sysx ii ), where parameter 11  s , on the surface of all cracks yield 
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The kernels 111211 ,, xyikyyikyyik kkk and 12

xyikk in integral Eqs. (25) are coefficients of xb and yb in stress 

components yy and xy in Eqs. (22), respectively. By virtue of Buckner’s principle the left 

side of Eqs. (25), after changing the sign, is the traction caused by external loading on the 
uncracked medium at the presumed surfaces of cracks. Employing the definition of 
dislocation density function, the equations for the crack opening displacement across the ith 
crack yield 
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The displacement field is single valued out of an embedded crack surface. Consequently, the 
dislocation densities are subjected to the following closure requirements: 
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It is worth mentioning that the devised procedure despite its simplicity is capable of handling 
complicated crack arrangements. To evaluate the dislocation density, the Cauchy singular 
integral Eqs. (25) and Eqs. (27) ought to be solved simultaneously. The stress fields near the 

crack tips have the singularity of for the embedded cracks in a medium r/1 where r is the 
distance from a crack tip. Therefore, the dislocation densities are taken as 
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Substituting Eqs. (28) into Eqs. (25) and (27) and make use of the numerical solutions of 
integral equations with Cauchy-type kernel developed by Erdogan et al. [13]. result in )(tgxi  

and )(tg yi . The modes I and II stress intensity factors for embedded cracks derived by Faal 

and Fariborz [14] are defined as,  
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where the subscripts L and R designate to the left and right tips of crack, respectively, the 
geometry of crack implies  
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Substituting Eqs. (28) into (26), and results equations into (29) after using the Taylor series 
expansion of functions )(sxi  and )(syi  in the vicinity of the points 1s  leads to 
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4   Results and discussion  
 
The method presented above, allows the consideration of a dissimilar mediums with multiple 
straight cracks subjected to in-plane tractions. The accuracy and validity of the approach is 
tested by solving some well known problems whose solution has been previously obtained by 
other authors using different procedures.  
The analysis, developed in the preceding section, allows the consideration of a dissimilar 
mediums with multiple straight cracks subjected to in-plane tractions. The validation of the 
formulation is accomplished by comparing our results with those obtained by Delale and 
Erdogan [2], wherein the crack is under constant normal traction. In this case, excellent 
agreement is observed for modes I and II stress intensity factors. The calculated stress 
intensity factors are given in Table (1).  
As expected, in the nonhomogeneous medium 0 , with increasing values of  , stiffness 
of the plane decreasing and consequently the stress intensity factors increase with increasing 
the FG constant. Also note that due to the lack of symmetry with respect to 0y plane, the 
stress intensity factors are one of mixed mode. 
Next example, we consider two equal-length collinear cracks are located at the interface of 
two bonded dissimilar half-planes. Figures (1) and (2). The center of cracks remain fixed 
while the crack length are changing with the same rate. The dimensionless modes I and II 
stress intensity factors versus crack length for two different non-homogeneity constant and 

cmb 5.22  are depicted in Figures (1) and (2). The variation of modes I and II stress intensity 
factors of R  tips are much smaller than that of L .  
This attributes to weak interaction of cracks and large variation of stress fields around L  tips. 
The next example, consider the variation of dimensionless modes I and II stress intensity 
factors, versus the dimensionless ab  for two different FG constant which are placed at the 
interface between two dissimilar mediums (Figures (4) and (5)). The crack length remain 
fixed while the center of cracks changing with the same rate. The problem is symmetric with 
respect to the y-axis.  
We observe that with increasing the center of cracks modes I and II stress intensity factors 
decreasing because the interaction between cracks is weak. 
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Table 1 Comparisons of the normalized mixed-mode stress intensity factors for a crack subjected to uniform  
normal stress 
 a  0 0.1 0.25 0.5 0.75 1.0 1.25 1.5 2.0 2.5 3.0 5.0 

0K

K I  
Delale and 
Erdogan [2] 

 
1.0 

 
1.032 

 
1.081 

 
1.164 

 
1.249 

 
1.336 

 
1.425 

 
1.517 

 
1.706 

 
1.903 

 
2.107 

 
2.998 

 Present 
Work 

1.0 1.0319 1.0807 1.1636 1.2487 1.3359 1.4251 1.5165 1.7053 1.9022 2.1066 2.9957 

0K

K II  
Delale and 
Erdogan [2] 

 
0.0 

 
0.013 

 
0.033 

 
0.069 

 
0.109 

 
0.150 

 
0.194 

 
0.241 

 
0.341 

 
0.449 

 
0.564 

 
1.097 

 Present 
Work 

0.0 0.0127 0.0330 0.0693 0.1084 0.1502 0.1942 0.2406 0.3398 0.4472 0.5623 1.0892 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Variation of dimensionless mode I stress intensity factors for two collinear 
 cracks with changing /a b   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Variation of dimensionless mode II stress intensity factors for two collinear 
 cracks with changing /a b  
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Figure 4 Variation of dimensionless mode I stress intensity factors for two collinear 
 cracks with changing /b a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5 Variation of dimensionless mode II stress intensity factors for two collinear 
 cracks with changing /b a  
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5   Conclusions  
 
This paper presents efficient analytical method for the evaluation of modes I and II stress 
intensity factors for multiple interface cracks problem in dissimilar mediums. A solution for 
the stress field caused by the Volterra types climb and glide edge dislocations in a dissimilar 
mediums is first obtained. The solutions are in accordance with the well-known results in 
literature. The stress components are used as the Green's function to derive integral equations 
for the analysis of multiple interface cracks. To show the applicability of the procedure more 
examples are solved where in the interaction between cracks is investigated. 
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Nomenclature  
 
a         Half lengths of crack 

1 2 1 2, , ,A A B B        Unknowns coefficients 

yx bb ,          Dislocation densities 

0E         Elastic modulus 

G        Shear elastic modulus 
)(),( tgtg yixi        Regular terms of dislocation densities 

),(),,( tsktsk xyikyyik       Kernel of integral equations 

)(xH         Heaviside step function 

, , , ,IR IIR IL IILK K K K       Stress intensity factors of left and right side of crack 

0K         Stress intensity factor of a crack in infinite plane 

N         Number of cracks 
vu,         Displacement components 
yx,         Coordinates 

,Li Rir r         Distance from right and left crack tips 

xyyyxx  ,,        Stress components 

0         Applied tractions at infinity 

 
Greek Symbols 
         Nonhomogeneous constant 

0         Poisson’s ratio 

)(s         Dirac delta function 

xyyyxx  ,,        Strain components 

         Airy stress function 



Iranian Journal of Mechanical Engineering                           Vol. 15, No. 2, Sep. 2014  90

  چكيده
  

 ،ي غير مشابهاين مقاله حاوي يك فرمولاسيون تئوري از چندين ترك واقع در فصل مشترك دو نيم صفحه
روش توزيع نابجايي براي بدست آوردن معادلات انتگرالي در دو  باشد.اي مينسبت به بارگذاري درون صفحه

  محيط غير مشابه تضعيف شده توسط چندين ترك واقع در فصل مشترك دو محيط استفاده شده است. 
باشند كه بصورت عددي براي بدست آوردن اين معادلات در محل نابجايي داراي تكينگي از نوع كوشي مي

هاي نابجايي براي بدست آوردن ضرايب شدت اند. دانسيتهها حل شدهايي بر روي سطوح تركدانسيته نابج
  روند. هاي واقع در فصل مشترك دو محيط غير مشابه بكار ميبراي ترك IIو  Iتنش مود تركيبي 

هاي واقع در فصل مشترك بر روي ضرايب شدت محاسبات عددي براي نشان دادن اثرات اندركنش ترك
  تنش ارائه شده است.


