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Mixed Mode Fracture Analysis of Multiple

Interface Cracks
This paper contains a theoretical formulation of multiple
interface cracks in two bonded dissimilar half planes subjected
to in-plane traction. The distributed dislocation technique is
M. Ayatollahi' Jjused to construct integral equations for a dissimilar mediums
Associate Professor [l Weakened by several interface cracks. These equations are of
Cauchy singular type at the location of dislocation, which are
solved numerically to obtain the dislocation density on the
faces of the cracks. The dislocation densities are employed to
R. Bagheri* fevaluate the modes | and Il stress intensity factors for multiple
Assistant Professor l interface cracks. Numerical calculations are presented to show
the interaction effects of interface cracks on the stress intensity

factors.
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1 Introduction

In studying the fracture mechanics of bonded materials, in recent past considerable attention
has been directed toward studying the mechanical behavior of the interfacial regions where
defects usually in the form of voids or cracks often exist. It has been shown that for interface
cracks the material properties play an important role in their fracture mechanics behavior.
From microelectronics to structural engineering many physical applications require joining of
two dissmilar materials. Generally, the main function of the “interface” thus formed is the
effective transfer of some flux quantity such as stress, heat or electricity. The interface crack
behavior in dissimilar anisotropic composites under mixed mode condition studied by Wang
and Choi [1]. Delale and Erdogan [2] investigated interface crack problem between the two
homogeneous and non-homogeneous half-plane. In this study, they obtained the integral
equations and the asymptotic behavior of the stress state near the crack tip. Two bonded
dissmilar homogeneous elastic half-planes under mixed mode loading considered by Delale
and Erdogan [3]. They obtained modes | and Il stress intensity factors, the energy release rate
and the direction of a probable crack growth. Shih and Asaro [4] investigated the near tip
elastic-plastic fields of a crack on a bimaterial interface. They found that the oscillations of
stresses and the overlap of crack surfaces predicted by the original solutions vanish in the
elastic-plastic field in the vicinity of the crack tip in the case where tensile load is dominant.
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Hutchinson and Suo [5] reviewed about the application of the stress intensity factor to the
mixed mode fracture of an interface crack. Chen and Erdogan [6] investigated the problem of
the interface crack in a non-homogeneous coating bonded to a homogeneous substrate. The
symmetric mode | crack problem in an inhomogeneous orthotropic medium, was examined by
Ozturk and Erdogan [7]. It has been shown that in the mode | crack problem for an
orthotropic inhomogeneous medium, Poisson’s ratio has only a negligible influence on the
stress intensity factors but the effect of the material inhomogeneity was quite significant. The
mixed mode crack problem in-plane elasticity for an inhomogeneous orthotropic medium was
treated by Ozturk and Erdogan [8]. It was found that generaly the stress intensity factors
increase with increasing materials inhomogeneous parameter with decreasing stiffness ratio.
Huang and Kardomateas [9] obtained the modes | and Il stress intensity factors in a fully
anisotropic strip with a central crack. Effects of the materials anisotropy on the mixed mode
stress intensity factors of a center crack were studied by Long and Delale [10]. It has been
shown that crack length, orientation and the non-homogeneity parameter of the layer have
significant effect on the fracture of the FGM layer. Ma et al. [11] analyzed the mixed mode
crack problem for a functionally graded orthotropic medium under time-harmonic loading.
Mixed-mode fracture analysis of an orthotropic functionally graded material (FGM) coating-
bond coat-substrate structure was considered by Dag and I1han [12].

In this article, the distributed dislocation technique is employed to derive singular integral
equations for multiple interface cracks in two bonded dissimilar half plans under in-plane
traction. The integral equations are of Cauchy singular types which are solved numerically for
the dislocation density on the cracks faces. Finally, numerical calculations have been carried
out to show the influences of material properties and crack size upon the modes | and 11 stress
intensity factors.

2 Dislocation solution

We consider a homogeneous half-plane y >0 is bounded to a non-homogeneous half-plane
y < 0 and dislocation path situated along the positive part of the x axis (Figure 1).

Hooke' s law in a state of plane stress, linear elastic constitutive relations parameters for the
each region, can be expressed in the following form

£Y) =105 () =007, (Y,

0

£,(%,Y) :Ei[aw(x,w—uoaxx(x, ),

0

7y (LY = o, (k) y>0 )
exx(x,y)=$[o—“<x,y)—u(y)aw(x,y)l,
£, (%Y) :ﬁ[aw(x, Y)=0() (%, V)],
7y (6Y) == (%), y<O. @

G(y)



80 Iranian Journal of Mechanical Engineering Vol. 15, No. 2, Sep. 2014

Figurel Schematic view of the medium

where the E,and v, are the elastic constants of the homogeneous half-plane. The equilibrium

equations are satisfied by expressing stress components in terms of the Airy stress function
#,(x,y), i =1,2.asthe following form

o’ o’ o°p .

! Loo,i(XY)=——,1=12 3
Y v T (X, Y) oxdy 1 ©)
By using the compatibility conditions in terms of the Airy stress function for medium 1 we
have

O_xxi(xiy) = | O-yyi(xiy) =

Vi =0 4
Y oung’s modulus for medium 2 are assumed to be in the following exponential forms
E(y) = Ee” ©)
The stress function for y < 0 may be shown to satisfy the following differential equation:
0 %, (0°v ov 0%
Vi, -2V, + 72 —| — —2—+ f* 2 =0. 6
¢2 ﬂ ay ¢2 ﬂ ayz (ayz ﬂ ay ﬂ UJ axz ( )
If we now also assume that
v(y) = ve” (7)

It is seen that the last term in Eq. (6) vanishes. The solution of Egs. (4) and (6) is assumed in
the form

(s, y) = [4(x,y)e™ds ®
The application of Eq.(8) to Egs.(4) and (E_SSO in conjunction with the property of decaying
behavior of the Airy stress function as |x| — oo |eads to a fourth order ordinary differential
equation for @,(s,y),i=12 where ®is the Fourier transform of Airy stress function. The
solution to differential equationsyields
®,(s,y)=(B,+B,y)e™, y>0

Do(s,y) =[A+Ayle™, y<0 ©)
where B,,B,, AL and A, are unknown functions and n, is the positive root of the
characteristic equation obtained from Eq.(6) as

(n® - An—s?)* =0. (10)
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Theroots of Eq. (10) are

B2, Py
nl_n3_2 +(2)1
P 2 (B2
n2_n4_2+ S +(2), (11)

The conditions representing climb and glide edge dislocations, with the Bergers vector b, and
b, , respectively, are:
U (x,07) =, (x,07) =b,H (x)

v (x,07) = v, (x,07) =b,H(X) (12)
where H(.) is the Heaviside step function. Moreover, for both types of dislocations the
following continuity of stress components along the x -axis should be satisfied. Consequently

nyl(X’OJr) = nyz(x’of)
nyl(X,O+) = nyz (X’O_)1 |X| <™ (13)

By applying Eg. (8) to Egs. (1) and (2) via Egs. (3) and (9), displacements in the Fourier
domain for the each region may be obtained as

0
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By applying Eq. (8) to Eg. (13) and using Egs. (3) and (9) we find

A =B, A, =B,- (|S| + nZ)Bl (15)
The conditions (12) may now be used to determine the remaining unknowns B, andB,. To do
this, we the first apply Eq.(8) to Eq. (12) to obtain

U,(s,0") =U,(s,07) =b, (z5(s) +i/s)
Vi(s,0") =V,(s,0) =b, (75(s) +i/s) (16)

where J(.) isthe Dirac delta function. By using Egs. (16) and (14) it may easily be shown that
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B, = (ﬁi((ss); V) fis, (0 -+ 57)s|-s2(n, =) ) i, (D7) (27)

where P(s) =s* +(3n] — 2n,n, +n3)s® + 2s[s|(n, — n,) + 4s|n’n, + n’n3.

Substituting Eq.(17) into the first of Egs. (9) and applying the Fourier transform inversion, the
Airy stressfunction for y > 0 isexpressed as

—\s\y isx
A(x,y) = =2 j =5 ([0 sty ((n +s3)fs|-s%(n, -, o
2 |S|) (18)
in’(n, +
++[2+ y(n, +|S|)]by}ds
Theintegral in Eq.(18) can be divided into odd and even partsto arrive at
o

(! =2 |- > = 1 2 bx
4.(x,Y) P(s){[ s?—ys(nf +s%—sn, +sn ))}cos(sx) 9

L (né +85) [2+y(n, + 5)]sin(sx)by}ds

The stress components in view of Egs. (19) and (3) for y > 0 are expressed as

Tua(%,Y) = -!; +n7(n, +9)[25 + (N, +5)(=2 + sy)]sin(sx)b,
e 52[n2 —s? - ys(n2 +s%—sn, + snz))]cos(sx)bX J
P(s) |+ n7(n, +9)s[2+ y(n, +s)]sin(sx)b, °

2e ¥ |S [n -s?+(1- ys)( +s%—sn, + snz))]si n(sx)b, ds (20)
! P(s) +n7 (N, +5)[= 25 + (1 ys)(n, +s)]cos(sx)b,
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In order to specify the singular behavior of the stress components, the asymptotic behavior of
the integrands in Egs. (20) should be examined. Since the integrands are continuous functions
of s and aso finiteat s=0, the singularity must occur as s tends to infinity. We determine
the leading terms of Egs. (20) as s — o, employ the following identities:

Ign(sx)e’ysds: 2x 5. ¥y>0,
5 X*+y

J'cos(sx)e‘ysds: 2y > ¥Y>0,
5 X% +y

2xy

ISSin(SX)e_yst = m, y> 0}
o yz _ %2
js cos(sx)e **ds = m y > 0. (21
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We may write Egs. (20) asfollow

E o0
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In Egs. (22)
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From Egs. (22), we may observe that stress components exhibit the familiar Cauchy-type
singularity at dislocation location. Moreover, the integrands in Egs. (22) decay sufficiently
rapidly ass — o, which makes the integral s susceptible to numerical evaluation.

3 Formulation of multiple cracks

The dislocation solutions obtained in Section 2 is utilized to analyze a dissimilar mediums
weakened by N arbitrary straight cracks with smooth face which are located in interface
between two dissmilar haf planes. Straight cracks configuration may be described in
parametric form as,

X; = X0 + S8,
Y=Y, 1=12..,N, -1<s<1 (24)

where (X, Y;,) @nd a, are the center coordinates and half-length of the ith crack, respectively.
Suppose climb and glide edge dislocations with unknown densities B, (t) and B,(t),
respectively, are distributed on the segment a, dt at the surface of kth crack, where —1<t <1.

Employing the principal of superposition, the components of traction vector at a point with
coordinates (x; (s), y; (S) ), where parameter —1< s <1, on the surface of all cracksyield



84 Iranian Journal of Mechanical Engineering Vol. 15, No. 2, Sep. 2014

7, (%(5), i(5)) = z [ K8 (5,008, (1) + K, (s.1)B,, (D]adt,

7, (% (), Y (5)) = ZI [Kih (5,0) By (0) + k22, (5.) By (D]adt, i=1,2,..,N,~1< s <1,

The kernels ki, ki7 Ky and ki, inintegral Egs. (25) are coefficients of b, and b, in stress

yyik ¥ “yyik * M xyik Xyi
components o, and o, in Egs. (22), respectively. By virtue of Buckner’s principle the left

side of Egs. (25), after changing the sign, is the traction caused by externa loading on the
uncracked medium at the presumed surfaces of cracks. Employing the definition of
dislocation density function, the equations for the crack opening displacement across the ith
crack yield

U;(s) -5 (s) = [ aB, (Dt
us(s) —uy(s) = ja, ;0dt,  ie{12,..,N}. (26)

The displacement field is single valued out of an embedded crack surface. Consequently, the
dislocation densities are subjected to the following closure requirements:

J._::LL Bxi (t)dt = 01
EByi (t)dt=0, ie{12,..,N}. 27)

It is worth mentioning that the devised procedure despite its smplicity is capable of handling
complicated crack arrangements. To evaluate the dislocation density, the Cauchy singular
integral Egs. (25) and Egs. (27) ought to be solved simultaneously. The stress fields near the

crack tips have the singularity of for the embedded cracks in a medium 1/+/r where ris the
distance from acrack tip. Therefore, the dislocation densities are taken as

Bxi (t): g/—]i(f::)z
Byi(t)zjlyi_%, “1<t<l  ie{L2..,N} (28)

Substituting Egs. (28) into Egs. (25) and (27) and make use of the numerical solutions of
integral equations with Cauchy-type kernel developed by Erdogan et a. [13]. result in g, (t)

and g,;(t). The modes | and I stress intensity factors for embedded cracks derived by Faal
and Fariborz [14] are defined as,

{K,L }:Enm 1 |ug(s)—uy(s)
KL 4 rL%O\/Tl_i Ui (S) —u(s)
Kel E,... 1 [|uz(s)=uy,(s)
— 0| 29
{K} 4 0 2, {u;(s)—uxi(s)} )

where the subscripts L and R designate to the left and right tips of crack, respectively, the
geometry of crack implies
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o =[00(9) — % (D) + (v, (8) - v (D)
e = [04(8) = %, ()7 + (v (5) - y, ()] (30)

Substituting Egs. (28) into (26), and results equations into (29) after using the Taylor series
expansion of functions x;(s) and y;(s) inthevicinity of the points s = +1 leads to

{K,L } _ElxDF+ [y/-DF {gyi (—1)}1

Ki 4 9, (-1
1 (31)
{K'R } __ Eo([x{ DF + [y;(-1)]2)5 9,1
Kir 4 9, )

4 Results and discussion

The method presented above, allows the consideration of a dissimilar mediums with multiple
straight cracks subjected to in-plane tractions. The accuracy and validity of the approach is
tested by solving some well known problems whose solution has been previously obtained by
other authors using different procedures.

The analysis, developed in the preceding section, allows the consideration of a dissimilar
mediums with multiple straight cracks subjected to in-plane tractions. The validation of the
formulation is accomplished by comparing our results with those obtained by Delale and
Erdogan [2], wherein the crack is under constant normal traction. In this case, excellent
agreement is observed for modes | and Il stress intensity factors. The calculated stress
intensity factors are givenin Table (1).

As expected, in the nonhomogeneous medium £ > 0, with increasing values of £, stiffness
of the plane decreasing and consequently the stress intensity factors increase with increasing
the FG constant. Also note that due to the lack of symmetry with respect to y =0 plane, the

stress intensity factors are one of mixed mode.

Next example, we consider two equal-length collinear cracks are located at the interface of
two bonded dissimilar half-planes. Figures (1) and (2). The center of cracks remain fixed
while the crack length are changing with the same rate. The dimensionless modes | and |1
stress intensity factors versus crack length for two different non-homogeneity constant and
2b = 2.5cm are depicted in Figures (1) and (2). The variation of modes | and |1 stress intensity
factorsof R tipsare much smaller than that of L.

This attributes to weak interaction of cracks and large variation of stressfieldsaround L tips.
The next example, consider the variation of dimensionless modes | and |l stress intensity
factors, versus the dimensionless b/a for two different FG constant which are placed at the

interface between two dissimilar mediums (Figures (4) and (5)). The crack length remain
fixed while the center of cracks changing with the same rate. The problem is symmetric with
respect to the y-axis.

We observe that with increasing the center of cracks modes | and Il stress intensity factors
decreasing because the interaction between cracks is weak.
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Table 1 Comparisons of the normalized mixed-mode stress intensity factors for a crack subjected to uniform

normal stress
fa 0 0.1 0.25 05 0.75 1.0 125 [ 15 2.0 25 30 5.0
K, Delale and
K, | Erdogan[2 | 10| 1032 | 1081 | 1164 | 1249 | 1336 | 1425 | 1517 | 1706 | 1903 | 2107 | 2998
Present 1.0 | 1.0319 | 1.0807 | 1.1636 | 1.2487 | 1.3359 | 1.4251 | 1.5165 | 1.7053 | 1.9022 | 2.1066 | 2.9957
Work
Kyl Delae and
Ko Erdogan[2] | 0.0 | 0.013 | 0.033 | 0.069 | 0109 | 0.150 | 0.194 | 0.241 | 0.341 | 0.449 | 0564 | 1.097
Present 0.0 | 0.0127 | 0.0330 | 0.0693 | 0.1084 | 0.1502 | 0.1942 | 0.2406 | 0.3398 | 0.4472 | 0.5623 | 1.0892
Work
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Figure 2 Variation of dimensionless mode | stressintensity factors for two collinear
cracks with changing a/b
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Figure 3 Variation of dimensionless mode |1 stress intensity factors for two collinear
cracks with changing a/b
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5 Conclusions

This paper presents efficient analytical method for the evaluation of modes | and Il stress
intensity factors for multiple interface cracks problem in dissimilar mediums. A solution for
the stress field caused by the Volterra types climb and glide edge dislocations in a dissimilar
mediums is first obtained. The solutions are in accordance with the well-known results in
literature. The stress components are used as the Green's function to derive integral equations
for the analysis of multiple interface cracks. To show the applicability of the procedure more
examples are solved where in the interaction between cracksis investigated.

References

[1] Wang, S.S., and Chai, I., “The Interface Crack Behavior in Dissimilar Anisotropic
Composites under Mixed Mode Loading”, Journal of Applied Mechanics, Vol. 50, pp.
179-183, (1983).

[2] Delae, F., and Erdogan, F., “Interface Crack in a Non-homogeneous Elastic Medium”,
International Journal of Engineering Sciences, Voal. 26, pp. 559-568, (1988).

[3] Delae, F., and Erdogan, F., “On the Mechanical Modeling of the Interfacial Region in
Bonded Half-planes’, Journal of Applied Mechanics Transaction of the ASME, Vol. 55,
pp. 317-324, (1988).

[4] Shih, C.F., and Asaro, R.J., “Elastic-plastic and Asymptotic Fields of Interface Cracks’,
International Journal of Fracture, Vol. 42, pp. 101-116, (1990).

[5] Hutchinson, JW., and Suo, Z., “Mixed Mode Cracking in Layered Materials’, Advances
in Applied Mechanics, Val. 29, pp. 64-187, (1992).

[6] Chen, Y.F., and Erdogan, F., “The Interface Crack Problem for a Non-homogeneous
Coating Bonded to Homogeneous Substrate”, Journal Mechanics of Physics of Solids,
Vol. 44, pp. 771-787, (1996).

[7] Ozturk, M., and Erdogan, F., “Mode | Crack Problem in an Inhomogeneous Orthotropic
Medium”, International Journal of Engineering Sciences, Vol. 35, pp. 869-883, (1997).

[8] Ozturk, M., and Erdogan, F., “The Mixed Mode Crack Problem in an Inhomogeneous
Orthotropic Medium”, International Journal of Fracture, Vol. 98, pp. 243-261, (1999).

[9] Huang, H., and Kardomateas, G.A., “Stress Intensity Factors for a Mixed Mode Center
Crack in an Anisotropic Strip”, International Journal of Fracture, Vol. 108, pp. 367-381,
(2001).

[10] Long, X., and Delale, F., “The Mixed Mode Crack Problem in an FGM Layer Bonded to
a Homogeneous Half-plane”, International Journal of Solids and Structures, Vol. 42, pp.
3897-3917, (2005).

[11] Ma, L., Li, J., Abdelmoula, R., and Wu, L.Z., “Dynamic Stress Intensity Factor for Time-
harmonic Functionally Graded Orthotropic under Time Harmonic Loading”, European
Journal of Mechanics- A/solids, Vol. 26, pp. 325-336, (2007).



Mixed Mode Fracture Analysis of Multiple Interface ... 89

[12] Dag, S, and llhan, K.A., “Mixed Mode Fracture Analysis Orthotropic Functionally
Grade Material Coatings using Analytical and Computational Methods’, Journal of
Applied Mechanics Transactions of the ASME, Vol. 75, pp. 1-9, (2008).

[13] Erdogan, F., Gupta, G.D., and Cook, T.S., “Numerical Solution of Integral Equations. In:
Sih, G.C. Methods of Analysis and Solution of Crack Problems’, Noordhoof, Leyden,
Holland, (1973).

[14] Faal, R.T., and Fariborz, S.J., “Stress Analysis of Orthotropic Planes Weakened by
Cracks’, Applied Mathematical Modeling, Vol. 31, pp. 1133-1148, (2007).

Nomenclature

a Half lengths of crack
A A,B,B, Unknowns coefficients
b,.b, Dislocation densities
E, Elastic modulus

G Shear elastic modulus

gxi (t), gyi (t)
kyyik (S1t)1 k><yik (S!t)
H(x)

Regular terms of dislocation densities
Kernel of integral equations
Heaviside step function

Kirs Kirs Ko Ky Stress intensity factors of left and right side of crack
K, Stress intensity factor of a crack in infinite plane
N Number of cracks

u,v Displacement components

X,y Coordinates

(A Distance from right and left crack tips

O 1010y Stress components

o, Applied tractions at infinity

Greek Symbols

yij Nonhomogeneous constant

Vo Poisson’sratio

o(s) Dirac deltafunction

ExirEpyr Yy Strain components

¢ Airy stress function
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