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A General Form Solution for Elastic
Buckling of Thin Cylinders Made of
FGM under Axial Loading

In this article, the axisymmetric mechanical buckling of thin
cylindrical shell made of functionally graded material (FGM)
~ . is considered. The governing equations for a thin cylinder
R. Shahsiah Bhased on the first-order shell theory and Timoshenko's
Assistant Professor Bl 5oq mptions are obtained. The equations are derived using the
Sanders simplified kinematic relations and the principle of
work and energy. The constituent material of the functionally
graded shell is assumed to be a mixture of ceramic and metal.
It is assumed that the mechanical properties vary continuously
through the shell thickness. The thin cylindrical shell is under
uniform axial compressive load. The expression for the critical
mechanical buckling load is obtained analytically and is given
by closed form solution. The results are validated with the
Timoshenko's formula in the literature.
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1 Introduction

In recent years, functionally graded materials (FGMs) have gained considerable importance in
design of structures under high temperature environments. FGMs are also considered as
potential structural materials whereas they were originally designed as thermal barriers for
different engineering applications.

A survey of literature reveas that the problems of mechanical deformations and stressesin
functionally graded cylindrical shells under mechanical loads have not been treated in a
general form in the literature. Thermal buckling analysis of perfect cylindrical shells of
isotropic and homogeneous materials and cylindrical shells of composite materials based on
the Donnell and improved Donnell stability equations are studied by Eslami et a. [1-2].
Eslami and Shariyat considered the flexural theory and with the full Green nonlinear strain-
displacement relation, instead of the simplified Sanders assumptions, formulated the dynamic
mechanical and the thermal buckling of imperfect cylindrical shells [3]. The higher order
shear deformation theory, including the normal stress, was used and the mixed formulation
was established to simplify the approach of both kinematical and forced boundary conditions.
The technique was then improved by the same authors to an exact three dimensional analysis
of circular cylindrical shells based on the equations of motion and the full nonlinear Green
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strain-displacement relations [4]. The Donnell and improved Donnell stability equations are
employed to derive a closed form solution for the elastoplastic and creep buckling of
cylindrical shells under mechanical loads at an elevated temperature [5]. Eslami and Shahsiah
determined the critical thermal buckling loads for imperfect cylindrical shells [6]. They used
the Donnell and the improved Donnell stability equations and two models for imperfection,
namely; the Wan-Donnell and Koiter models. Many post buckling studies based on the
classical shell theory of composite laminated thin cylindrical shells subjected to mechanical or
thermal loading or their combinations are available in the literature, such as Birman and Bert
[7] and Shen [8-10]. Relatively few studies involving the application of shear deformation
shell theory to post buckling analysis can be found in the literature, such as those given by lu
and Chia [11] and Reddy and Savoia [12]. In these studies, the material properties are
considered to be independent of temperature.

Studies of temperature and moisture effects on the buckling loads of laminated flat and
cylindrical panels are limited in number (Whitney and Ashton [13], Snead and Palazotto [14],
Lee and Yen [15], Ram and Sinha [16], and Chao and Shyu [17]), where all these studies
assumed perfectly initial configuration. Palazotto et a. [18-29] have done extensive
theoretical and experimental work on the stability of composite panels. Their work
substantially reduced the gap between the theoretical and experimental works. Shen [30] gave
a full nonlinear post buckling analysis of composite laminated cylindrical shells subjected to
combined loading of axial compression and external pressure under hygrothermal conditions.

Buckling analysis of structures made of FGM is recently reported in the literature. Birman
[31] studied the buckling problem of functionally graded composite rectangular plate
subjected to the uniaxial compression. The stabilization of a functionally graded cylindrical
shell under axial harmonic loading is investigated by Ng et al. [32]. Shahsiah and Eslami
presented the thermal buckling of cylindrical and spherical shells made of functionally graded
material based on the first order shell theory and the Donnell and improved Donnell equations
[33-35]. The buckling analysis of circular plates made of FGM is given by Najafizadeh and
Eslami [36]. Javaheri and Eslami presented the therma and mechanical buckling of
rectangular plates made of FGM based on the first and higher order plate theories [37-40].

In this article, the axisymmetrical buckling load of functionally graded thin cylindrical
shell is derived. The cylindrical shell is under uniform axial compressive load. The expression
for the critical mechanical buckling load is obtained analytically and is given by closed form
solution. In principal, the equations are derived using the Sanders simplified kinematic
relations and the principle of work and energy.

2 Derivations

If a cylindrical shell is uniformly compressed in the axial direction, symmetrical buckling
with respect to the axis of cylinder may occur at a certain value of the compressive load. As
long as the shell remains cylindrical, the total strain energy is the strain energy due to axial
compression. However, when buckling begins, in addition to the axial compression, the strain
of the middle surface in the circumferential direction and also bending of the shell must also
be considered. At the critical value of load, the increase in strain energy must be equal to the
work done by the compressive load as the cylinder shortens owing to buckling (derived from
the principle of work and energy).

Consider a functionally graded thin cylindrical shell of mean radius R, thickness h, and
length L (Fig. 1). In the cylindrical shell x, 6, and Z are the axial, circumferential, and
radial directions, respectively (Fig. 2).

For ssimply supported boundary conditions, lateral displacements are given as
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Figure 1 The Geometry of Cylindrical Shell with Simply Supported Edge Conditions
(mean radius R, thickness h, and length L)
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Figure 2 The Cylindrical Shell under Compressive Load F . Inthe Cylindrical Shell X, 8, and 2
arethe Axial, Circumferential, and Radial Directions, Respectively.
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where m is the number of longitudina buckling waves ( buckling modes ). The middle
surface normal strains are ¢, and ¢,, in the axial and circumferential directions,
respectively. After buckling, these strains are deduced from the condition that the axial

compressive force during buckling remains constant (Timoshenko's assumption). The axial
strain before buckling is given as
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whereE(z)and N, are the elastic modulus and the critical buckling load, respectively. After
buckling, the axial strain is obtained as

ot Vg = (1= 17) g, = —(1- v%% 3

where v is Poisson's ratio and in this article it is considered to be a constant and not a
function of the radial direction z.

Observing that
R E(2h R L
w N, A . max
Em=EtV—=———"——V—_SIN—— (5)
R E(2h R L

the change of curvature in the axial and circumferential directions are given as[41]

K, =W, (6)
1 ov 0°w
k,=—(—+ 7
" R?‘00 aez) U
1.,0v 0w
k,=—(—+ 8
xo R(ax axae) ®

where the notation ¢ indicates a partial derivative and v is circumferential displacement.
The strain energy of a deformed shell consists of two parts: (1) the strain energy due to the
bending and (2) the strain energy due to the stretching of the middle surface. For the isotropic
shell, the bending strain energy is given as[41]

0, =2 ik 2kl 20, A ©
A

where D is the bending stiffness. For the isotropic shell, that part of the energy due to the
stretching of the middle surfaceis as [41]

1
U, :E”(ngxm + Ny&gm + Nyy&ygn)dA (10)
A

where N; and ¢,,, are the resultant forces and shear strain of the middle surface,

respectively. The resultant forces and moments per unit length expressed in terms of the stress
components through the thickness, according to the first — order shell theory, are [41]
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where o;; are normal and shear stresses. For i # |, o isreplaced by 7. Consider Hook’s law
for afunctionally graded thin cylindrical shell defined as[34]

o =2 (o tve,) (13)
1-v
o= 2B (o e (14)
1-v
TXH = G(Z)gxe (15)

where G(z) is shear modulus. The normal and shear strains at distance Z from the shell
middle surface are [41]

Ex = &m~ j(x (16)
gy = Egm — K, (17)
Exp=Ean— 22K, (18)

Substituting Egs. (16), (17), and (18) into Egs. (13), (14), and (15) result in the constitutive
equationsin terms of the middle surface strains and curvatures as [34]

o, =B o veg - 2K, +1K,)] (19)
1-v

Oy = ey + Vi — 2k, 1K) (20)
—v

Tyo = (D [Eam — 22K, ] (21)

Substituting Egs. (19), (20), and (21) into Egs. (11) and (12) result in the forces and moments
per unit length in terms of the middle surface strains and curvatures as[34]

C C
Nx =ﬁ(gxm+vg6m)_ﬁ(kx+vk6’) (22)
C C
NH :1_12 (86m+vgxm)_ﬁ(k0+vkx) (23)
Nyp =Coéam — CakKyg (24)
Cs Cs
Mx :m(‘gxm_‘_v‘g(sm)_l_vz (kx+Vk0) (25)
C C
M, :ﬁ(gan"'vgxm _ﬁ(ke""/kx) (26)

M, =Cy&yam — CeKyo (27)
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The Coefficients C, ... , C, arethe FGM constants and are given in Appendix (1).

The total potential energy of a thin cylindrical shell under axial compression is obtained by
the sum of the bending and stretching strain energies and is given as [40]

U=U, =—Jﬂ E(Z) ( &y +{;‘9 +2ve &, + 12 Evo )dV (28)

Substituting Egs. (16), (17), and (18) into Eqg. (28) result in the total potential energy in terms
of the middle surface strains and curvatures and is given in Appendix (2).
For the functionally graded thin cylindrical shell, observing that

C,
21-v?)

j[k +K,% + 2k K, + 21— 1)k, ]dA (29)

b~

Us = %J[ngxm + Nﬁgém + Nxé’gxﬁm _1—32{‘9xm(kx +Vk0) + gem(ke +ka)}]dA (30)
A -V

the function of the total potential energy in terms of the displacement components is obtained
by substituting Egs. (4), (5), (6), (7), (8), (22), (23), (24), (25), (26), and (27) into the total
potential energy function and is given in Appendix (3). The expression for the increase of the
total potential energy during buckling is given in Appendix (4). Assumptions of the symmetry

of deformation are &,,, =k, =K, =0 or u=u(x), v=0, and w=w(x). Considering a
change of variable y= R@, the following expression is found for the increase of the tota
potential energy during buckling

AU = J J[C W, AW 150A50 , CveAw+ComAz, Cv*WAg, +Cle, AW
1-v? R1-v?) R1-v?)
_ CoWio Ay +CogoW,,  CWAW Cyis,he,  Cv’wAw C3v W, Ag,
2(1-v?) R*(1-v?) 1-v? R*(1-v ) 2(1-v?)

2
4 & oMoy (31)
2(1-v")
In this equation, the symbol A() refers to the state of stability and w is prebuckling lateral

displacement. The longitudinal buckling mode shape Aw is defined by the same mode of
prebuckling lateral displacement w as defined by (1) [41]. In the method that is applied by
Timoshenko, during buckling, compressive load remain constant, and therefore Ag, =¢,.

Substituting Eg. (1) in Eq. (31), gives

24 __5 2 2
AU = CSAMT°R | 2CTRLN,®  ACWNGAL (g CATTL
L3(1-v?) h2E(2) hmE (z ) R
2mr’RC,AN,,
af(-)"- 32
LhE(2) {(D"-1 (32)

The work done by compressive forces during buckling is as
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w2 j {{NX(Z—VXVV + (8 — )N, YXy (33)

where the first term is due to the bending of the generators given by EqQ. (1) and the second
term is due to the change ¢, —¢,,, of the axia strain. Assuming that during buckling the

compressive load remains constant, then N, = N, . Substituting Egs. (1), (2), and (5) into Eq.
(33), gives
A’m?’7°RN 2vALN

W = o o ~ cr {(_1)m _]} (34)

Equating expressions (32) and (34), results as

2
2C1;zRLN2cr _ (35)
h“E(2)
AC N 2mz°RC;N
cr _ cr | cr n"— 36
hE(){() I+ LhE(2) {-D"-=——"5{(-D"-1 (36)
2_3
C35m 2R+ Cl _mz RN, (37)
L°d-v?) R 2L
Relations (35) and (36) do not have any application, where using relation (37) gives
C.m’ C,L?
LS (39)

L*(1-v?) m27Z'2R2
In Eq. (38) N, isreplaced by N, (buckling load), because it is dependent to m. Assuming

that there are many waves formed along the length of the cylinder during buckling and
considering N isthe minimum value of N, at a certain value of m, the minimum value of

expression (38) occurs at
_ 4,2
_Ljea @)
7\ C.R

Substituting Eqg. (39) in Eq. (38) for minimum value of N, to give

2 |CCq
N 40
e (40)

3
For pure isotropic cylinder E(2Z)=cte, and the value of C, and C, are Eh and Eh
respectively. Substituting these valuesin Eqg. (40) gives
2
N En (41)

" RY31-1?)

Relation (41) was first derived by Timoshenko [42].
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This relationship can be extended for the inhomogeneous materiadls. Consider a thin
cylindrical shell made of FGM. The shell is assumed to be graded through the thickness
direction. The constituent materials are assumed to be ceramic and metal. The volume
fractions of ceramic f_and metal f,, corresponding to the power law are expressed as [43]

f_=[(2z+h)/2n]", f =1 f (42)

Cc m

where z is the thickness coordinate, —h/2<z<h/2, and n is the power law index, which

takes values greater than or equal to zero. The value of n equal to zero represents a fully
ceramic shell, and the value of n equal to infinite represents a fully metal shell. The
mechanica and thermal properties of FGM are determined from the volume fraction of the
material constituents. Assume that the inhomogeneous material properties such as the
modulus of elasticity E change in the thickness direction z based on the Voigt's rule [43]
over the whole range of volume fraction as [43]

E(z)=E f.+E,1-f.) (43)
v(2)=v (44)

where subscripts m and ¢ refer to the metal and ceramic constituents, respectively. When
volume fractions are substituted from Eq. (42) in EQ. (43), the elastic modulus function for the
shell made of FGM is determined, which is the same as the equation proposed by Praveen and
Reddy [44] as

2z+h
E(2)=E_+E
(2) = E, + Eg( on

)n , Ecm = Ec - Em (45)
v(z)=v (46)

Substituting Eqg. (45) into Eqg. (39), using the definitionsfor C, and C,, gives

2 Ecm
L 1) (E, +7n+1)
7y » E. (" +n+2E, (47)
RA(—™ + m

12 4n+)Y(n+2(Nn+3

Relation (47) is defined when the outer surface of the shell is ceramic and the inner surface of
the shell is metal. Substituting Eq. (45) into the relations defined for C, and C, and finally
into Eq. (40) to give

2h? Eon +, Enn n’+n+2)E,,
v = (g, sy (N2
Ry1—12 n+1 12 4(n+)(n+2)(n+3)

1
2

N

)] (48)

Assuming that the outer surface of the shell is metal and the inner surface of the shell is
ceramic, the elastic modulus varying model can be given as

2z+h

E(2)=E,+E
(2) =B+ B (5

)", E..=E,—E. (49)



A Genera Form Solution for Elastic... 13

Substituting Eq. (49) into Eq. (39), using the definitionsfor C, and C,, gives

—v? Evwe
m:£ (l Y )(EC i n+1)
il B (W44 2B, (50)
12 4n+D(n+2(n+3
and
__ 2 En\E. . (N*+n+2E,
Ne = Ry1-v? E:+ n+1)(12 i An+1)(n+ 2)(n+3))] (51)

Equations (48) and (51) for the value of n equal to zero reduce to relation (41) that was
derived first by Timoshenko [42].

3 Example Analysis

As an example, consider a ceramic-metal functionally graded cylindrical shell. The
combination of materials consists of steel and alumina. The Young modulus for sted is
E,, = 200 GPa and for dluminais E_ = 380 GPa, respectively. The Poisson ratio is assumed to

be v = 0.3 for steel and alumina. Simply supported boundary conditions are assumed.
The variation of buckling load N, verses the variation of buckling mode m is plotted for

different values of power law index n in Figs. (3) and (4). These figures show the buckling
load decreases with the increase of m. Figure (3) shows the buckling load decreases with the
increase of n ( the outer surface is ceramic and the inner surface is steel) and the highest
buckling load is related to the pure ceramic ( n=0 in Egs. (38) and (45) ). Figure (4) shows
that the buckling load increases with the increase of n ( the outer surface is steel and the inner
surface is ceramic ) and the lowest buckling load is related to the pure steel ( n=0 in Egs.
(38) and (49) ). Inthesefigures R=L =1m and h = 0.001m are considered.

The variation of critical buckling load N, versusthe variation of shell thickness h is plotted

for different values of the power law index n in Figs. (5) and (6). It is seen that the critical
buckling load increases with the increase of h. Figure (5) shows that the critical buckling load
decreases with the increase of n ( the outer surface is ceramic and the inner surface is steel )
and the highest critical buckling load is related to the pure ceramic ( n=0 in Eq. (48) ).
Figure (6) shows that the critical buckling load increases with the increase of n (the outer
surface is steel and the inner surface is ceramic) and the lowest critical buckling load is related
tothepuresteel ( n=0 in Eq. (51) ). Inthese figures R =1m is considered.
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Figure 3 Variation of the Buckling Load vs M and for Various Values of N
(the outer surface is ceramic and the inner surfaceissteel and R=1m, h=0.001m,and L =R)
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Figure 4 Variation of the Buckling Load vs M and for Various Values of N
(the outer surface is steel and the inner surfaceis ceramicand R=1m, h=0.001lm,and L=R)
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Figure5 Variation of the Critical Buckling Load vs h and for Various Valuesof n
(the outer surface is ceramic and the inner surfaceis steel and R =1m)
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Figure 6 Variation of the Critical Buckling Load vs h and for Various Valuesof n
(the outer surfaceis steel and the inner surface is ceramic and R =1m)
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The variation of buckling load N, versus the variation of length of the shell L is plotted for
different values of the power law index n and the buckling mode m=10 in Figs. (7) and (8).

shows that the buckling load decreases with the increase of n (the outer surface is ceramic
and the inner surface is steel ) and the highest buckling load is related to the pure ceramic (
n=0 in Eq. (48) ). Figure (8) shows the buckling load increases with the increase of n (the
outer surface is steel and the inner surface is ceramic ) and the lowest buckling load is related
tothe pure steel (n=0 in Eqg. (51)). In thesefigures R =1mand h = 0.001m are considered.
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Figure 7 Variation of the Buckling Load vs L and for Various Valuesof n
(the outer surface is ceramic and the inner surfaceis steel and R =1m, h = 0.001m)
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Figure 8 Variation of the Buckling Load vs L and for Various Vauesof n
(the outer surface is steel and theinner surfaceis ceramicand R =1m, h = 0.001m)
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4 Conclusions

In this article, the axisymmetric critical buckling load of cylindrical shells made of FGM
under uniform axial compressive load is obtained and compared with an earlier buckling
formula given by Timoshenko [42]. Derivations are based on the first-order shell theory, the
Sanders simplified kinematic relations, the principle of work and energy, and Timoshenko's
assumptions [42]. The following conclusions are reached:

1) Thebuckling load N, for cylindrical shell made of FGM is function of the length of the

shell L.
2) Thecritica buckling load N, for cylindrical shell made of FGM is not function of the

length of the shell L.
3) The buckling load N, and the critical buckling load N, for cylindrical shell made of

FGM are function of the coefficients C, and C;.
4) Thebuckling load N, for cylindrical shell made of FGM decreases with the increase of

the buckling mode m and mean radius R and increases with the increase of length of
the shell L and shell thickness h.
5) The buckling load N, and the critical buckling load N, for cylindrical shell made of

FGM are smaller or greater than the corresponding values for the pure isotropic
cylindrical shell. It is strongly dependent to the defined mechanical properties function.

6) The closed form solution presented in this article can be used for analyse of different
FGM properties with varying gradients. In the extreme case of barrier coatings the
method can model also the sharp gradient at the metal—ceramic interface.

7) The bending and stretching strain energy equations for cylindrical shell made of FGM
are not identical with the corresponding equations for the pure isotropic cylindrical shell
expressed in the form of forces, strains, and curvatures.

8) The buckling mode m associated with minimum buckling load N, for cylindrical shell

made of FGM increases with the increase of L and C, and decreases with the increase
of v, C,,and R.
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Nomenclature

D
E., E.

E(2)
G(2)

—_

3

—

o

QzzzxOor o
Q o <= =

)

§<§CC33

S

. bending stiffness
: elastic modulus of metal and ceramic
: elastic modulus varying continuous function of FGM
: shear modulus varying continuous function of FGM
: Poisson'sratio
: volume fraction of metal and ceramic

- thickness of functionally graded cylindrical shell

- length of functionally graded cylindrical shell

: mean radius of functionally graded cylindrical shell
: curvatures of middle surface

: moment resultants
: force resultants

: buckling load

: critical buckling load
: normal stresses

. shear stress

: number of longitudinal buckling waves ( buckling modes)
: power index in mechanical properties varying models
. strain energy due to bending

. strain energy due to stretching

: work done during buckling

. circumferential displacement

- lateral displacement

: shear strain at distance z from the shell middle surface

: shear strain of middle surface
: normal strains at distance z from the shell middle surface

: normal strains of middle surface
: prebuckling normal strain
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Appendix (1)
h/2

C, = j E(2)dz
-h/2
h/2

C, = jG(z)dz

-h/2
h/2

C,= [E(»)dz
—h/2
h/2
C,=2 j 7G(2)dz
~h/2
h/2
C, = J.zzE(z)dz
-h/2
h/2
C, =2 [2°G(7)dz

-h/2
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Appendix (2)

1 E(2)
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Appendix (3)

C 2 1 2 2 2v
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2 2 3
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Appendix (4)
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