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1  Introduction 

 
In recent years, functionally graded materials (FGMs) have gained considerable importance in 
design of structures under high temperature environments. FGMs are also considered as 
potential structural materials whereas they were originally designed as thermal barriers for 
different engineering applications. 
      A survey of literature reveals that the problems of mechanical deformations and stresses in 
functionally graded cylindrical shells under mechanical loads have not been treated in a 
general form in the literature. Thermal buckling analysis of perfect cylindrical shells of 
isotropic and homogeneous materials and cylindrical shells of composite materials based on 
the Donnell and improved Donnell stability equations are studied by Eslami et al. [1-2]. 
Eslami and Shariyat considered the flexural theory and with the full Green nonlinear strain-
displacement relation, instead of the simplified Sanders assumptions, formulated the dynamic 
mechanical and the thermal buckling of imperfect cylindrical shells [3]. The higher order 
shear deformation theory, including the normal stress, was used and the mixed formulation 
was established to simplify the approach of both kinematical and forced boundary conditions. 
The technique was then improved by the same authors to an exact three dimensional analysis 
of circular cylindrical shells based on the equations of motion and the full nonlinear Green 
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A General Form Solution for Elastic 
Buckling of Thin Cylinders Made of 
FGM under Axial Loading 
In this article, the axisymmetric mechanical buckling of thin 
cylindrical shell made of functionally graded material (FGM) 
is considered. The governing equations for a thin cylinder 
based on the first-order shell theory and Timoshenko's 
assumptions are obtained. The equations are derived using the 
Sanders simplified kinematic relations and the principle of 
work and energy. The constituent material of the functionally 
graded shell is assumed to be a mixture of ceramic and metal. 
It is assumed that the mechanical properties vary continuously 
through the shell thickness. The thin cylindrical shell is under 
uniform axial compressive load. The expression for the critical 
mechanical buckling load is obtained analytically and is given 
by closed form solution. The results are validated with the 
Timoshenko's formula in the literature. 
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strain-displacement relations [4]. The Donnell and improved Donnell stability equations are 
employed to derive a closed form solution for the elastoplastic and creep buckling of 
cylindrical shells under mechanical loads at an elevated temperature [5]. Eslami and Shahsiah 
determined the critical thermal buckling loads for imperfect cylindrical shells [6]. They used 
the Donnell and the improved Donnell stability equations and two models for imperfection, 
namely; the Wan-Donnell and Koiter models. Many post buckling studies based on the 
classical shell theory of composite laminated thin cylindrical shells subjected to mechanical or 
thermal loading or their combinations are available in the literature, such as Birman and Bert 
[7] and Shen [8-10]. Relatively few studies involving the application of shear deformation 
shell theory to post buckling analysis can be found in the literature, such as those given by Iu 
and Chia [11] and Reddy and Savoia [12]. In these studies, the material properties are 
considered to be independent of temperature.  
      Studies of temperature and moisture effects on the buckling loads of laminated flat and 
cylindrical panels are limited in number (Whitney and Ashton [13], Snead and Palazotto [14], 
Lee and Yen [15], Ram and Sinha [16], and Chao and Shyu [17]), where all these studies 
assumed perfectly initial configuration. Palazotto et al. [18-29] have done extensive 
theoretical and experimental work on the stability of composite panels. Their work 
substantially reduced the gap between the theoretical and experimental works. Shen [30] gave 
a full nonlinear post buckling analysis of composite laminated cylindrical shells subjected to 
combined loading of axial compression and external pressure under hygrothermal conditions. 
      Buckling analysis of structures made of FGM is recently reported in the literature. Birman 
[31] studied the buckling problem of functionally graded composite rectangular plate 
subjected to the uniaxial compression. The stabilization of a functionally graded cylindrical 
shell under axial harmonic loading is investigated by Ng et al. [32]. Shahsiah and Eslami 
presented the thermal buckling of cylindrical and spherical shells made of functionally graded 
material based on the first order shell theory and the Donnell and improved Donnell equations 
[33-35]. The buckling analysis of circular plates made of FGM is given by Najafizadeh and 
Eslami [36]. Javaheri and Eslami presented the thermal and mechanical buckling of 
rectangular plates made of FGM based on the first and higher order plate theories [37-40]. 
      In this article, the axisymmetrical buckling load of functionally graded thin cylindrical 
shell is derived. The cylindrical shell is under uniform axial compressive load. The expression 
for the critical mechanical buckling load is obtained analytically and is given by closed form 
solution. In principal, the equations are derived using the Sanders simplified kinematic 
relations and the principle of work and energy. 
 
2  Derivations 
 
If a cylindrical shell is uniformly compressed in the axial direction, symmetrical buckling 
with respect to the axis of cylinder may occur at a certain value of the compressive load. As 
long as the shell remains cylindrical, the total strain energy is the strain energy due to axial 
compression. However, when buckling begins, in addition to the axial compression, the strain 
of the middle surface in the circumferential direction and also bending of the shell must also 
be considered. At the critical value of load, the increase in strain energy must be equal to the 
work done by the compressive load as the cylinder shortens owing to buckling (derived from 
the principle of work and energy). 
      Consider a functionally graded thin cylindrical shell of mean radius R , thickness h , and 
length L  (Fig. 1). In the cylindrical shell x ,  , and z  are the axial, circumferential, and 
radial directions, respectively (Fig. 2).  
      For simply supported boundary conditions, lateral displacements are given as 
 



A General Form Solution for Elastic...          7

 

 
Figure 1 The Geometry of Cylindrical Shell with Simply Supported Edge Conditions 

(mean radius R , thickness h , and length L ) 

 

Figure 2 The Cylindrical Shell under Compressive Load F . In the Cylindrical Shell x ,  , and z  
are the Axial, Circumferential, and Radial Directions, Respectively. 
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where m  is the number of longitudinal buckling waves ( buckling modes ). The middle 
surface normal strains are xm  and m  in the axial and circumferential directions, 

respectively. After buckling, these strains are deduced from the condition that the axial 
compressive force during buckling remains constant (Timoshenko's assumption). The axial 
strain before buckling is given as 
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where ( )E z and crN  are the elastic modulus and the critical buckling load, respectively. After 

buckling, the axial strain is obtained as 
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where   is Poisson's ratio and in this article it is considered to be a constant and not a 
function of the radial direction z . 
Observing that 
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 the change of curvature in the axial and circumferential directions are given as [41]    
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 where the notation   indicates a partial derivative and v  is circumferential displacement. 
The strain energy of a deformed shell consists of two parts: (1) the strain energy due to the 
bending and (2) the strain energy due to the stretching of the middle surface. For the isotropic 
shell, the bending strain energy is given as [41] 
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where D  is the bending stiffness. For the isotropic shell, that part of the energy due to the 
stretching of the middle surface is as [41] 

 
A
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2

1
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where ijN  and mx  are the resultant forces and shear strain of the middle surface, 

respectively. The resultant forces and moments per unit length expressed in terms of the stress 
components through the thickness, according to the first – order shell theory, are [41] 
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where ij  are normal and shear stresses. For ,ji     is replaced by  . Consider Hook’s law 

for a functionally graded thin cylindrical shell defined as [34]  
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where )(zG  is shear modulus. The normal and shear strains at distance z  from the shell 
middle surface are  [41] 
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  xmxx zk2                                                          (18) 
 
Substituting Eqs. (16), (17), and (18) into Eqs. (13), (14), and (15) result in the constitutive 
equations in terms of the middle surface strains and curvatures as [34] 
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Substituting Eqs. (19), (20), and (21) into Eqs. (11) and (12) result in the forces and moments 
per unit length in terms of the middle surface strains and curvatures  as [34] 
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The Coefficients 1C , … , 6C  are the FGM constants and are given in Appendix (1). 

The total potential energy of a thin cylindrical shell under axial compression is obtained by  
the sum of the bending and stretching strain energies and is given as [40] 
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Substituting Eqs. (16), (17), and (18) into Eq. (28) result in the total potential energy in terms 
of the middle surface strains and curvatures and is given in Appendix (2). 
For the functionally graded thin cylindrical shell, observing that 
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the function of the total potential energy in terms of the displacement components is obtained 
by substituting Eqs. (4), (5), (6), (7), (8), (22), (23), (24), (25), (26), and (27) into the total 
potential energy function and is given in Appendix (3). The expression for the increase of the 
total potential energy during buckling is given in Appendix (4). Assumptions of the symmetry 
of deformation are 0  xmx kk  or ),(xuu   ,0v  and )(xww  . Considering a 
change of variable Ry  , the following expression is found for the increase of the total 
potential energy during buckling 
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In this equation, the symbol ( )  refers to the state of stability and w  is prebuckling lateral 
displacement. The longitudinal buckling mode shape w  is defined by the same mode of 
prebuckling lateral displacement w  as defined by (1) [41]. In the method that is applied by 
Timoshenko, during buckling, compressive load remain constant, and therefore 00   . 

Substituting Eq. (1) in Eq. (31), gives 
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The work done by compressive forces during buckling is as 
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where the first term is due to the bending of the generators given by Eq. (1) and the second 
term is due to the change xm 0  of the axial strain. Assuming that during buckling the 

compressive load remains constant, then crx NN  . Substituting Eqs. (1), (2), and (5) into Eq. 

(33), gives  
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Equating expressions (32) and (34), results as  
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Relations (35) and (36) do not have any application, where using relation (37) gives 
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In Eq. (38) crN  is replaced by bN  (buckling load), because it is dependent to m . Assuming 

that there are many waves formed along the length of the cylinder during buckling and 
considering crN  is the minimum value of bN  at a certain value of m , the minimum value of 

expression (38) occurs at 
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Substituting Eq. (39) in Eq. (38) for minimum value of bN  to give 
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For pure isotropic cylinder ctezE )( , and the value of 1C  and 5C  are Eh  and 
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respectively. Substituting these values in Eq. (40) gives 
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Relation (41) was first derived by Timoshenko [42]. 
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This relationship can be extended for the inhomogeneous materials. Consider a thin 
cylindrical shell made of FGM. The shell is assumed to be graded through the thickness 
direction. The constituent materials are assumed to be ceramic and metal. The volume 
fractions of ceramic cf and metal mf corresponding to the power law are expressed as [43]  

 
n

c hhzf ]2)2([  ,           mc ff  1                                               (42) 

 
where z  is the thickness coordinate, 22 hzh  , and n  is the power law index, which 
takes values greater than or equal to zero. The value of n  equal to zero represents a fully 
ceramic shell, and the value of n  equal to infinite represents a fully metal shell. The 
mechanical and thermal properties of FGM are determined from the volume fraction of the 
material constituents. Assume that the inhomogeneous material properties such as the 
modulus of elasticity E  change in the thickness direction z  based on the Voigt's rule [43] 
over the whole range of volume fraction as [43]  
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where subscripts m  and c  refer to the metal and ceramic constituents, respectively. When 
volume fractions are substituted from Eq. (42) in Eq. (43), the elastic modulus function for the 
shell made of FGM is determined, which is the same as the equation proposed by Praveen and 
Reddy [44] as 
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Substituting Eq. (45) into Eq. (39), using the definitions for   1C  and 5C ,  gives 
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Relation (47) is defined when the outer surface of the shell is ceramic and the inner surface of 
the shell is metal. Substituting Eq. (45) into the relations defined for 1C  and 5C  and finally 

into Eq. (40) to give 
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Assuming that the outer surface of the shell is metal and the inner surface of the shell is 
ceramic, the elastic modulus varying model can be given as 
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Substituting Eq. (49) into Eq. (39), using the definitions for 1C  and 5C , gives  
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Equations (48) and (51) for the value of n  equal to zero reduce to relation (41) that was 
derived first by Timoshenko [42]. 
 
3  Example Analysis 
 
As an example, consider a ceramic-metal functionally graded cylindrical shell. The 
combination of materials consists of steel and alumina. The Young modulus for steel is 

200mE GPa and for alumina is 380cE GPa, respectively. The Poisson ratio is assumed to 

be 3.0  for steel and alumina. Simply supported boundary conditions are assumed.  
    The variation of buckling load bN  verses the variation of buckling mode m  is  plotted for 

different values of power law index n  in Figs. (3) and (4). These figures show the buckling 
load decreases with the increase of m . Figure (3) shows the buckling load decreases with the 
increase of n  ( the outer surface is ceramic and the inner surface is steel) and the highest 
buckling load is related to the pure ceramic ( 0n  in Eqs. (38) and (45) ).  Figure (4) shows 
that the buckling load increases with the increase of n  ( the outer surface is steel and the inner 
surface is ceramic ) and the lowest buckling load is related to the pure steel ( 0n  in Eqs. 
(38) and (49) ). In these figures 1 LR m and 001.0h m are considered. 
The variation of critical buckling load crN  versus the variation of shell thickness h  is plotted 

for different values of the power law index n  in Figs. (5) and (6). It is seen that the critical 
buckling load increases with the increase of .h  Figure (5) shows that the critical buckling load 
decreases with the increase of n  ( the outer surface is ceramic and the inner surface is steel ) 
and the highest critical buckling load  is related to the pure ceramic ( 0n  in Eq. (48) ).  
Figure (6) shows that the critical buckling load increases with the increase of n  (the outer 
surface is steel and the inner surface is ceramic) and the lowest critical buckling load is related 
to the pure steel ( 0n  in Eq. (51) ). In these figures 1R m is considered. 
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Figure 3 Variation of the Buckling Load vs m  and for Various Values of n  

(the outer surface is ceramic and the inner surface is steel and 1R m, 001.0h m, and  RL  ) 
 
 
 

 
Figure 4 Variation of the Buckling Load vs m  and for Various Values of n  

(the outer surface is steel and the inner surface is ceramic and 1R m, 001.0h m,, and  RL   ) 
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Figure 5 Variation of the Critical Buckling Load vs h  and for Various Values of n  

   (the outer surface is ceramic and the inner surface is steel and 1R m) 

 
 

 
Figure 6 Variation of the Critical Buckling Load vs h  and for Various Values of n  

(the outer surface is steel and the inner surface is ceramic and 1R m) 
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The variation of buckling load bN  versus the variation of length of the shell L  is plotted for 

different values of the power law index n  and the buckling mode 10m  in Figs. (7) and (8). 
These figures show the buckling load increases with the increase of L ???????????. Figure (7) 
shows that the buckling load decreases with the increase of n  (the outer surface is ceramic 
and the inner surface is steel ) and the highest buckling load is related to the pure ceramic ( 

0n  in Eq. (48) ). Figure (8) shows the buckling load increases with the increase of n  (the 
outer surface is steel and the inner surface is ceramic ) and the lowest buckling load is related 
to the pure steel ( 0n  in Eq. (51)). In these figures 1R m and 001.0h m are considered.    
 

 
Figure 7 Variation of the Buckling Load vs L  and for Various Values of n  

(the outer surface is ceramic and the inner surface is steel and 1R m, 001.0h m) 
 

 
Figure 8 Variation of the Buckling Load vs L  and for Various Values of n  

(the outer surface is steel and the inner surface is ceramic and 1R m, 001.0h m) 
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4  Conclusions 
 
In this article, the axisymmetric critical buckling load of cylindrical shells made of FGM 
under uniform axial compressive load is obtained and compared with an earlier buckling 
formula given by Timoshenko [42]. Derivations are based on the first-order shell theory, the 
Sanders simplified kinematic relations, the principle of work and energy, and Timoshenko's 
assumptions [42]. The following conclusions are reached: 

1) The buckling load bN  for cylindrical shell made of FGM is function of the length of the 

shell L . 
2) The critical buckling load crN  for cylindrical shell made of FGM is not function of the 

length of the shell L . 
3) The buckling load bN  and the critical buckling load crN  for cylindrical shell made of 

FGM are function of the coefficients 1C  and 5C . 

4) The buckling load bN  for cylindrical shell made of FGM decreases with the increase of 

the buckling mode m  and mean radius R  and increases with the increase of length of 
the shell L  and shell thickness h . 

5) The buckling load bN  and the critical buckling load crN  for cylindrical shell made of 

FGM are smaller or greater than the corresponding values for the pure isotropic 
cylindrical shell. It is strongly dependent to the defined mechanical properties function. 

6) The closed form solution presented in this article can be used for analyse of different 
FGM properties with varying gradients. In the extreme case of barrier coatings the 
method can model also the sharp gradient at the metal–ceramic interface. 

7) The bending and stretching strain energy equations for cylindrical shell made of FGM 
are not identical with the corresponding equations for the pure isotropic cylindrical shell 
expressed in the form of forces, strains, and curvatures. 

8) The buckling mode m  associated with minimum buckling load bN  for cylindrical shell 

made of FGM increases with the increase of L  and 1C  and decreases with the increase 

of  , 5C , and R .  
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Nomenclature 

 
D         : bending stiffness  

mE , cE  : elastic modulus of metal and ceramic  
)(zE      : elastic modulus varying continuous function of FGM  
)(zG      : shear modulus varying continuous function of FGM  

           : Poisson's ratio   

mf , cf   : volume fraction of metal and ceramic  
h           : thickness of functionally graded cylindrical shell  
L           : length of functionally graded cylindrical shell  
R           : mean radius of functionally graded cylindrical shell  

ijk          : curvatures of middle surface  

ijM        : moment resultants  

ijN         : force resultants  

bN         : buckling load  

crN        : critical buckling load  

i         : normal stresses  

ij          :  shear stress  

m          : number of longitudinal buckling waves ( buckling modes )  
n           : power index in mechanical properties varying models  

bU         : strain energy due to bending  

sU         : strain energy due to stretching  
W         : work done during buckling   
v           : circumferential displacement  
w          : lateral displacement  

ij         : shear strain at distance z  from the shell middle surface  

ijm        : shear strain of middle surface  

i          : normal strains at distance z  from the shell middle surface   

im         : normal strains of middle surface   

0          : prebuckling normal strain    
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  چكيده
اي جدار نازك كه از مواد مدرج تابعي ساخته  ارن محوري، پوسته استوانهقدر اين مقاله، كمانش مكانيكي مت
با در نظر گرفتن نظريه پوسته مرتبه اول و فرضيات تيموشنكو، معادلات . شده، مورد بررسي قرار گرفته است

با استفاده از اصل كار و انرژي و روابط ساده شده سندرز براي . اند نازك بدست آمده حاكم بر استوانه جدار
ساختار ماده مدرج تابعي، مخلوطي از . اند دلات تعادل و پايداري استخراج شدهتغيير شكل هندسي، معا

فرض شده، خواص مكانيكي در . سراميك به عنوان نافلز و فولاد به عنوان فلز در نظر گرفته شده است
استوانه جدارنازك، تحت بار فشاري محوري كه يكنواخت مي باشد  .ضخامت به شكل پيوسته تغيير نمايند

نتايج با . اي صريح براي بار كمانش مكانيكي بحراني با روش تحليلي ارائه شده است در پايان، رابطه. قرار دارد
                      .                    رابطه بدست آمده توسط تيموشنكو كه در نوشتجات موجود است، اعتبار سنجي شده است

 


