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1  Introduction  
 
Functionally graded materials (FGMs) are new materials with microstructural details which 
are spatially varied through nonuniform distribution of the reinforcement phase(s). 
Reinforcements with different properties, sizes, and shapes are used in a continuous manner 
which results in a microstructure with continuously varying thermal and mechanical 
properties at the macroscopic or continuum scale. Lutz and Zimmerman [1, 2] carried out 
analytical study of thermal stresses and effective thermal expansion coefficients of spheres 
and cylinders made of materials graded in the radial direction subjected to thermal loads. 
Cowper [3] obtained the exact solution for the stress field in a thick-walled sphere made of 
elastic–perfectly plastic material under a steady state temperature gradient in the radial 
direction. A numerical analysis of functionally graded hollow cylinder and sphere under the 
effect of thermal loads using the perturbation method is presented by Obata and Noda [4]. 
Cheung et al. [5] calculated transient thermal stresses in a hollow sphere made of 
homogeneous and isotropic material subjected to thermal boundary conditions varying along 
the θ direction by the potential function method. Three dimensional transient thermal stress 
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Thermo-elastic analysis of a functionally 
graded thick sphere by differential 
quadrature method 
Thermo-elastic analysis of a functionally graded hollow sphere 
is carried out and numerical solutions of displacement, stress 
and thermal fields are obtained using the Polynomial 
differential quadrature (PDQ) method. Material properties are 
assumed to be graded in the radial direction according to a 
power law function, however the Poisson’s ratio is assumed to 
be constant. The governing partial differential equations are 
obtained in terms of displacement and temperature fields and 
expressed in the form of series equations. A comparison of 
numerical results with the analytical and finite element results 
is presented that shows an excellent agreement. The effect of 
the material grading parameter, temperature variation and 
thickness of the sphere on the distribution of stress, radial 
displacement and temperature fields is investigated. 
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analysis of a non-homogeneous hollow sphere with respect to a rotating heat source was 
carried out by Ootao and Tanigawa [6]. Jabbari et al. [7, 8] obtained analytical solutions of 
the Navier equations for steady state thermo-elastic problems of functionally graded hollow 
cylinders, where the material properties were assumed to vary according to a power function 
in the radial direction. Naki and Murat [9] found closed form solutions for stresses and 
displacements in functionally graded cylindrical and spherical vessels under the effect of 
internal pressure using the infinitesimal theory of elasticity. Kim and Noda [10, 11] 
investigated the two-dimensional unsteady thermoelastic problem of a functionally graded 
infinite hollow cylinder using the Green’s function approach. Eslami et al. [12] solved the one 
dimensional steady state thermo-mechanical stress problem in a hollow sphere made of 
functionally graded material using the direct method of solution of the Navier equation. 
Jabbari et al. [13] carried out two dimensional non-axisymmetric transient mechanical and 
thermal stress analysis of a thick hollow cylinder. Equilibrium equations were solved using 
the direct method and employing the power series. A one dimensional problem of distribution 
of thermal stresses and temperature fields in a generalized thermo-elastic infinite medium 
with a spherical cavity under the effect of temperature difference at the internal boundary is 
presented by Sherief and Saleh [14]. Derrington and Johnson [15] carried out the thermal 
stress analysis and obtained the onset of yield in thick walled spherical vessels for various 
combinations of mechanical and thermal loads and geometrical ratios. Chen and Lin [16] 
investigated an alternative numerical solution of thick-walled cylinders and spheres made of 
functionally graded materials using the transmission matrix method. Kar and Kanoria [17] 
carried out thermo-elastic analysis of functionally graded orthotropic hollow spheres under 
thermal shock with three-phase-lag effect in the context of linear theories of generalized 
thermo-elasticity using the Laplace transformation. Boussaa [18] carried out Optimization of 
a thick walled sphere made of temperature-dependent functionally graded material subjected 
to thermal gradients by substituting the gradient information into a gradient-based algorithm. 
Dai at el. [19] employed the direct method to solve the heat conduction problem and Navier 
equations in a functionally graded hollow sphere and found the exact solution for the one-
dimensional steady-state magneto-thermo-elastic stresses and perturbation of magnetic field 
vector. Tutuncu and Temel [20] obtained axisymmetric displacements and stresses in 
functionally-graded hollow cylinders, disks and spheres subjected to uniform internal pressure 
using the plane elasticity theory and Complementary Functions method.  

In this paper, Polynomial differential quadrature method is employed to carry out thermo-
elastic analysis of a thick hollow sphere made of functionally graded material under the effect 
of thermo-mechanical loads. One dimensional steady state temperature distribution for 
various thermal and mechanical boundary conditions is considered. The governing partial 
differential equations are derived in terms of displacement components and temperature field 
and expressed in the series form of discretized equations using the Polynomial differential 
quadrature method. Numerical results of displacement, stress and thermal fields are obtained 
and compared with analytical and finite element results. The effect of the grading index of 
material properties, the temperature difference and the thickness of the hollow sphere on the 
distribution of stress, displacement and temperature fields is studied. 
 
2  Formulation of the problem  
2.1 Derivations   

 
The geometry of the sphere and the coordinate system of the problem under study is shown in 
Figure 1. A thick hollow sphere made of functionally graded material with the inner radius of 
a, and the outer radius of b, is subjected to axisymmetric mechanical and thermal loads. It is 
to be noted that throughout this paper, the inner radius of the sphere is assumed to be equal to 



 

Thermo-elastic analysis of a functionally … 

29

unity. It is also assumed that all material properties including thermal and elastic constants 
vary along the radial direction.   
 

 
Figure 1 Geometry and coordinates of hollow thick sphere 

 
As the problem to be treated is complying with the conditions of the axisymmetric state; i.e. 
loading condition, boundary conditions and material properties are axisymmetric, hence all 
field variables are independent of circumferential direction θ, and there is only the radial 
displacement to be considered. The radial and circumferential strains are defined by:    

        ,        r
u u

r r 
 


 (1)

And the corresponding thermo-elastic constitutive relations are defined in the following 
form:  
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where σi and εi (i=r, θ) are the components of the stress and strain tensors respectively; 
T(r) is the temperature distribution field determined from the heat conduction equation; α is 
the coefficient of thermal expansion and λ and μ are the Lame constants. These constants are 
related to the modulus of elasticity E, and the Poisson’s ratio,   with the following relation:  

        ,        
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By combining Eq. (1) and Eq. (3), stress components are defined in terms of the 
displacement and the temperature variation of the sphere as:  

 
3

{  }  ( ) ( )
(1 )(1 2 ) (1 ) (1 )(1 2 ) (1 )

3
{  } ( ) ( )

(1 )(1 2 ) (1 ) (1 )(1 2 ) (1 )

r
E u u E u E E

T r
r r r

E u u E u E E
T r

r r r

  
     

  
     

 
    

       


    

      

 (4)

 
Since the body force of the hollow sphere is negligibly small, the equilibrium equation for 

the corresponding axisymmetric problem is:   
2
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The sphere is assumed to be made of material with properties varying along the radial 
direction obeying a power law. The modulus of elasticity and the coefficient of thermal 
expansion is given by:  

1 2
1 2( )         ,        ( )

m m
E r n r r n r   (6)

 
where n1 and n2 are the modulus of elasticity and the coefficient of thermal expansion at 

the internal radius and m1 and m2 are the power law grading parameters of the material. Since 
the effect of variation of the Poisson's ratio on the stress field is small, it is assumed to be 
constant throughout the thickness of the sphere.  

By substituting stress components and material properties in Eq. (5), the governing 
equation of equilibrium for thick walled spheres are found in terms of displacement and 
temperature components:  
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2.2 Heat conduction problem   
 
In the present work, the steady state heat conduction equation in the absence of an internal 
heat source is considered. For the one dimensional problem, the heat balance equation in the 
spherical coordinate is:  

2
2

1
{ ( ) } 0

T
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r rr

 
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 
 (8)

 
where K=K(r) is the thermal conduction coefficient varying along the radial direction. It is 

assumed that the thermal conduction coefficient, K(r) is a power function of the radial 
coordinate as:  

3
3( )

m
K r n r  (9)

where n3 is the thermal conduction coefficient at the internal radius and m3 is the power 
law grading parameter of the material. By substituting Eq. (9) into Eq. (8), the steady state 
heat conduction equation is obtained. 

  

3 3 3
2

12 2
32

2 0
m m mT T T

r r rr r m r
r rr

  
  

 
 (10)

2.3 Boundary conditions  
 
For the present study, the inner surface of the sphere is subjected to a constant pressure and 
temperature field and the outer surface is kept at zero temperature and free of traction.  In this 
case, stresses in the hollow sphere are only caused by the internal temperature variation as 
well as the internal pressure. Under such circumstances, the corresponding boundary 
conditions can be stated as: 
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3  Polynomial differential quadrature   

 
In this study, the polynomial differential quadrature method is employed to approximate the 
first order and the second order derivatives of functions i.e. the polynomial expansion based 
differential quadrature along the radial direction. Several attempts have been made by 
researchers to develop polynomial based differential quadrature method. One of the most 
useful approaches is to use the following Lagrange interpolation polynomials as test 
functions:   
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where  
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By applying above equation at N grid points, the following algebraic formulations are 
developed in order to compute the weighting coefficients of the corresponding order of 
derivatives [21]:  
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where (1)

ijA , (2)
ijA  and (3)

ijA  denote the weighting coefficients of the first, the second and the 

third order derivatives of the function f(r) and N is the number of grid points chosen in the 
radial direction.  

Above differential quadrature approximations correspond to a one dimensional problem. 
The first and the second order derivatives in the one dimensional formulation can be 
approximated by:  
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According to the differential quadrature method, the governing equation can be discretized 
into the following form. The governing equation of the hollow sphere, i.e. Eq. (7) is expressed 
as follow:  
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The steady state temperature field, Eq. (10) is presented as: 
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Boundary condition of the hollow sphere as defined in Eq. (11) is expressed as:  
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The following coordinates of grid points are used in the PDQ computation: 
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4  Numerical results and discussion  
 
Results are obtained in dimensionless form by defining the following dimensionless stresses 
and radial displacement fields: 
  

2 2
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The results for a thick walled sphere made of functionally graded material subjected to 

mechanical and thermal loads are obtained using differential quadrature method and are 
compared with the results obtained by the finite element method and results reported by Ref. 
[12]. A thick hollow sphere of the inner radius, a=1 m and the outer radius of b=1.2 m is 
considered. The sphere is assumed to be made of isotropic material with its elastic modulus 
and coefficient of thermal expansion varying through the thickness, obeying a power law 
function. The effect of variation in the Poisson’s ratio on stresses is neglected, hence a 
constant Poisson’s ratio of ν=0.3 is assumed. The modulus of elasticity and the coefficient of 
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thermal expansion at the inner radius are assumed to be n1=200 GPa and n2=1.2×10-6/oC, 
respectively. The power index for the modulus of elasticity, the coefficient of thermal 
expansion and the heat conduction coefficient are assumed to be identical and equal to -1 (i.e. 
m1=m2=m3=-1). The thick walled sphere is subjected to a constant temperature, T(a)=10 oC at 
the inner surface and the outer surface is maintained at zero temperature (i.e. T(b)=0 oC). The 
hollow sphere is assumed to be under the internal pressure of 50 MPa and zero external 
pressure.  

In finite element analysis, the thick sphere is modeled and meshed using solid98 elements. 
These elements have 3-D thermal, structural, magnetic, electric and piezoelectric field 
capabilities. These elements have quadratic displacement behavior and are well suited to 
model irregular shapes such as the ones produced from various CAD/CAM systems. The 
element is defined by ten nodes with up to six degrees of freedom per each node. In order to 
model the thick walled sphere made of functionally graded materials, corresponding material 
properties of each element were assigned according to the grading rule and the location of its 
center. In order to study and demonstrate the convergence of the differential quadrature 
method and the finite element approach, numerical results for the circumferential stress are 
presented and compared with results reported in [12], as shown in Figure 2. As it is obvious 
from Figure 2a, by increasing the number of grid points (N), results obtained using the 
differential quadrature method converge rapidly and approach the analytical solution. 
However, the rate of convergence decreases as the number of grid points increases, hence an 
appropriate number of grid points, i.e. N=10 is chosen. It is also observed from Figure 2a that 
the differential quadrature method leads to very accurate numerical results using a 
considerably smaller number of grid points and hence requiring relatively less computational 
effort. It is illustrated in Figure 2b that by increasing subsets of sphere (M), the results will 
converge rapidly. Number of elements and nodes in the finite element method are indicated in 
Table 1. As presented in Table 1, in order to achieve an appropriate degree of accuracy and 
convergence, large number of nodes of around 255017 is required. In comparison to the finite 
element method, the differential quadrature method requires less number of nodes to obtain 
same degree of convergence.  

 
 

 
                                               a                                                                                  b  
Figure 2 Converge study of the circumferential stress through the thickness of (a) differential quadrature (b) 
finite element  
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Table 1 Number of elements and nodes in finite element method  
--------------------------------------------------------------------------------------------------------------------- 
Number of subset in the radial direction                    Number of elements        Number of Nodes     
-----------------------------------------------------------    ---------------------------     ------------------------- 
                                     4                                                       12542                               24953 
                                     8                                                        24996                              49771 
                                    10                                                       127958                             255017  

 
Variations of the radial stress, the circumferential stress, radial displacement and the 

temperature distribution through the thickness of the sphere are presented in Figure 3 and 
compared with results reported in [12] which indicate a good agreement between these 
results. As depicted in Figure 3, results obtained using the differential quadrature method are 
quite accurate with the maximum error of less than 0.8 % with analytical results.   
 

 
                                      a                                                                                    b   

            
                                             c                                                                                         d   
        Figure 3 Comparison of results of present methods with ref. [12], variation through the thickness of (a)  the     

radial stress (b) the circumferential stress (c) the radial displacement (d) the temperature distribution  
 
The effect of the grading parameter, m, on the stresses, radial displacement and temperature 
fields of a functionally graded sphere subjected to boundary conditions similar to conditions 
stated in ref. [12] is calculated and shown in Figure 4. The Poisson’s ratio of ν=0.3, is 
assumed throughout the sphere and the power index for the modulus of elasticity, coefficient 
of thermal expansion and heat conduction coefficient are assumed to be identical. Figure 4a 
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represents the variation of the radial stress through the thickness. It is shown in the Figure that 
as the power law index of material properties increases, the radial stress decreases. When the 
modulus of elasticity, the coefficient of thermal expansion and the heat conduction coefficient 
are constant, i.e. m=0, the sphere is assumed to be homogeneous and the distribution of radial 
stress is almost linear. Variation of the circumferential stress along the radial direction is 
shown in Figure 4b. It is observed from the Figure that for m=1, variation of the 
circumferential stress along the radial direction is neglected and its value is almost constant 
across the thickness. However for m<1, the value of circumferential stress decreases and for 
m>1, its value increases along the radial direction. Variation of the von Mises stress along the 
radial direction is depicted in Figure 4c. It is shown in the Figure that the location of the 
maximum value of the von Mises stress shifts towards the outer position as the power law 
index increases. It is noted that the minimum value of the von Mises stress always occurs at 
the inner surface. The radial displacement along the radial direction is shown in Figure 4d, 
which indicates that the radial displacement monotonously decreases as m, increases. The 
maximum value of the radial displacement for all values of m, occurs at the inner surface. It is 
observed from Figure 4e that as the power law increases, the temperature decreases in the 
whole structure. These results can provide useful information for designing a functionally 
graded hollow sphere with an appropriate grading parameter that makes a smoother 
distribution of stresses and radial displacement in the whole structure.  
 

 
                                       a                                                                                   b   

                             
                                     c                                                                                      d       
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         e 

Figure 4 The effect of the power law grading parameter on variation through the thickness of (a) the radial stress 
(b) the circumferential stress (c) the von Mises stress (d) the radial displacement (e) the temperature distribution 

 
The effect of temperature difference of two surfaces on the stresses, radial displacement 

and temperature profiles are demonstrated in Figure 5a-5e. For the sake of simplicity in 
numerical calculations, the temperature at the outer surface is assumed to be constant, i.e. 
T(b)= 0 oC, and only the temperature at the inner surface is varied. Moreover, it is assumed 
that that material properties of the sphere varies linearly in the radial direction, i.e. m=1. The 
sphere is assumed to be under internal pressure of 50 MPa and zero external pressure. It is 
observed from Figure 5a that the radial stress decreases with the increase of temperature. Due 
to selection of power law function for variation of material properties, the variation of the 
radial stress along the radial direction is found to be nonlinear. The variation of the 
circumferential stress along the radial direction is shown in Figure 5b. It is observed from the 
Figure that the response curves of the circumferential stresses intersect at about r/a≈1.1, 
revealing an invariant circumferential stress for all temperature loadings. Hence, there exists 
an internal position at which temperature difference has the no effect on the circumferential 
stress. For all temperature differences, the maximum circumferential stress occurs at the outer 
surface of the sphere. Variation of the von Mises stress through the thickness is shown in 
Figure 5c. It is observed that as the temperature difference between the inner and the outer 
surfaces of the sphere increases, the value of the von Mises stress at the outer section 
increases, however this pattern is reversed at the inner section. According to Figure 5d, the 
radial displacement increases with the increase of temperature difference across the surfaces. 
For small temperature differences the radial displacement along the radial direction somehow 
decreases but for higher temperature differences, the radial displacement along the radial 
direction increases. Distribution of temperature field is also shown in Figure 5e.  
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                                              a                                                                                   b   
 

 
                                            c                                                                                     d   
 

 
                                                                                               e 
Figure 5 The effect of the temperature difference on variation through the thickness of (a)  the radial stress (b) 
the circumferential stress (c) the von Mises stress (d) the radial displacement (e) the temperature distribution 
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Finally, the effect of the thickness on the radial stress, the circumferential stress, the von 
Mises stress, the radial displacement and the temperature profile is studied. In this study, 
parameters of the problem are assumed to be as m=1, T(a)=10 oC, T(b)=0 oC. The sphere is 
subjected to internal pressure of 50 MPa and zero external pressure. The radial stress, the 
circumferential stress, the radial displacement and the temperature profile for different values 
of b/a=1.2, 2.4, 3.6, 4.8 are shown in Figures 6a-6e, respectively. It is observed from Figure 
6a that for a thick hollow sphere, the radial stress reduces as the thickness of the sphere 
increases. Due to power law definition of the grading parameters of the sphere, the 
nonlinearity of the radial stress curve increases as the thickness of the hollow sphere 
increases. Distribution of the circumferential stress is shown in Figure 6b which indicates that 
as the hollow sphere becomes thicker, the circumferential stress becomes smaller. Moreover it 
is also shown that for a thinner sphere with b/a=1.2, the maximum value of the 
circumferential stress occurs at the outer surface, while for a thicker sphere, e.g. b/a=4.8, it 
occurs at the inner surface. As the circumferential stress plays an important role in load 
carrying capacity of the sphere, it may be concluded that the fracture onset occurs at the outer 
surface for thinner spheres and at the inner surface for thicker spheres. It is realized from 
Figure 6c that the von Mises stress along the radial direction decreases as the thickness of 
sphere increases. For a thinner sphere, the maximum value of the von Mises stress occurs at 
the outer surface and as the thickness increases, it shifts towards the inner surface. Figure 6d 
depicts the through the thickness distribution of displacement. The radial displacement 
decreases with the increase in the thickness of the hollow sphere. Regardless of the thickness 
of the sphere, the value of the radial displacement along the radial direction decreases and its 
maxima occurs at the inner surface. The temperature profile along the radial direction is 
shown in Figure 6e. It is shown that the rate of change of temperature along the radial 
direction is higher near the inner boundary of the sphere and its profile becomes more 
nonlinear.  
 

 
                                     a                                                                                     b   
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                                                  c                                                                                  d 

 
                                                                               e                               
Figure 6 The effect of the thickness on variation through the thickness of (a) the radial stress (b) the 
circumferential stress (c) the von Mises stress (d) the radial displacement (e) the temperature distribution 
 
5  Conclusions 

  
A numerical solution to calculate stress, displacement and thermal fields in a thick hollow 
sphere made of functionally graded material is presented. The material properties are assumed 
to be graded along the radial direction according to a power law function and the Poisson’s 
ratio is assumed to be constant throughout the thickness. This paper provides some basis in 
designing a functionally graded hollow sphere with an appropriate grading parameter and 
geometrical ratios that ensures smoother distribution of stress, radial displacement and 
temperature fields in the structure. The followings are the main conclusions:  
- As the power law index of material properties increases, values of the radial stress, the 

radial displacement and the temperature at any point through the thickness of the sphere 
decrease. 

- In case of the power law index, m, equal to 1, the value of the circumferential stress along 
the radial direction is nearly constant. However for m<1, its value decreases with the 
maximum value at the inner surface and for m>1, its value increases with the maximum 
value at the outer surface.  

- The location of the maximum value of the von Mises stress shifts towards the outer 
boundary as the power law index increases.  
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- Response curves of the circumferential stress for various temperature differences intersect 
at some location, revealing the existence of an internal position at which temperature 
difference has no effect on the circumferential stresses.  

- Radial displacement increases as the temperature difference increases in the sphere. For 
low temperature differences, the radial displacement decreases along the radial direction 
but for high temperature differences, the situation is reversed.  

- The rate of change of the radial stress and the value of the circumferential stress 
decreases, as the thickness of the sphere increases.  

- For a thinner sphere, the maxima of the von Mises and the circumferential stress occur at 
the outer surface and as the thickness increases, it shifts towards the inner surface.  
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Nomenclature  
 
a: Inner radius of sphere 
b:  Outer radius of sphere 
E: Modulus of elasticity 
K : Thermal conduction coefficient 
n1 : Modulus of elasticity at the internal radius 
n2 : Coefficient of thermal expansion at the internal radius 
n3 : Thermal conduction coefficient at the internal radius 
m1 : Grading parameter of the modulus of elasticity 
m2 : Grading parameter of the coefficient of thermal expansion 
m3 : Grading parameter of the thermal conduction coefficient 
T  : Temperature field 
N : Number of grid points 

(1)
ijA , (2)

ijA , (3)
ijA :  Weighting coefficients of the first, the second and the third order derivatives,  

                          respectively  
 
Greek symbols   
σi : Stress components  
εi : Strain components 
ν : Poisson’s ratio  
α : Coefficient of thermal expansion 
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  چكيده
ارايه شده و حل  (FGM)در اين مقاله آناليز ترموالاستيك پوسته كروي ساخته شده از ماده مدرج تابعي 

دست به (PDQ)اي چندجمله با استفاده از روش كوادريچر تفاضليدما هاي جابجايي، تنش و عددي ميدان
معادلات . تابع تواني مدل شده و ضريب پوآسون ثابت فرض شده استيك خواص مواد بر اساس . اندآمده

معادلات نهايي به كمك دست آمده و هاي جابجايي و دمايي بهميدانبر حسب مولفه هاي ديفرانسيل جزيي 
- ا نتايج تحليلي و همدست آمده بنتايج به. توسعه داده شده اندبه فرم سري كوادريچر تفاضلي چند جمله اي 

تاثير شاخص . مشاهده شده استخوبي روش المان محدود مقايسه شده و سازگاري جوابهاي حاصل از چنين 
  . اندهاي تنش، جابجايي و دما بررسي شدهروي توزيع ميدانبر و ضخامت كره تفاوت دما بندي ماده، درجه

 
 


