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1   Introduction 
 
Vortex induced vibrations (VIV) is a well-known phenomenon to mechanical engineers. 
When a bluff body is subjected to the fluid flow, the separation of the current introduces the 
fluctuation of the pressure about the surface of the cylinder. This pressure fluctuation, in turn, 
results in hydrodynamic forces exerted by the formation of the vortices beyond the body.The 
environment is rife with potential cases to be subjected to VIV and some of these are: tube 
bundles in heat exchangers, marine structures such as oil production risers and cables, bridges, 
power transmission lines, chimneys, tall buildings, aircraft control surfaces, etc. As far as VIV 
is concerned, the interaction between structures and fluids turns to be significantly important 
when we are studying infrastructures which are strategically and financially critical. 

According to Sarpkaya [1], Gabbai and Benaroya [2], this self-regulated nonlinear 
phenomena is a six degree of freedom vibration which is reduced to often one degree of 
freedom in the transverse direction to the flow. There are few theoretical literature even for 
two dimensional problems [3]. Mostly, to study the dominant equation of structural 
oscillation, the stiffness and damping coefficients are assumed to be linear [2] while the mass 
varies due to an added mass introduced by the fluid particles attached to the surface of the 
cylinder during the oscillation.Farshidianfar and Zanganeh [8] were the first who substituted 
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A Linear Approach to the Control of Vortex 
Induced Vibrations of Circular Cylinders 
with a 2-D Van der Pol Model for Structural 
Oscillator 
In the present paper, a new 2-D Van der Polstructural 
oscillator model is introduced for the vortex induced vibrations 
of circular cylinders.The main purpose of this task is to control 
the recently introduced model by means of modern control 
definitions in state space. In order to control the system, the 
whole model is linearized about its equilibrium point by 
deriving state-space matrices. Then, the linear transfer function 
is obtained and controlled by pole-placement technique which 
is based on the state variables feedback. Afterwards, this linear 
controller is applied to the nonlinear system about its 
equilibrium point by assuming that there is no uncertainty in 
both physical and mathematical models. Eventually,the results 
for linear and nonlinear systems are compared. 
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the linear damping coefficient of a one dimensional structural oscillator with a Van der Pol 
model and found more accurate results. 

Due to VIV, the structures could experience very large transverse vibrations which yield 
the failure of them. The increase in reduced velocity from about 4 to 8 results in lock-in and 
consequently inthe maximum amplitudefor a sinusoidal force on the cylinder which is 
depicted in Figure 1 as 2P region [1,3,4]. Since it is impossible to avoid the variation of 
ambient velocity in off-shore circumstances, the control of VIV becomes highlighted.The 
control of vortex induced vibrations or even the suppression of them becomes significantly 
important in practical situations, especially in deepwater offshore structures for which fault 
diagnosis and repair could be expansively difficult and expensive. 

 

Figure 1  Map of vortex patterns of a vertical cylinder forced to move along a sinusoidal path in the Re range 
of 300<Re<1000 [1,3,4] 

Generally speaking, the control of such a phenomenon can be divided into two typical 
categories. The first is passive and the second is active. There are many workable and 
practical passive solutions to the suppression of VIV, each of which is, to different extent, 
sufficient. Kumar published an overview on these passive control techniques such as 
utilization of streamline fairings, helical strakes, perforated surfaces, etcand considered the 
effectiveness of each method inthe damping of drag and lift forces [3]. Active control, in 
contrary to passive one, whichis always available and at service, just evinces reactions when 
the external disturbance is available. In other words the system processes the signals and takes 
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the proper action at a proper time. There are different approaches to active control and the 
most popular ones are adaptive and robust control methods. 

In the upcoming work, we define a new two dimensional Van der Pol damping term and we 
apply it to a two dimensional structural oscillator. After the linearization of dominant 
equations, we also design an active controller for the linear form of the nonlinear system. The 
parameters of the desired controller are designed for the linear model in advance, and then 
applied to the nonlinear one. The results for both linear system and nonlinear system are 
considered and compared about the equilibrium point and the uncertainties are neglected. 
Design and utilization of a linear controller on nonlinear systems can save time, costs and 
obviate the need for controller. 
 
2  VIV model 

In this section, to control VIV, initially, the model of structural oscillator will be described. In 
most cases, for simplicity, the VIV model which could be six degree of freedom is reduced to 
a one degree of freedom problem [1]. The simplified one degree of freedom equation for the 
oscillation ofa circular cylinder in linear form is [6]: 

myሷ+cyሶ+ky=F1ሺy,tሻ                                                               (1) 

According to Ghanem [7], we are able to expand the one dimensional equation of motion 
to a two dimensional model with the same dominant structural equation in the second 
direction, but having different amplitudes and time parameters which can be written as it is in 
equation 2. Figure 2 shows the 2-D structural model of VIV with linear parameters for this 
model. 

൜
myሷ+cyሶ+ky=F1ሺy,tሻ=F1

mxሷ+cxሶ+kx=F2ሺx,tሻ=F2
                                                    ሺ2ሻ 

 

Figure 2 A 2-D model for the Vortex Induced Vibrations 

A Van der Pol oscillator model can be used as the damping term for the structural equation 
of motion and it is investigated that the new model not only has less discrepancies with 
respect to the experimental data but also follows it adjacently [8]. Applying this model to the 
dominant equations, we have: 
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ቊ
myሷ+εሺy2-1ሻyሶ+ky=F1

mxሷ+εሺx2-1ሻxሶ+kx=F2
                                                    ሺ3ሻ 

The mentioned equations above are uncoupled and can be solved separately for each 
direction. Here, a new two dimensional Van der Pol model is introduced by using the 
following equation which is introduced by Kaplan [9]. 

dx

dt
=

1

μ
ቆy-

x3

3
+xቇ                                                                   ሺ4ሻ 

We can differentiate the equation once and by means of the change of variable it can be rewritten in 
the form shown in equation 5 [10]. 

 
d

dt
ቈxሶ-

1

μ
ቆy-

x3

3
+xቇ቉ =0                                                            ሺ5ሻ 

Thus, by expanding the differential equation, it is reshaped as equation 6 where 1/ߤ  can be 
assumed to be ε. 

xሷ+εൣx2-1൧xሶ+εyሶ=0                                                                 ሺ6ሻ 

The newly introduced Van der Pol term is expressed as equation 7. 

ε ൣ൫x2-1൯xሶ+yሶ ൧                                                                         ሺ7ሻ 

Applying the new Van der Pol model to the dominant equations with the same approach used by 
Farshidianfar and Zanganeh [8], the new 2D coupled system is obtained in the form of equation 8. 

൜
myሷ+εሾሺy2-1ሻyሶ+xሶ ሿ+ky=F1

mxሷ+εሾሺx2-1ሻxሶ+yሶ ሿ+kx=F2
                                               ሺ8ሻ 

 ଶ are vortex induced disturbances on the system and are obtained by the solution ofܨଵandܨ
the wake oscillator equation.The wake oscillator equation is the dominant oscillatory dynamic 
model of vortices which is defined by lift and drag coefficients. Generally, the solution to the 
wake oscillator is assumed to be a harmonic sinusoidal function [11]; thus, we assume ܨଵ and 
 .ଶ are sinusoidal functions as followingܨ

F1=A1 sinω1t  and F2=A2 sinω2t                                            ሺ9ሻ 

The vortex-excited oscillations reinforce the vortex strength when the amplitude in the 
transverse direction exceeds a threshold of about 0.1D [12,13]. It is about 0.02D for the in-
line oscillations [14,15,16]. Here D is the diameter of the circular cylinder about which the 
vortex shedding occurs. The ratio of the in-line displacement amplitude to the transverse 
amplitude is, A2/ A1= 19% [17]. 

We assume that the disturbances in both directions are in-phase and running at the same 
frequencies which means ω1 = ω2 and Ԅ  = 0. As a purpose of simplification and 
normalization, we assume that A1 = 1 which results in A2 = 0.2. Therefore, we have 

 
sinωt =Uሺtሻ                                                                 ሺ10ሻ 

F1=Uሺtሻ and F2=0.2Uሺtሻ                                                   ሺ11ሻ 
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2  Linearization 
 
2.1  State space matrices 
 
In this section, we first derive the state variables by defining ݔ ൌ ሶݔ ଵ andݔ ൌ ሶଵݔ ൌ -ଶ in xݔ
direction and ݕ ൌ ሶݕ ଷ andݔ ൌ ሶଷݔ ൌ  ସ in y-direction, and then the Jacobian derivativesareݔ
applied to state space matrices in order to make equations linear. The state variables are 

ە
ۖۖ
۔

ۖۖ
ۓ

xሶ1=x2                                                                      =f1ሺtሻ

xሶ2=
1

m
ൣ0.2Uሺtሻ-ε൫x1

2-1൯x2-εx4-kx1൧=f2ሺtሻ

xሶ3=x4                                                                      =f3ሺtሻ

xሶ4=
1

m
ൣUሺtሻ-ε൫x3

2-1൯x4-εx2-kx3൧=f4ሺtሻ

                             ሺ12ሻ 

The state space equations are in the form of equation 13 for which A, B, C and D matrices should 
be defined. 

൜ Xሶ =AX+Bu
 Y=CX            

                                                              ሺ13ሻ 

We write the Jacobian about the equilibrium point of ܺ଴ to obtain matrices ܣ and ܤas 
following. Without loss of generality, we can assume that the final state is the origin of the 
state space [18]. 

X0=[0 0 0 0] 

Jx=
∂fi
∂xj

=

ۏ
ێ
ێ
ێ
ێ
ۍ

0 1 0 0
1

m
ሾ-2εx1x2-kሿ

1

m
ሾ-εሺx1

2-1ሻሿ 0 -
ε

m
0 0 0 1

0 -
ε

m

1

m
ሾ-2εx4-kሿ

1

m
ሾ-εሺx3

2-1ሻሿے
ۑ
ۑ
ۑ
ۑ
ې

   ሺ14ሻ 

Applying ܺ଴ to ܬ௫ in equation 14, the simplified Jacobian matrix is derived as equation 15 which 
represents the A matrix in state space about the equilibrium point. 

Jxሾ0ሿ=

ۏ
ێ
ێ
ێ
ێ
ۍ

0 1 0 0
-k

m

ε

m
0 -

ε

m
0 0 0 1

0 -
ε

m

-k

m

ε

m ے
ۑ
ۑ
ۑ
ۑ
ې

                                                    ሺ15ሻ 

The same process is done to derive ܬ௨ which represents B matrix about the equilibrium point. 

Ju=
∂fi
∂U

=

ۏ
ێ
ێ
ێ
ێ
ۍ

0
0.2

m
0
1

m ے
ۑ
ۑ
ۑ
ۑ
ې

                                                                ሺ16ሻ 

By applying matrices derived from Jacobian operation to the state space equations, the system will 
be in the form of differentials which introduces the linear form of it about the equilibrium point [19]: 
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ሻݐሶሺݔ߂ ൌ ,଴ݔ௫ሺܬ ,଴ݑ ሻݐሺݔ߂ሻݐ ൅ ,଴ݔ௨ሺܬ ,଴ݑ  ሻ                                         ሺ17ሻݐሺݑ߂ሻݐ

Δxሶ ሺtሻ=AሺtሻΔxሺtሻ+BሺtሻΔuሺtሻ                                                    ሺ18ሻ 

Since the equilibrium point is located at the origin, it can be easily proven that the Δ’s are equal to 
the main parameters and finally, the state space equation is obtained as it is in equation 19. 

Δx=x-x0=x-0=x
yields
ሱۛ ሮ Δxሶ=xሶ-0=xሶandΔu=u-0=u 

xሶ ሺtሻ=Axሺtሻ+Buሺtሻ                                                              ሺ19ሻ 

Since we have selected ݔ ൌ ݕ ଵandݔ ൌ  ଷ, in the output, the matrix C  can be defined asit is inݔ
equation 20. 

y=Cx
yields
ሱۛ ሮۛ y= ቂ1 0 0 0

0 0 1 0
ቃ ൦

x1
x2
x3
x4

൪                                               ሺ20ሻ 

Thus, there exists a single input, multi-output (SIMO) model whose state space matrices, in parametric 
form, are shown by matrices 21. 

ܣ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

0 1 0 0
െ݇
݉

ߝ
݉

0 െ
ߝ
݉

0 0 0 1

0 െ
ߝ
݉

െ
݇
݉

ߝ
݉ ے

ۑ
ۑ
ۑ
ۑ
ې

ܤ݀݊ܽ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

0
0.2
݉
0
1
݉ ے

ۑ
ۑ
ۑ
ۑ
ې

                                         ሺ21ሻ 

C= ቂ1 0 0 0
0 0 1 0

ቃ 

2.2   Defining parameters 
 
For the control of the linear system, we have obtained the required matrices for the state space in terms 
of dominant parameters. In this part, we have to change the matrices into numerical form. These 
physical parameters are ߳, ݉ and ݇ that must be quantified. According to Farshidianfar and 
Zanganeh[8] and Facchinetti[20], the nonlinearity coefficient ε is rather constant and equal to 0.3. 
Figure 3 from Zanganeh’s paper depicts that the theoretical data with ε = 0.3 complies experimental 
data with a fairly good approximation. 

Stainless steel zeron 100 is assumed to be the preferred material for riser[21]. Based on the stiffness 
and density as well as the assumed dimensions, it is rational to normalize mass and stiffness by the 
proportion of mass over stiffness coefficient of 

m=1.0 andk=10 

By substituting these values into the matrices from equations 21, the final state-space matrices are: 

 

A= ൦

0 1 0 0
-10 0.3 0 -0.3
0 0 0 1
0 -0.3 -10 0.3

൪ andB= ൦

0
0.2
0
1

൪ 

C= ቂ1 0 0 0
0 0 1 0

ቃ 
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Figure 3  Structural oscillation amplitude at lock-in as a function of ܵீ. −, Classical wake oscillator 
model.Results of the modified wake oscillator model: - - -; ߳ ൌ 0.1,      , ߳ ൌ 0.3; …, ߳ ൌ 0.5. Empirical data in 

water: ○, Skop and Balasubramanian [22]. Empirical data in air: □,Skop and Balasubramanian [22]. 

 

2.3  Derivation of the transfer function 
 
There are two transfer functions between the input and outputs since the system is SIMO with 
two outputs. Transfer function number one reveals the relation between the input and the 
output in the x-direction. Transfer function number two connects output in y-direction to the 
input. These transfer functions are as it is in equation 22. 

tf output#1=
0.2s2-0.36s+2

s4-0.6s3+20s2-6s+100
                                         ሺ22ሻ 

tf output#2=
s2-0.36s+10

s4-0.6s3+20s2-6s+100
 

Now, it is desirable to study the stability of the system. Therefore, the poles of the plant are 
calculated and are as following for both transfer functions: 

0.0+3.1623i,  0.0-3.1623i,  0.3+3.148i,  0.3-3.148i 

There are two poles on the imaginary axis of the S-plane which means the system is 
critically stable. In the upcoming section, the stability of the main system is studied in detail. 
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3  Control of the system 
 
Prior to the control studies, we need to investigate the stability of system on its own. For this 
purpose, it is essential to consider the state controllability and output controllability 
beforehand to find out whether it can be controlled by simple solutions such as feedback or 
not.  

M=ൣBหABหA2BหA3B൧= ൦

0 0.2 -0.24 -2.144
0.2 -0.24 -2.144 4.7136
0 1 0.24 -9.856
1 0.24 -9.856 -4.7136

൪                         ሺ23ሻ 

|M|≠0 

And the rank of controllability matrix in equation 23 is 4 which means it is completely 
state controllable. 

RankሺMሻ=4 

Output controllability is investigated by the matrix F in equation 24. 

F=ሾCB CAB CA2B CA3B Dሿ                                                  ሺ24ሻ 

ቂ0 0.2 -0.24 -2.144
0 1 0.24 -9.856

ቃ 

2Cm×n=C2×4
yields
ሱۛ ሮۛ  m=2 

Rank of the F should be equal to the number of outputs which is interpreted as output 
controllability. 

rankሺFሻ=2 
 

3.1  Investigations on linearized system 
 
The behavior of the main nonlinear system, the same as all Van der Pol models, is a limit cycle 
oscillation. Having linearized the system, it is expected not to have this behavior any more. Figure 4 
shows the block diagram of the linearized system. The input of the system which represents the stable 
condition is zero and a sinusoidal disturbance equal to ܨଵand ܨଶ, as calculated beforehand, are exerted.  

The state variables are investigated and their waveforms are depicted in the graph shown in 
Figure 5. It is clear that state variables are divergent due to the linearization effects, while they 
are supposed to follow a limit cycle waveform. 

Since the system has two outputs, displacementsare depicted in both x and y-directions in 
Figure 6. It is easily understood that the linear system is unstable and under both linear and 
nonlinear conditions, the design of a controller is required. 
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(a)  

(b)  

Figure 4   (a) Block diagram for the main linear system without controller. 
 (b) Contents of linear plant block in (a)  

 

 

 

Figure 5  State variables for the linear system without controller 
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Figure 6  Out puts in both x and y directions for linear system without controller 

 

3.2  Control of linear system applying pole placement technique 
 
Pole placement technique is the utilization of state feedback on the system state variables. For 
achieving this goal, desired poles are needed. The desired poles are those selected by designer to 
stabilize the system by introducing a gain matrix K for feedback controller. These poles, for this case, 
are picked as shown. 

P=ሾ-8+4i -8-4i -20 -5ሿ 

The corresponding characteristic equation for the desired poles is shown in equation 25 where 
coefficients αi are used for designing gain matrix K. 

s4+α1s3+α2s2+α3s+α4=s4+41s3+580s2+3600s+8000                               ሺ25ሻ 

And the characteristic equation for the main system is that of equation 26. 

|sI-A|=s4+a1s3+a2s2+a3s+a4=s4-0.6s3+20s2-6s+100             ሺ26ሻ 

By the use of Ackerman or placement technique [13] to obtain the gain matrix of K, the 
transformation matrix T is defined in equation 27. 

T=MW                                                                             ሺ27ሻ 

Where M is the controllability matrixin equation 23 and W is the weighting matrix (equation 28) 
which is defined by coefficients of the characteristic equation,ܽ௜’s from equation 26. Using T and 
defined coefficients, we can obtain gain matrix K from equation 29. 
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W= ൦

a1 a2 a3 1
a2 a3 1 0
a3 1 0 0
1 0 0 0

൪                                                                 ሺ28ሻ 

K=ሾα4-a4 α3-a3 α2-a2 α1-a1ሿ.T-1                                                  ሺ29ሻ 

K=104×ሾ-1.2064 0.0747 0.3203 -0.0108ሿ 

The block diagram of the system for state feedback controller is depicted in Figure7. Figure8 shows 
the waveform of the input disturbance and outputs of the system simultaneously. Here, it is clear that 
the output is suitably controlled and the disturbance is damped when the input signal amplitude is 1 
and the outputs lay on zero. The state variables are plotted in Figure 9 and those related to y-direction 
have a larger amplitude than the ones in x-direction as expected. In Figure 10, the output 
waveformsare considered in detail. The almost straight linesin Figure 8are still in the form of a 
sinusoidal wave with diminutive amplitude of about 1×10-3. This amplitude is smaller in the x-
direction as well and is about 0.25×10-3. Because this amplitude is trivial compared to the sinusoidal 
input disturbance, it is rational to neglect these deviations and consider the system fully controlled. 

 

Figure 7 the block diagram for linear system which is controlled by pole placement technique in the presence of 
a sinusoidal disturbance and gain matrix K which is defined by Placement or Ackerman technique 
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Figure 8  Common plot of sinusoidal disturbance as an input and outputs in both x and y-directions for a linear 

model controlled by pole placement technique: the outputs are almost zero and are depicted as straight lines 

 
Figure 9 State variables for linear model controlled by pole placement technique 
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Figure 10 the outputs in both x and y-directions for linear model controlled by pole placement technique: the 

maximum amplitude of output signals is about 0.001 which can be assumed as a straight line in comparison with 
input sinusoidal disturbance 

 
 

3.3  Application of the linear controller on the main nonlinear system 
 
As most systems have a nonlinear behavior in nature, design and manufacturing of appropriate 
controllers for nonlinear phenomena could be expensive, time-consuming and intricate; Therefore, 
Application of linear controllers on nonlinear systems can help, provided they can control the system 
acceptably. As discussed before, one of common methods is robust control which is based on 
uncertainties. The approach of this context is the same although the uncertainties are not involved. The 
linear state feedback controller, which is designed by pole placement technique, is applied to the 
nonlinear plant as depicted in Figure 11. 
 

State variables are depicted in figure 12. Finally, the output signals in both x and y-directions are 
plotted in Figure 13. It is clearly understood that the nonlinear system is suitably controlled by the 
linear controller. To prove the sufficiency of linear controller on the nonlinear system, the so-called 
error graph is plotted and depicted in figure 14. It is understood that the application of this linear 
controller on the nonlinear system has been appropriately sufficient, since the deviation of outputs for 
the nonlinear system from the outputs of the controlled linear system is less that 0.033%. 
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Figure 11 the block diagram for nonlinear model with linear controller designed by pole placement technique 

 

 

Figure 12 state variables for nonlinear system with controller obtained from pole placement method 



 Iranian Journal of Mechanical Engineering                         Vol. 12, No. 2, Sep. 2011 68

 

Figure 13 Outputs of nonlinear model in both x and y-directions controlled by linear controller 

 

Figure 14 Deviation of nonlinear system outputs from controlled linear system outputs 
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5  Conclusion 
 
VIV can lead to extreme structural failures if not controlled, especially in harsh environments 
such as oceans. In this paper a new 2D structural oscillator is introduced which let us model 
the system with two coupled equations. As the design of nonlinear controllers may bring 
about extra cost and consume more time, we try to design a linear controller which fits and 
controls the nonlinear system fairly. Prior to the design of the controller, the linearization 
process is performed. Then, linear controller, based on the linear system, is designed and 
considered. Having controlled the linear model, the linear controller is applied to the 
nonlinear system. As a comparison, it is investigated that both linear and nonlinear systems 
are toa great extent controlled in which the vibration amplitude converges to zero. It can be 
concluded that, in the absence of uncertainties, application of linear controllers can reduce the 
cost, time and complexity and still be functional. 
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Nomenclature 
 
ai : coefficients of characteristic equation 
A : coefficient matrix for state variables in state space 
Ai : amplitude of force term onstructural oscillator   
B : coefficient matrix for input and disturbance signals 
c : damping term in linear oscillator model 
C : state variables’ coefficient in output 
D : diameter of the cylinder 
F : output controllability matrix 
Fi : variable force term on structural oscillator 
J : Jacobian matrix 
k : stiffness term in linear oscillator model 
K : gain matrix for state feedback 
m : mass parameter 
M : controllability matrix 
P : desired poles matrix for pole placement 
t : dimensionless time 
tf : transfer function 
T : transformation matrix 
U : common term of force on the structure 
y : dimensionless displacement of cylinder in y direction 
W : weight matrix for transformation matrix 
x : dimensionless displacement of cylinder in x direction 
xi : state variables 
X0 : equilibrium point matrix for state variables 
αi : coefficients of characteristic equation for desired poles 
ω : frequency of force term 
ωi : directional frequency of directional force term 
ε : parameter of van der Pol equation 
μ : inverse of Van der Pol parameter 
Ԅ : phase between lift and drag forces 
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  يدهچك
در ادامه مطلب، مدل جديد .  در اين مقاله، ارتعاشات القايي ناشي از گردابه ها بطور مختصر معرفي مي گردد

از آنجا . و غيرخطي كه معادله سازه تحت ارتعاش را بصورت دوبعدي تعريف مي نمايد بدست آورده شده است
طراحي يك كنترلر غيرخطي مناسب كه بتواند سيستم هاي غيرخطي را كنترل نمايد زمان و كه بررسي و 

هزينه بيشتري نياز دارد، كاربرد كنترلرهاي خطي مناسبي كه بتواند سيستم هاي غيرخطي را كنترل نمايد 
نيم و لذا مدل غيرخطي معرفي شده را ابتدا خطي سازي مي ك. مي تواند بعنوان يك امتياز محسوب شود

نهايتا، كنترلر . كنترلر خطي مربوط به آنرا با استفاده از فيدبك بر روي متغيرهاي حالت طراحي مي نمائيم
 .خطي طراحي شده را بر روي سيستم غيرخطي اعمال مي نمائيم و كارآيي آنرا مورد بررسي قرار مي دهيم


