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Thermoelastic Analysis in Thick FGM
Cylinders with Extended Profile
An exact solution is obtained for an axisymmetric steady-state
thermo-mechanical stresses in a thick functionally graded cylinder.
The material properties are graded along the radial direction ac-
cording to an exponential function of radial direction with three con-
stants. The advantage of the proposed model, compared to the mod-
els with two constants such as the linear, power law, and exponential
models with two constants, is that it satisfies the material boundary
conditions at the inside and outside radiuses, leaving one more con-
stant to be selected to produce different types of material variation
profiles along the cylinder radius. Utilizing the assumed exponential
model, the analytical solution of the problem, using the generalized
Bessel function and the Lagrange method, is obtained employing the
energy and Navier equations.
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1 Introduction

The one-dimensional steady thermal stresses in a functionally graded circular hollow cylinder
and hollow sphere using the perturbation method is given by Obata and Noda [1]. By introduc-
ing the theory of laminated composites, Ootao et al. [2] presented the theoretical analysis of a
three-dimensional thermal stress problem for a nonhomogeneous hollow circular cylinder due
to a moving heat source in the axial direction under transient state. Tanigawa et al. [3] solved
the thermal stresses for a semi-infinite body with the assumption that the nonhomogeneous ma-
terial properties are power functions of the thickness direction z. Jabbari et al. [4,5] derived
the analytical solutions for the one and two-dimensional steady-state thermoelastic problems
of the functionally graded circular hollow cylinder, where the material properties are expressed
by power functions of radius. Lutz and Zimmerman [6,7] presented the analytical solution for
thermal stresses in spheres and cylinders made of functionally graded materials (FGMs). They
considered thick spheres and cylinders under radial thermal loads, where radially graded mate-
rials with linear composition of the constituent materials were considered. Shao et al. [8] pre-
sented the analytical solutions of the stress fields in functionally graded cylindrical panel with
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finite length subjected to thermomechanical loading. In this paper, they employed the power law
FGM variation model to illustrate the variations of properties along the radial direction of the
panel. Yee and Moon [9] obtained a closed-form solution for the transient thermal stresses of
an orthotropic hollow cylinder subjected to an asymmetric temperature distribution. Tarn [10]
examined the stress singularity in an elastic cylinder of cylindrically anisotropic materials in
the context of generalized plain strain and generalized torsion condition. Eslami et al. [11] and
Poultangari et al. [12] derived an exact solution for the one and two-dimensional steady-state
thermal and mechanical stresses in a hollow thick sphere made of functionally graded material.
In these papers, they used the power law FGM variation to describe the material properties along
the radial direction of the sphere. You et al. [13] presented the elastic analysis of internally pres-
surized thick wall spherical pressure vessels of FGM. Tutuncu [14] solved the stress problem
in a thick wall FGM cylinder with inner pressure. In both Refs. [13] and [14] the authors used
the same exponential FGM model for the variation of properties with radial direction. This
model, similar to the power law model, has two variables to describe the material properties in
the radial direction. Therefore, for fixed inner and outer material properties, a single material
property profile along the thickness is generated.

The analytical solution of the structures made of functionally graded materials and discussed
in the proceeding paragraph have, in general, employed FGM variation models for the material
properties with two constants. Using the two constants constitutive law for the FGM thick
cylinders or spheres results into a fixed FGM profile along the radial direction when the material
boundary conditions at the inside and outside surfaces are satisfied. For more general FGM
models, such as Reddy [15] and Tanigawa [3] models, which satisfy the given material boundary
conditions for more than one profile, there are no exact solutions in the literature.

In this study, an FG hollow circular cylinder with a constitutive model containing three
independent constants is considered. The temperature distribution is assumed to be axisym-
metric and function of r. The material properties of the cylinder are assumed to be expressed
by exponential functions of the radial direction with three arbitrary constants. The solution for
the energy equation leads to the generalized Bessel function [16]. The homogeneous part of
the Navier equation also leads to the generalized Bessel function. The method of variation of
parameters is used to solve the particular solution of the Navier equation.

2 Analysis of Energy Equation

The steady-state temperature distribution in an FGM circular hollow cylinder is governed by the
following energy equation [17]

1

r
(rk(r)T ′(r))′ = 0 (1)

where T (r) is the temperature distribution and k = k(r) is the thermal conduction coefficient
and (′) denotes differentiation with respect to r. The Robin-type boundary conditions are con-
sidered as

C11T
′(a) + C12T (a) = f1

C21T
′(b) + C22T (b) = f2 (2)

where Cij are the thermal boundary condition coefficients and a and b are the inside and outside
radiuses, respectively. Functions f1 and f2 are known boundary conditions on the inside and
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outside radii. The thermal conductivity k(r) may be assumed to be expressed by the exponential
function of r as

P3(r) = k(r) =
β3

rγ3
e

λ3
θ3

rθ3 (3)

where β3, λ3, θ3, and γ3 are unknown constants to be found. In order to satisfy the inner and
outer material boundary conditions, the constants β3 and λ3 are obtained as

λi =
θi

bθi − aθi
ln

[
Pi(b)

Pi(a)

(
b

a

)γi]
βi = Pi(a)a

γie
−λi

θi
aθi

i = 3. (4)

Since θ3 is further restricted, the choice of γ3 produces different material profile variations
between the inside and outside surfaces. Substituting Eq. (3) into the energy equation yields

r2T ′′(r) + r
[
(1− γ3) + λ3r

θ3
]
T ′ = 0 (5)

For θ3 = γ3 (a restriction for θ3), Eq. (5) becomes the generalized Bessel equation (see Appen-
dices I and II), which has a general solution as

T (r) = rα3e−ζ3rθ3
[
AI 1

2
(ζ3r

θ3) +BI− 1
2
(ζ3r

θ3)
]
= Ā+ B̄e−2ζ3rθ3 (6)

where A and B, or Ā and B̄, are unknown constants to be found from the thermal boundary
conditions (2) and

α3 =
θ3
2

ζ3 =
λ3

2θ3
. (7)

Here, I± 1
2

is the modified Bessel function of the first kind and the ±1
2
th. order.

3 Thermal Stress Analysis

The governing strain-displacement relations are

ϵrr = u′, ϵθθ =
u

r
(8)

where u is the displacement component along the radial direction. The stress-strain relations
for the plane-strain condition are

σrr =
E

(1 + ν)(1− 2ν)
[(1− ν)ϵrr + νϵθθ − (1 + ν)αT ]

σθθ =
E

(1 + ν)(1− 2ν)
[νϵrr + (1− ν)ϵθθ − (1 + ν)αT ]
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σzz =
E

(1 + ν)(1− 2ν)
[ν(ϵrr + ϵθθ)− (1 + ν)αT ] (9)

where α is the coefficient of thermal expansion, E is the modulus of elasticity, ν is the Pois-
son’s ratio, and σii(i = r, θ, z) are the normal stresses. The one-dimensional static equilibrium
equation is

σ′
rr +

1

r
(σrr − σθθ) = 0 (10)

The modulus of elasticity and the coefficient of thermal expansion are described with an expo-
nential functions of the radial direction as

P1(r) = E(r) =
β1

rγ1
e

λ1
θ1

rθ1
, P2(r) = α(r) =

β2

rγ2
e

λ2
θ2

rθ2 (11)

where βi and λi (i = 1, 2) are obtained from Eq. (4). Substituting i = 1, 2, θ1 and θ2 are further
restricted, and γ1 and γ2 are free to be changed to provide different material property profiles
along the radius. We may further assume that the Poisson’s ratio is constant. Using Eqs. (8)
through (11), the Navier equation in terms of the displacement becomes

r2u′′(r) + (λ1r
θ1 − γ1 + 1)ru′(r) +

[
ν

1− ν
λ1r

θ1 − ν

1− ν
γ1 − 1

]
u(r) =

β2e
λ2
θ2

rθ2−γ2lnr 1 + ν

1− ν
r
[
(λ1r

θ1 + λ2r
θ2 − (γ1 + γ2))T (r) + rT ′(r)

]
. (12)

4 Solution of the Navier Equation

The homogeneous part of the Navier equation (12) is

r2u′′(r) + (λ1r
θ1 − γ1 + 1)ru′(r) +

[
ν

1− ν
λ1r

θ1 − ν

1− ν
γ1 − 1

]
u(r) = 0

(13)

Substituting θi = γi +
2ν
1−ν

(i = 1, 2) into Eq. (13), leads to the generalized Bessel differential
equation (see Appendices I and II), which has a general solution as

ug(r) = rα1e−ζ1rθ1
[
CIp(ζ1r

θ1) +DI−p(ζ1r
θ1)
]

(14)

where

p =
1

θ1

√
(
γ1
2
)2 +

νγ1
1− ν

+ 1

α1 =
1

2
θ1 −

ν

1− ν

ζi =
λi

2θi
(i = 1, 2) (15)

and C and D are unknown constants to be found from the boundary conditions. Let χ1 to χ4 be
known boundary conditions on the inner and outer radii, respectively. Therefore, the stress or
displacement boundary conditions are
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u(a) = χ1

u(b) = χ2

σrr(a) = χ3 (16)
σrr(b) = χ4

The constants C and D are obtained solving a system of two algebraic equations, selected arbi-
trarily from the list given by Eqs. (16). For thermal stresses, any combination of the kinematical
or stress boundary conditions given by Eqs. (16) is permissible. For the cylinders under pure
mechanical stresses, either displacement or stress boundary conditions may be selected from
the list of Eqs. (16).

The particular solution up(r) is obtained using the method of variation of parameters. Equa-
tion (12) may be written in the form of variation of parameters formula as

u′′
p(r) + f(r)u′

p(r) + g(r)up(r) = h(r) (17)

where

f(r) =
1

r

(
λ1r

θ1 − γ1 + 1
)

g(r) =
1

r2

[
ν

1− ν

(
λ1r

θ1 − γ1
)
− 1

]
h(r) = β2

1 + ν

1− ν
rα3−1e

(
λ2
θ2

rθ2−γ2lnr−ζ3rθ3
)
× (18)

{
[(
λ1r

θ1 − γ1
)
+
(
λ2r

θ2 − γ2
)
− 1

2

(
λ3r

θ3 − γ3)
)] [

AI 1
2
(ζ3r

θ3) +BI− 1
2
(ζ3r

θ3)
]
+

r
[
AI ′1

2
(ζ3r

θ3) +BI ′− 1
2
(ζ3r

θ3)
]
}

Let the general solution obtained in Eq. (17) be divided into two parts ug1(r) and ug2(r) as

ug1(r) = rα1e−ζ1rθ1Ip(ζ1r
θ1)

ug2(r) = rα1e−ζ1rθ1I−p(ζ1r
θ1) (19)

Therefore, the particular solution up(r), according to the method of variation of parameters,
becomes

up(r) = −ug1(r)

∫ r

a

ug2(r̄)

w(r̄)
h(r̄) dr̄ + ug2(r)

∫ r

a

ug1(r̄)

w(r̄)
h(r̄) dr̄ (20)

where w(r) is the Wronskian determinant of ug1(r) and ug2(r) as given by

w(r) = ug1(r)u
′
g2
(r)− ug2(r)u

′
g1
(r) (21)

u′
g1
(r) =

[
(α1 − ζ1θ1r

θ1)Ip(ζ1r
θ1) + rI ′p(ζ1r

θ1)
]
rα1−1e−ζ1rθ1
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u′
g2
(r) =

[
(α1 − ζ1θ1r

θ1)I−p(ζ1r
θ1) + rI ′−p(ζ1r

θ1)
]
rα1−1e−ζ1rθ1 (22)

where I ′±p(ζ1r
θ1) is the derivative of I±p(ζ1r

θ1) with respect to r as

I ′±p(ζ1r
θ1) = ζ1θ1r

θ1−1I±p+1(ζ1r
θ1)± pθ1

r
I±p(ζ1r

θ1) (23)

The complete solution for u(r) is the sum of the general and particular solutions. Therefore,
using Eqs. (14) and (20) yields

u(r) =

[
C −

∫ r

a

Q2(r̄) dr̄

]
ug1(r) +

[
D +

∫ r

a

Q1(r̄) dr̄

]
ug2(r)

(24)

where

Q1(r) =
ug1(r)

w(r)
h(r)

Q2(r) =
ug2(r)

w(r)
h(r) (25)

The strains and stresses are obtained by substituting Eqs. (24) and (25) into Eqs. (8) and
(9), which yield

ϵrr(r) = rα1−1e−ζ1rθ1{[C −
∫ r

a
Q2(r̄) dr̄]

[
(α1 − ζ1θ1r

θ1 + pθ1)Ip(ζ1r
θ1) + ζ1θ1r

θ1Ip+1(ζ1r
θ1)
]
+

[D +

∫ r

a
Q1(r̄) dr̄]

[
(α1 − ζ1θ1r

θ1 − pθ1)I−p(ζ1r
θ1) + ζ1θ1r

θ1I−p+1(ζ1r
θ1)
]
−

Q2(r)rIp(ζ1r
θ1) +Q1(r)rI−p(ζ1r

θ1)} (26)

ϵθθ(r) = rα1−1e−ζ1rθ1
{[

C −
∫ r

a
Q2(r̄) dr̄

]
Ip(ζ1r

θ1) +

[
D +

∫ r

a
Q1(r̄) dr̄

]
I−p(ζ1r

θ1)

}
(27)

 σrr

σθθ

σzz

 = ⟨{[C −
∫ r

a

Q2(r̄) dr̄]
[
(α1 − ζ1θ1r

θ1 + pθ1)Ip(ζ1r
θ1) + ζ1θ1r

θ1Ip+1(ζ1r
θ1)
]
+

[D +

∫ r

a

Q1(r̄) dr̄]
[
(α1 − ζ1θ1r

θ1 − pθ1)I−p(ζ1r
θ1) + ζ1θ1r

θ1I−p+1(ζ1r
θ1)
]
−

Q2(r)rIp(ζ1r
θ1) +Q1(r)rI−p(ζ1r

θ1)}

 1− ν
ν
ν

+ {[C −
∫ r

a

Q2(r̄) dr̄]Ip(ζ1r
θ1)+

[D +

∫ r

a

Q1(r̄) dr̄]I−p(ζ1r
θ1)}

 ν
1− ν
ν

⟩ β1

(1 + ν)(1− 2ν)
r−α1−1eζ1r

θ1

− β1β2

1− 2ν

e(2ζ1r
θ1+2ζ2rθ2−ζ3rθ3)

r(2α1+2α2−α3)

[
AI 1

2
(ζ3r

θ3) +BI− 1
2
(ζ3r

θ3)
] 1

1
1

 (28)

The values of C and D are evaluated from two mechanical boundary conditions, which are
arbitrarily (physically meaningful) selected from Eqs. (16).
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Figure 1 Young’s modulus along the radius of a functionally graded cylinder.
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Figure 2 Coefficient of thermal expansion along the radius of a functionally graded cylinder.
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Table 1 Material properties of a typical FGM
Metal (outer): = Ceramics (inner):
E = 70(GPa) E = 427(GPa)
ν = 0.3 ν = 0.3
α = 23.4× 10−6(1/K) α = 3.4× 10−6(1/K)
k = 233(W/mK) k = 65(W/mK)

Table 2 Definition of cases
Cases γ1 γ2 γ3
Case 1 −7 −4.5 −3
Case 2 −5 0 2
Case 3 −3 2 4
Case 4 −1.5 4 5.5
Case 5 4.5 6 6.5

5 Results

Consider a thick hollow cylinder of inner radius a = 40 cm and outer radius b = 50 cm. The
material properties of the functionally graded cylinder are given in Table (1). The variation of
modulus of elasticity, coefficient of thermal expansion, and heat conduction coefficient along
the radial direction are plotted in Figs. (1) through (3). These figures are plotted for different
values of γ.

To validate the results of this analysis, we may reduce the problem to that of isotropic thick
cylinder by proper selection of numerical values for γ’s. Selection of γ1 = −1, γ2 = 0, and
γ3 = 0.2 produce a thick cylinder with isotropic material properties, where its behaviour under
thermal or mechanical load is known. This condition is checked with the formulations of this
paper, where exact results are obtained. Therefore, using identical material properties, boundary
conditions, and the same geometry as given and defined by references [4,17], identical curves
for the displacement and stress distributions, as shown in Figs. (4) and (5), are obtained.

The discussion of thermal stresses in the FGM thick cylinders with different material pro-
files are defined in a set of different cases, as shown in Table (2). The curve associated with
the largest negative value of γ represents more ceramic rich, and that of largest positive value
of γ represents more metal rich FGM. Various FGM variation profiles across the thickness is
produced by choosing arbitrary values for γ1, γ2, and γ3. These constants (γ1, γ2, γ3) provide
various material property profiles for the modulus of elasticity, coefficient of thermal expansion,
and the coefficient of the thermal conductivity, respectively. Therefore, five arbitrary material
variation profiles are defined in five different sets such that in each set a fixed combination for
γ is defined. These sets are defined in five cases, where case 1 is the most metal-rich, and case
5 is the most ceramic-rich functionally graded material. The numerical values for γ’s for the
cases 1 through 5 are given in Table (2). Note that the FGM profiles for each value of γ’s are
shown in Figs. (1) through (3).

Consider a thick cylinder with traction-free boundaries at the inner and outer surfaces. The
temperature for the inner and outer surfaces are assumed to be T (a) = 50K and T (b) = 0K.
In Fig. (6) the temperature distribution along the radial direction is presented. This figure
shows that the magnitude of temperatures are decreased in metal rich FGMs, where γ has the
largest positive magnitude. The resulting thermoelastic radial displacement due to the applied
temperature variations is presented in Fig. (7). According to this figure, by increasing the
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Figure 7 Thermal radial displacement.
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Figure 9 Hoop thermal stress.
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Figure 10 Axial thermal stress.
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percent of the metal constituent material in FGM, the radial displacements are increased. Figure
(8) represents the radial stress, which satisfies the traction free boundary conditions. The radial
stress is zero at the inside and outside boundaries, due to the assumed boundary conditions.
Figure (9) shows the hoop stress versus the radial direction. It is observed that the hoop stress
variations along the radial direction is lower in metal rich FGMs. As seen, the mechanical hoop
stress distribution is compressive at the inside surface and tensile at the outer surface. The axial
stress distribution across the cylinder thickness is shown in Fig. (10).

As a second example, a thick circular cylinder under mechanical stresses is considered. The
inside and outside pressures are assumed to be 100 MPa and zero, respectively. Figure (11)
shows the resulting radial displacements due to the given mechanical boundary condition for
different profiles of functionally graded materials. The radial displacements are higher in metal
rich functionally graded cylinders. The radial stress along the cylinder thickness is shown in
Fig. (12). As seen, the radial stress decreases as the metal density of FGM cylinder decreases.
Figure (13) shows the mechanical hoop stress versus the radial direction. It is seen that the hoop
stress variations decreases in ceramic rich cases. Finally, the mechanical axial stress versus the
radial direction is plotted in Fig. (14). The stress variation across the thickness decreases when
the percent of ceramic material constituent increases.
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Figure 11 Mechanical radial displacement.

0.4 0.42 0.44 0.46 0.48 0.5
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

7

Radius (m)

R
ad

ia
l S

tr
es

s 
(P

a)

0.425 0.43
−5

−4.5

−4
x 10

7

Case 1
Case 2
Case 3
Case 4
Case 5

Figure 12 Radial mechanical stress.



Thermoelastic Analysis in Thick FGM Cylinders with Extended ... 87

0.4 0.42 0.44 0.46 0.48 0.5
0

5

10

15
x 10

8

Radius (m)

H
oo

p 
S

tr
es

s 
(P

a)

Case 1
Case 2
Case 3
Case 4
Case 5

Figure 13 Hoop mechanical stress.

0.4 0.42 0.44 0.46 0.48 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

8

Radius (m)

A
xi

al
 S

tr
es

s 
(P

a)

Case 1
Case 2
Case 3
Case 4
Case 5
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6 Conclusions

An analytical solution for the one-dimensional thermal and mechanical stresses in a hollow cir-
cular cylinder made of functionally graded material is developed. The constitutive law of func-
tionally graded material is assumed to be of exponential type in radial direction with three con-
stants. These constants allow different variation profiles for the FGM thick cylinder along the
radial direction with fixed material boundary conditions at the inside and outside surfaces. Solv-
ing the heat conduction and the Navier equations provide the mechanical and thermal stresses.
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It is concluded that:
1 - The ceramic rich functionally graded cylinders under the thermal or mechanical loads

tend to have lower radial displacement and circumferential stress compared to the metal rich
FGM cylinders.

2 - Under the thermal loading, lower circumferential stress is produced in ceramic rich
functionally graded cylinders.

3 - Behavior of the axial stress is different for the thermal and mechanical loading conditions.
Considering the thermal boundary conditions, the axial stress increases in ceramic FGMs. Vice
versa, under the mechanical loading the axial stress for ceramic rich cases decrease.
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Nomenclature

a, b = Inside and outside radii
E = Modulus of elasticity
k = Conductivity
T = Absolute temperature
u = Radial displacement
α = Coefficient of thermal expansion
ν = Poison’s ratio
σij = Stress tensor
ϵij = Strain tensor

Appendix I) Generalized Bessel Equation

The Bessel differential equation in general form may be considered as [15]

x2 d
2y

dx2
+ x(a+ 2bxr)

dy

dx
+ [c+ dx2s − b(1− a− r)xr + b2x2r]y = 0 (29)

where x and y are the independent and dependent variables, respectively, and a, b, c, d, r,
and s are some real constants. The solution of the above differential equation depends on the
magnitude of the employed constants and coefficients, and may be in form of Bessel functions.
If Z±p is considered to be a Bessel function, then the general solution of Eq. (29) can be written
as

y = x(
1−a
2 )e(−

bxr

r )

[
AZp

(√
|d|
s

xs

)
+BZ−p

(√
|d|
s

xs

)]
(30)

where

p =
1

s

√(
1− a

2

)2

− c (31)
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Depending on the values of
√
d
s

and p, the function Z given in Eq. (30) can be different kinds
of Bessel functions as discussed below:

1. If
√
d
s

is real and p is not integer (or zero), then Zp denotes Jp and Z−p denotes J−p, where
Jp is symbol of the Bessel function of the first kind of order p.

2. If
√
d
s

is real and p is integer k (or zero), then Zp denotes Jk and Z−p denotes Yk, where
Yk is symbol of the Bessel function of the second kind of order k.

3. If
√
d
s

is imaginary and p is not integer (or zero), then Zp denotes Ip and Z−p denotes I−p,
where Ip is symbol of the modified Bessel function of the first kind of order p.

4. If
√
d
s

is imaginary and p is integer k (or zero), then Zp denotes Ik and Z−p denotes Kk,
where Kk is symbol of the modified Bessel function of the second kind of order k.

Appendix II)

Consider a differential equation of the form

r2u′′(r) + r(λrθ1 − γ1 + 1)u′(r) + [
ν

1− ν
λ1r

θ1 − ν

1− ν
γ1 − 1]u(r) = 0 (32)

where r is an independent variable and u is a dependent one. Also, ν, λ, γ1, and θ1 are some
arbitrary constants. Using the general Bessel differential equation [15], the solution of Eq. (32)
is

u(r) = rq1e−ζ1rθ1
[
AIp(ζ1r

θ1) +BI−p(ζ1r
θ1)
]

(33)

Substituting Eq. (33) into Eq. (32), we obtain{
λ1

[
γ1 − θ1

2
+

ν

1− ν

]
rθ1 + p2θ21 + q1(q1 − γ1)−

ν

1− ν
γ1 − 1

}
×

[AIp(ζ1r
θ1) +BI−p(ζ1r

θ1)] + (2q1 − γ1)r[AI
′
p(ζ1r

θ1) +BI ′−p(ζ1r
θ1)] = 0 (34)

For Eq. (34) to be identically satisfied, the coefficients of the equation must be set equal to zero.
Setting the coefficients of rθ1 , [AI ′p(ζ1r

θ1)+BI ′−p(ζ1r
θ1)], and [AIp(ζ1r

θ1)+BI−p(ζ1r
θ1)] equal

to zero, we obtain the following expressions for q1, ζ1, p, and γ1

q1 =
γ1
2

ζ1 =
λ1

2θ1
(35)

p =
1

θ1

(
(
γ1
2
)2 +

ν

1− ν
γ1 + 1

) 1
2

γ1 = θ1 −
2ν

1− ν
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  چكيده
در اين مقاله حل تحليلي تنش هاي حرارتي ـ مكانيكي در يك استوانه جدار ضخيم ساخته شده از مواد تابعي 

متغير تغيير خواص مواد در جهت شعاعي با يك تابع  نمائي  با سه . تحت شرايط متقارن محوري ارائه شده است
توابع خطي، تواني و نمائي كه معمولاً براي بيان تغييرات خواص ماده در سازه هاي تابعلي مورد استفاده . مي كند

قرار مي گيرند داراي دو ثابت مي باشند كه با توجه به ارضاء خواص ماده تابعي در شعاع داخل و خارج دو ثابت 
تابع پيشنهادي در اين . ماده بين سطح داخل و خارج ثابت مي ماندآنها مشخص شده و نهايتاً پروفيل تغييرات 

مقاله داراي سه ثابت مي باشد كه با ارضاء خواص ماده در سطوح داخل و خارج يك ثابت اضافي در اختيار مي 
تابع  با استفاده از اين. گذارد كه مي توان پروفيل تغييرات مواد تابعي را در بين سطح داخل و خارج انتخاب نمود

با سه ثابت حل تحليلي مسئله با استفاده از توابع بل و متد لاگرانژ و با استفاده از معادلات ناوير بدست آورده 
  .شده است

  
 


	TANGAR2_final_eslamiV2
	Abstract

