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1  Introduction 
 
Rectangular plates, subjected to external in-plane loads, with different sizes, thickness 
variations and boundary conditions have undoubtedly been one of the key components in 
aerospace, civil, automotive, optical, electronic, mechanical, and shipbuilding industries. 
They may also be supported by an elastic foundation. These kinds of plates are mainly used 
in concrete roads, raft, and mat foundations of buildings and reinforced concrete pavements 
of airport runways. Abrate [1] implied that the first step for thorough understanding of impact 
event is choosing an appropriate model for prognosis force and displacement histories that 
involves the motion of the target, the motion of the projectile, and the local indentation in the 
contact zone. Hence many models have been proposed in the literature. These models can be 
classified into three categories: (1) energy-balance models that assume a quasi-static behavior 
of the structure; (2) spring-mass models that account for the dynamics of the structure in a 
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Low Velocity Impact on Relatively Thick 
Rectangular Plate under In-plane Loads 
Resting on Pasternak Elastic Foundation 
This study deals with the elastic-plastic impact on moderately thick 
rectangular plate subjected to uniform in-plane compressive loads 
resting on the Pasternak elastic foundation. The proposed rectangular 
plates have two opposite edges simply-supported, while all possible 
combinations of free, simply-supported and clamped boundary 
conditions are applied to the other two edges. The dimensionless 
equations of motion of the plate are obtained by applying the 
Reissner-Mindlin plate theory considering the first-order shear 
deformation and the rotary inertia effects. The exact closed form 
solution of the governing equations leading to more accurate result 
with less calculating time in comparison with the Rayleigh-Ritz 
method is used to obtain the dynamic response of the plat. The validity 
of the result is first examined by studying the convergence of the 
maximum impact force. Then, a comparison of results with those 
available in literature confirms the excellent accuracy of the present 
approach. Finally the effects of the dimensionless parameters such as 
uniaxial and biaxial in-plane loads and the effect of foundation 
stiffness parameters on force and displacement histories have been 
examined. 
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simplified manner; (3) complete models in which the dynamic behavior of the structure is 
fully modeled. First step for complete modeling of low velocity impact on rectangular plate 
under in-plane load resting on elastic foundation is forced vibration solution of it. Lee and 
Reismann [2] investigated forced vibration of a rectangular plate with simply supported 
boundary condition under transverse impact loading with 3-D elasticity theory. Reismann and 
Tendorf [3] solved forced vibration of thick isotropic plates by using modal superposition 
approach. In another study Reismann and Lxu [4] surveyed forced vibration of rectangular 
plate with simply supported boundary condition under initial stresses and time independent 
mechanical transverse load by applying 3-D elasticity solution. Sakata and Sakata [5] studied 
forced vibration of rectangular plate with varying thickness and SFSF boundary conditions 
under mechanical transverse load accompanied by sinusoidal displacement distribution, 
constant, and harmonic time functions by utilizing approximate functions for forced 
vibration. Laura [6] analyzed forced vibration of non-isotropic rectangular plates with simply 
supported boundary condition by using Rayleigh-Ritz method. Shen [7] and Yu [8] studied 
free and forced vibration of relatively thick plates by applying the Reissner-Mindlin plate 
theory with totally free boundary conditions. In another paper, Shen [9] analyzed free and 
force vibration of relatively Reissner-Mindlin rectangular plate with simply supported 
boundary conditions exposed to thermomechanical loading and resting on a Pasternak-type 
elastic foundation. The mechanical loads consisted of transverse partially distributed 
impulsive loads and in-plane edge loads while the temperature field is assumed to exhibit a 
linear variation through the thickness of the plate. The Modal Superposition Approach and 
State Variable Approach are both used to determine the dynamic response of the plate. 

Rossikhin and Shitikova [10] considered the problem of normal impact of a long thin 
elastic cylindrical rod upon an infinite pre-stressed elastic transversely isotropic plate 
possessing cylindrical anisotropy. The impact took place at the center of the plate, whose 
equations of motion considered both rotary inertia and shear deformations. It was shown that 
as the radial compression forces reach a critical magnitude, the velocity and amplitude of the 
transient wave of transverse shear both diminish to zero. Sun and Chattopadhyay [11] 
investigated the dynamic response to the impact of a mass on rectangular anisotropic 
laminated plates under an initial tensile stress. The equations of plate motion took the 
transverse shear deformations into account, but ignored the rotary inertia in the direction of 
coordinate axes lying in the plate’s median plane. As a result, the Timoshenko nonlinear 
integral equation for the contact force was used, which was then solved numerically by 
means of the small-time increment method. It is shown that, a higher initial tensile stress 
elevates the maximum contact force, but reduces the contact time, the deflection, and the 
stresses, as well as increases the velocity of disturbance propagation. Dynamic response of 
pre-stressed composite laminates subjected to large deflection impact is investigated by Sun 
and Chen [12] using the finite element method. They found that an initial tensile stress tends 
to intensify the contact force while reducing the contact time. It was also noted that an initial 
compressive stress may result in larger amplitudes of deflection. 

Wei and Yida [13] considered the dynamic response of an elastic plate with arbitrary 
boundary shape supported by a linear viscoelastic Winkler foundation, and impacted by a low 
velocity projectile. Classical plate theory was used in this article. Nath and Varma [14] 
studied nonlinear dynamic response of clamped and simply supported plates resting on 
Winkler-Pasternak elastic foundation subjected to the uniform step and sinusoidal loadings. 
The effects of Winkler and shear foundation interaction parameters on the response of the 
plates have been investigated. 
Shear deformation effects on impact force and displacement histories are broadly investigated 
through references [15-18] and importance of using first order shear deformation theory were 
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emphasized. In these studies, frequencies and mode shapes were acquired by using power 
series and Rayleigh-Ritz methods. Leissa and Kang [19-21] have also obtained exact 
solutions for free vibration and buckling of a thin rectangular plate by using power series 
method. Hosseini-Hashemi and et al. [22] have presented the exact solution for free vibration 
of moderately thick rectangular plate. They obtained exact characteristic equations for six 
distinct cases involving all possible combinations of classical boundary conditions namely 
SSSS, SCSS, SCSC, SSSF, SFSF, and SCSF plates. The integrated equations of motion in 
terms of the stress resultant are derived based on the first order shear deformation theory. 

In this paper the elastic-plastic impact on relatively thick rectangular plate having two 
opposite edges simply supported and subjected to in-plane loads has been studied. The plate 
is rested on the Pasternak elastic foundation and the other two edges of the plate can be 
combinations of classical boundary conditions such as free, simply supported and clamped 
boundary conditions. In order to reduce the number of the independent parameters involving 
in the impact process and reduction of computation time, equations of motion are presented 
in the dimensionless form [23]. The Reissner-Mindlin plate theory which considers the first-
order shear deformation and rotary inertia effects is used to derive the dimensionless 
equations of motion. The exact closed form solutions of mode shape functions which are 
presented in [22] are used to study the behavior of the plate subjected to impulsive load. To 
solve the force time history resulting from the elastic-plastic impact, the time increment 
method is used. 
 
2  Governing equations of moderately thick plate 
 
Consider a flat, isotropic, moderately thick rectangular plate of length  a , width b , uniform 
thickness h , modulus of Elasticity pE , Poisson's ratio pυ , and density ρ , oriented so that 

its undeformed middle surface contains the 1x  and 2x -axis of a Cartesian coordinate system 
),,( 321 xxx , subjected to uniformly biaxial in-plane loads as illustrated in Fig. 1. Two edges 

of the plate parallel to the 2x -axis are assumed to be simply supported while the other two 
can be combination of free, simply supported, or clamped boundary conditions as shown in 
Fig. 2. 

 

Figure 1 Moderately thick rectangular plate under biaxial in-plane loads and co-ordinate convention   
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Figure 2 Boundary conditions 

 The governing differential equations of motion based on the Mindlin first order shear 
deformation theory as given in [22] are 

..
3

111,1 12,2 1 (1/12)M M Q hρ ψ+ − = −  (1-a)
..

3
212,1 22,2 2 (1/12)M M Q hρ ψ+ − = −  (1-b)

..

31,1 2,2Q Q p hρ ψ+ + =  (1-c)

where 1ψ , 2ψ  are the rotations of the transverse normal about 2x and 1x -axis, respectively and 

3ψ  is the transverse displacement. Also, 11M  and 22M  are the bending moments, 12M  is the 

twisting moment, 1Q  and 2Q  are the transverse shear forces, all per unit length which may be 
written as 

( )11 1,1 2,2pM D ψ υ ψ= − +  (2-a)

( )22 2,2 1,1pM D ψ υ ψ= − +  (2-b)

( ) ( )12 1,2 2,11  
2 p
DM υ ψ ψ= − − +  (2-c)

( )2
1 1 3,1Q Ghκ ψ ψ= − +  (2-d)

( )2
2 2 3,2Q Ghκ ψ ψ= − +  (2-e)

where 3 2( ) / [12(1 )]p pD E h υ= −  is the flexural rigidity, / [2(1 )]p pG E υ= +  is the shear 

rigidity, and 2κ  is the shear correction factor to account for the fact that the transverse shear 
strains are not fully independent of the thickness coordinate. Substituting Eqs. ( a−2 ) to 
( e−2 ) into Eqs. ( a−1 ) to ( c−1 ) gives 

11 1,11 1,22 2 1,11 2,12 1 3,1

..2 3( ) ( ) ( ) (1/12)D Gh hυ ψ ψ υ ψ ψ κ ψ ψ ρ ψ⎡ ⎤+ + + − − =⎣ ⎦  (3-a)

21 2,11 2,22 2 1,12 2,22 2 3,2

..2 3( ) ( ) ( ) (1/12)D Gh hυ ψ ψ υ ψ ψ κ ψ ψ ρ ψ⎡ ⎤+ + + − − =⎣ ⎦  (3-b)

3,11 3,22 1,1 2,2 2 3,11 3,22 1 3 1 3,11 2 3,22

3

2

..
                                                            

Gh K p K N N

h

κ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ρ ψ

⎡ ⎤ ⎡ ⎤+ − − + + + − + +⎣ ⎦ ⎣ ⎦

=

 (3-c)
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where 1υ , 2υ  are defined as 

( ) ( )1 21 / 2, 1 / 2p pυ υ υ υ= − = +  (4)

 
In order to investigate the effect of impact parameters on plate it is more appropriate to 

express the governing equations of motion in dimensionless form. In other words the number 
of independent parameters can be reduced by combining them in non-dimensional groups 
which in turn minimize the time of computations required. Further, it would help in 
generalizing and correlating experimental results through the use of minimum amount of data 
and model test [23]. Thus for generality and convenience, the coordinates are normalized 
with respect to the plate planar dimensions and the following non-dimensional terms are 
introduced  

1 1 2 2 1 1 max 2 2 max 3 3 max/ , / , / , / , / ,

                         / ,  / ,  / ,  

X x a X x b a a

h a a b t

ψ ψ α ψ ψ α ψ ψ α

δ η β ω ϕ τ ϕ

= = = = =

= = = =
 (5)

1 2 1 2
1 2 1 22 2 2 2 2 2 2,  ,  ,  N N K KN N K K

a h a h h a hρ ϕ ρ ϕ ρ ϕ ρ ϕ
= = = =% % % %  (6)

where β  is the frequency parameter, maxα  is the maximum elastic indention and ϕ  is the 
normalized time parameter. Introducing the dimensionless parameters given by Eqs. (5) and 
(6), in Eqs. ( a−3 ) to ( b−3 )  and assuming the free harmonic motion  as : 
 

1 1 2 1 1 2( , , ) ( , ) iX X X X e βτψ τ ψ= %  (7-a)

1 1 2 1 1 2( , , ) ( , ) iX X X X e βτψ τ ψ= %  (7-b)

1 1 2 1 1 2( , , ) ( , ) iX X X X e βτψ τ ψ= %  (7-c)
 
The dimensionless equation of motion for the free vibration of the plate under absence of 

the load  may be expressed as 

( ) ( )2 2 2 2
1,11 1,22 2 1 1,11 2,12 1 3,1 1( / ) (12 / )λ ψ η ψ υ υ ψ ηψ κ λ δ ψ ψ β ψ⎡ ⎤+ + + − − = −

⎣ ⎦
% % % % % % %  (8-a)

( ) ( )2 2 2
2,11 2,22 2 1 1,12 2,22 2 3,2

2
2

( / ) (12 / )

                                                      

λ ψ η ψ υ υ η ψ ηψ κ λ δ ψ ηψ

β ψ

⎡ ⎤+ + + − −
⎣ ⎦

= −

% % % % % %

%
 (8-b)

( ) ( ) ( )2 2 2 2
2 1 3,11 2 2 3,22 1,1 2,2 1 3

2
3                                                     

K N K N Kκ λ ψ κ λ η ψ κ λ ψ ηψ ψ

β ψ

+ + + + + − + −

= −

% % % % %% % % % %

%
 (8-c)

 
where )/()12( 223

1 ϕρνλ ahD=  is the impact parameter. For the sake of definiteness the 
dimensionless boundary conditions will be given below for an edge parallel to the 2X -
normalized axis. For a simply supported edge  
 

2 3 110, 0, 0Mψ ψ= = =%% %  (9)
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for a free edge 

11 12 10, 0, 0M M Q= = =%% %  (10)
and for a clamped edge 

1 2 30, 0, 0ψ ψ ψ= = =% % %  (11)
 
Upon making use of  the non-dimensional terms the dimensionless equations of moments and 
transverse shear forces per unit length may be written as : 

( )11 1,1 2,2
i

pM e βτψ υ ηψ= − +% % %  (12-a)

( )22 2,2 1,1
i

pM e βτηψ υ ψ= − +% % %  (12-b)

( )12 1 1,2 2,1
iM e βτυ ψ ψ= − +% % %  (12-c)

( )1 1 3,1
iQ e βτψ ψ= − +% % %  (12-d)

( )2 2 3,2
iQ e βτψ ψ= − +% % %  (12-e)

 
The three dimensionless governing Eqs. (8-a)-(8-c) may be solved by representing the 

three dimensionless functions  1
~ψ , 2

~ψ  and 3
~ψ  in terms of the three dimensionless potentials 

1W , 2W and 3W  as follow [22]: 

1 1 1,1 2 2,1 3,2C W C W Wψ η= + −%  (13-a)

2 1 1,2 2 2,2 1,2C W C W Wψ η η= + −%  (13-b)

3 1 2W Wψ = +%  (13-c)
where 

( )

( )

2 2 22 2
1 2 1 31

1 22 2
11 1 3

2 2 22 2
1 2 2 31

2 22 2
22 1 3

12 /

12 /

a a aC

a a aC

µ η θκ υ δ
αα υα

µ η θκ υ δ
αα υα

+ −
= =

−

+ −
= =

−

%% %

%% %

 (14)

2 2
2 2

1 2

2 2 2 2 2
2 2 2 2 2 2
3 1 2 32 2 2 2

1

4 4, ,
2 2

12 1 12, m

θ θ α θ θ αθ θ

κ λ β κ β κα α α θ π
β υ λ δ η λ δ

− + − − + −
= =

⎛ ⎞
= = − = − +⎜ ⎟

⎝ ⎠

% %

% % %

 (15)

( )4 22 2
1 3 4 61 2 3 5

2 4
2 2

, ,
a a a aa a a a

a a
µ µµ µθ α

η η
− + ++ − −

= =%  (16)

and )6,,2,1( L=iai  are constant coefficients as 

1 2
1 2 21 N Ka

κ λ κ λ
= + +

% %
 (17-a)

2 2
2 2 21 N Ka

κ λ κ λ
= + +

% %
 (17-b)
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 ( )2
3 12

1a Kβ
κ λ

= − %  (17-c)

( )
2 2

1 1 1
4 1 22 2 2

12a N Kβ υ β υ υ
λ κ λ δ λ

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
% %  (17-d)

( )
2 2

1 1 1
5 2 22 2 2

12a N Kβ υ β υ υ
λ κ λ δ λ

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
% %  (17-e)

( )
2

21 1
6 12 2 2

12a Kβ υ υ β
κ λ δ λ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

%  (17-f)

 
The general solution of differential Eqs. ( a−8 ) to ( c−8 ) in terms of 1W , 2W and 3W  can 

be expressed as 
2 2

1,11 1,22 1 1W W Wη α+ = %  (18-a)
2 2

2,11 2,22 2 2W W Wη α+ = %  (18-b)
2 2

3,11 3,22 3 3W W Wη α+ = %  (18-c)
 
Solutions of the above equations based on [22] are taken as : 
 

( ) ( ) ( )1 1 1 2 2 1 2 1sin cos sinW A X A X Xθ θ µ= +⎡ ⎤⎣ ⎦  (19-a)

( ) ( ) ( )2 3 2 2 4 2 2 1sin cos sinW A X A X Xθ θ µ= +⎡ ⎤⎣ ⎦  (19-b)

( ) ( ) ( )3 5 3 2 6 3 2 1sin cos cosW A X A X Xθ θ µ= +⎡ ⎤⎣ ⎦  (19-c)

 
In which arbitrary constants ( )6,2,1 K=iAi , ( )3,2,1=jjθ , and ( )1, 2,3m mµ π= =  are 

related to iα
~  by 

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2 3 3 3, ,α µ η θ α µ η θ α µ η θ= + = − = −% % %  (20)

 
Introducing Eqs. (19) in Eqs. (13) together with utilizing Eqs. (14-16), and substituting the 
results into the three appropriate boundary conditions along the edges 02 =X and 12 =X  
lead to a characteristic determinant of the six order for each m. Expanding determinant and 
collecting terms yields a characteristic equation for any appropriate boundary conditions that 
illustrated in Fig. 2. 

3  Forced vibration solution 
 
The eigenvalue expansion method may now be used to obtain the response of the plate 
subjected to impulsive load. For this purpose Eqs. (3-a) to (3-c) may be written  in 
dimensionless form as : 

( ) ( )2 2 2
1,11 1,22 2 1 1,11 2,12 1 3,1 1

1( / ) (12 / )ψ η ψ ν ν ψ ηψ κ δ ψ ψ ψ
λ

+ + + − − = &&  (21-a)
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( ) ( )2 2 2
2,11 2,22 2 1 1,12 2,22 2 3,2 2

1( / ) (12 / )ψ η ψ ν ν η ψ ηψ κ δ ψ ηψ ψ
λ

+ + + − − = &&  (21-b)

( ) ( ) ( )2 2 2 2
2 1 3,11 2 2 3,22 1,1 2,2 1 3 3 K N K N K pκ λ ψ κ λ η ψ κ λ ψ ηψ ψ ψ+ + + + + − + − + =% % % % % &&  (21-c)

where ( ) ( )1 2
1 2 2

max

, ,
, ,

p x x t
p X X

h
τ

ρ ϕ α
=  is the non-dimensional impact force. Thus the response of 

the plate to the ( )τ,, 21 XXp  according to the eigenvalue expansion method may be assumed 
to be 

1 1 2 1 1 2
1 1

( , , ) ( , ) ( )mn mn

m n
X X X X Tψ τ ψ τ

∞ ∞

= =

=∑∑  (22-a)

2 1 2 2 1 2
1 1

( , , ) ( , ) ( )mn mn

m n
X X X X Tψ τ ψ τ

∞ ∞

= =

=∑∑  (22-b)

3 1 2 3 1 2
1 1

( , , ) ( , ) ( )mn mn

m n
X X X X Tψ τ ψ τ

∞ ∞

= =

=∑∑  (22-c)

 
where ),(),,( 212211 XXXX mnmn ψψ , and ),( 213 XXmnψ , are the vibrational mode-shape 

functions. Also n, m are numbers of semi-waves in directions of 1X , 2X  axis and )(τmnT  are 
the corresponding time functions associated with the mode-shape functions. Substituting Eqs. 
(22-a) to (22-c) into Eqs. (21-a) to (21-c) gives 
 

( ) ( ) ( )

( ) ( )

2
2 2

1,11 1,22 1,22 2,12 1 3,12
1 1 1

1 1 2
1 1

12

1              ,  

[ ] mn mn mn mn mn mn mn

m n

mn mn

m n

T

X X T

υ κψ η ψ ψ ηψ ψ ψ τ
υ δ

ψ τ
λ

∞ ∞

= =

∞ ∞

= =

+ + + − −

=

∑∑

∑∑ &&
 (23-a)

( ) ( ) ( )

( ) ( )

2
2 2

2,11 2,22 1,12 2,22 2 3,22
1 1 1

2 1 2
1 1

12

1              ,

[ ] mn mn mn mn mn mn mn

m n

mn mn

m n

T

X X T

υ κψ η ψ η ψ ηψ ψ ηψ τ
υ δ

ψ τ
λ

∞ ∞

= =

∞ ∞

= =

+ + + − −

=

∑∑

∑∑ &&
 (23-b)

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2
2 1 3,11 2 2 3,22 1,1 2,2

1 1

1 3 3 1 2
1 1

,

[

] 

mn mn mn mn

m n

mn mn mn mn

m n

K N K N

K T p X X T

κ λ ψ κ λ η ψ κ λ ψ ηψ

ψ τ ψ τ

∞ ∞

= =

∞ ∞

= =

+ + + + + − +

− + =

∑∑

∑∑

% % % %

% &&
 (23-c)

The vibrational mode shape functions also satisfy the free vibration Eqs. (8-a)-(8-c). Hence 

( ) ( ) ( )2
2

2 2
1,11 1,22 1,22 2,12 1 3,1 12

1

12
mn

mn mn mn mn mn mn mn
βυ κψ η ψ ψ ηψ ψ ψ ψ

υ δ λ
+ + + − − = −  (24-a)

( ) ( ) ( )2
2

2 2
2,11 2,22 1,12 2,22 2 3,2 22

1

12
mn

mn mn mn mn mn mn mn
βυ κψ η ψ η ψ ηψ ψ ηψ ψ

υ δ λ
+ + + − − = −  (24-b)
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( ) ( ) ( )
( )

2 2 2 2
2 1 3,11 2 2 3,22 1,1 2,2 1 3

2

3                                               

mn mn mn mn mn

mn mn

K N K N Kκ λ ψ κ λ η ψ κ λ ψ ηψ ψ

β ψ

+ + + + + − + −

= −

% % % % %
 (24-c)

 
Substituting from Eqs. (24-a) to (24-c) into  Eqs. (23-a)-(23-c) gives 
 

( )2

1 1 1 2
1 1 1 1

( ) ( , ) ( )mn mn mn mn mn

m n m n
T X X Tβ ψ τ ψ τ

∞ ∞ ∞ ∞

= = = =

⎡ ⎤− =⎢ ⎥⎣ ⎦∑∑ ∑∑ &&  (25-a)

( )2

2 2 1 2
1 1 1 1

( ) ( , ) ( )mn mn mn mn mn

m n m n
T X X Tβ ψ τ ψ τ

∞ ∞ ∞ ∞

= = = =

⎡ ⎤− =⎢ ⎥⎣ ⎦∑∑ ∑∑ &&  (25-b)

( )2

3 3 1 2
1 1 1 1

( ) ( , ) ( )mn mn mn mn mn

m n m n
T p X X Tβ ψ τ ψ τ

∞ ∞ ∞ ∞

= = = =

⎡ ⎤− + =⎢ ⎥⎣ ⎦∑∑ ∑∑ &&  (25-c)

 
Upon making use of the orthogonality of the mode-shape functions and some aljebric 
manipulations, Eqs. (25-a)-(25-c) may be combined to give a single equation as : 
 

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( )

1 1 2 2 2 2 2

1 2 3 1 2
0 0

1 1 1 12 2 2 2

1 2 3 1 2 3 1 2
0 0 0 0

12

   
12

mn mn mn mn mn mn

mn mn mn mn

T dX dX T

dX dX p dX dX

δτ ψ ψ ψ β τ

δ ψ ψ ψ ψ

⎡ ⎤
+ + + ×⎢ ⎥

⎣ ⎦
⎡ ⎤

+ + =⎢ ⎥
⎣ ⎦

∫ ∫

∫ ∫ ∫ ∫

&&

 (26)

By introducing 

( ) ( ) ( )( ) ( )
1 1

2 2 22
1 2 3 1 2

0 0

/12 ,mn mn mn mnK dX dXδ ψ ψ ψ⎡ ⎤= + +⎢ ⎥⎣ ⎦∫ ∫  (27)

( )
1 1

3 1 2
0 0

,mnQ p dX dXτ ψ= ∫ ∫  (28)

Eq. (26) may now be written as 

( )2
( ) ( ) ( ) /mn mn mn mn mnT T Q Kτ β τ τ+ =&&  (29)

 
Solving Eq. (29) by using the Laplace transform method yields 
 

( ) ( ) ( ) ( )

( )
0

1( ) sin 0 cos

sin
                                           

mn mn mn mn mn
mn mn

mn
mn

mn

T Q t d T
K

T

τ

τ β β τ
β

β τ

β

⎡ ⎤= Γ −Γ Γ +⎣ ⎦

+

∫

&

 (30)

 By assuming the initial conditions as 
 

( ) ( ) ( )
( )1 2 3 1 2 30 0

0 0
, , 0, / , / , / 0

0 0

mn

mn

T
Tτ τ

ψ ψ ψ ψ τ ψ τ ψ τ
= =

⎧ =⎪= ∂ ∂ ∂ ∂ ∂ ∂ = ⇒ ⎨ =⎪⎩ &
 (31)
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we obtain 

( )
0

1( ) ( ) sinmn mn mn
mn mnT Q t d

K

τ

τ β τ
β

⎡ ⎤= Γ − Γ⎣ ⎦∫  (32)

Thus the response of the plate subjected to the impact load in transverse direction may be 
obtained by substituting Eq. (32) into Eq. (22-c).   
 

( )3 1 2
3 1 2

1 1 0

( , )( , , ) ( ) sin
mn

mn mn
mn mn

m n

X XX X Q t d
K

τψψ τ β τ
β

∞ ∞

= =

⎡ ⎤= Γ − Γ⎣ ⎦∑∑ ∫  (33)

 
4  Normalization of impact equations 
 
In the impact problems where the contact duration is long in comparison with the wave 
period, the static contact laws such as one given in Eq. (34) can be used for problems 
involving moderate impact velocities [24]. According to the Hertz theory of contact the 
relationship between the force and indentation in contact of two elastic bodies may be given 
by 

(3/2)
2 max0F k α α α= ≤ ≤  (34)

where 

( ) ( )* * 2 2
2 (4 / 3) , 1/ 1 / 1 / ,i i i p pk R E E E Eυ υ= = − + −  (35)

 
and iυ , iE  are Poisson ratio and Young modulus of impactor respectively. Consider now 

collision of a spherical object having initial velocity 0V  with a plate initially at rest as shown 
in Fig. 3.  

 

Figure 3 Impact of an object on plate  
 

Knowing that the maximum indentation can occur when the relative velocity α&  is zero 
and using ,d dα α α α=&& & &  the maximum indentation can be represented as : 

 
2/5

2
max 0

2

5
4

im V
k

α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (36)
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That is the precise upper limit of the indentation for the low velocity impact [28]. The 
displacement of the impactor may also be given in dimensionless form as 

max/i iψ ψ α=  (37)
where  iψ   is the dimensionless displacement of the impactor. Using Newton’s 2nd law 

together with the dimensionless time tτ ϕ= , it is not difficult to show that 
2

max( ) / ( ) ( )i iF t m Fψ α ϕ τ= − = −&&  (38)
Introducing max/ααα = and using equation (34) gives 

(3/2) 2 (3/2) 2
2 max 2 max( ) / ( ) / ( )i iF k m k mτ α α ϕ α α ϕ= =  (39)

 
The non-dimensional impact force given by Eq. (38) may be normalized by introducing 

2
2 max / ik mϕ α=  (40)

Thus the dimensionless form of force-indentation relationship for elastic collisions may be 
given by 

(3/2)( ) ( ) 0 1F τ α α= ≤ ≤  (41)
 
4-1 Elastic-plastic contact law 
 
If the stress resulting from the impact of the object on the plate is more than the Yield 
strength of the plate, the Hertz impact theory can no longer be used  to  predict  result. This is 
because of generation of the permanent indentation which is on contrast with the elastic 
assumption. Based on the elastic-plastic contact law [24], the contact interval is viewed as 
consisting of three periods: 

1- An initial elastic compression according to the Hertz law of contact. Thus in this 
stage equation )2/3(

2αkF =  may be used until a given critical stress 0q  is first 
attained. 

2- The indentation that is started from the end of the first stage and during which a 
plastic zone enclosed by an elastic ring moves outward from the center of  the area 
of contact under constant stress 0q . 

3- A restitution initiated when the relative velocity of two objects is zero and involving 
restoration of the accumulated elastic strain energy. 

During the first stage we may write 

( )
2 2

(3/2) 0
2 1 1 2*

0 ,
4

iR qF k
E

πα α α α= ≤ ≤ =  (42)

where 1α  and iR  are the indentation at the end of first stage and radius of impactor 
respectively. The dimensionless impact force can also be given by 

(3/2)
1 ( ) ( ) 0  F τ α α α= ≤ ≤  (43)

where  1 max/ .α α α= The non-dimensional form of force during the second and third stages as 
shown in [23] are 
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( ) ( ) 23 1 / 2 1  F τ α α α= − ≤ ≤  (44)

 ( ) ( ) 23
2 2 2

3 21 1 ( 1)
2 3

F τ α α α α α⎡ ⎤= − − + + − +⎢ ⎥⎣ ⎦
 (45)

 
Having the  response of the plate to a typical force ),,( 21 τXXp  as given by Eq. (33), the 

transverse response of the plate to the impact load applied at position 1 1X X=  and 1 2X X=   

1 2 1 1 2 2( , , ) ( ) ( ) ( ), /  i pp X X m F X X X X m m mτ τ δ δ= − − =  (46)
may be written as : 

3 1 2
3 1 2

1 1 0
1 1

1 1 2 2 3 1 2 1 2
0 0

( , )( , , ) ( )sin ( )

( ) ( ) ( , )  

mn
mn

mn mn
m n

mn

m X XX X F d
K

X X X X X X dX dX

τψψ τ τ β τ
β

δ δ ψ

∞ ∞

= =

⎡ ⎤= −Γ Γ⎣ ⎦

× − −

∑∑ ∫

∫ ∫
 (47)

where the Dirac delta functions, 1 1( )X Xδ − and 2 2( )X Xδ −  presenting the position of the 
applied load on the plate. The integral involving Dirac delta functions on the right-hand side 
of  Eq. (47) may be simplified as 

1 1

1 1 2 2 3 1 2 1 2 3 1 2
0 0

( ) ( ) ( , ) ( , ) mn mnX X X X X X dX dX X Xδ δ ψ ψ− − =∫ ∫  (48)

Hence, the transverse response of the plate to the impulsive load acting at 1 1 2 2,X X X X= =  
can be written as : 

3 1 2 3 1 2
3 1 2

1 1 0

( , ) ( , )( , , ) ( )sin ( )   
mn mn

mn
mn mn

m n

m X X X XX X F d
K

τψ ψψ τ τ β τ
β

∞ ∞

= =

⎡ ⎤= −Γ Γ⎣ ⎦∑∑ ∫  (49)

 
Also after some simple aljebric manipulation the impact parameter λ  appearing first in Eqs. 
(8-a)-(8-c) can be given by 

( ) ( )4/51/5 3/5 1/5 2/5 1/5 *
0

3 1
4 2 5 1

p

ip i

E mh
RV E

λ
π ηυ ρ

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠
 (50)

and 

( ) 0

3 1
4 1

p

ip

Emh
R q

λ
ηπ υ

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠

 (51)

for the first and second stages of impact process  respectively. The initial conditions for the 
impactor are 

0

0 max

( )(0) 0, i
i

t

d t V
dt
ψψ ξ

ϕ α=

= = =  (52)

 
where  ξ  is the non-dimensional initial velocity. Using the Newton’s 2nd law together with 
the Laplace transformation for the impactor we get 



 
Low Velocity Impact on Relatively Thick …  53

0

( ) ( ) ( ) ( ).i F d
τ

ψ τ ξτ τ= − −Γ Γ Γ∫  (53)

The non-dimensional indentation at any instance of the contact period may now be given 
by 3iα ψ ψ= − . Thus  
 

( ) 2
3 1 2

1 1 0

0

( , ) / ( ) ( ) sin ( )

                                      ( )( ) .

mn mn mn

m n
m X X K F d

F d

τ

τ

α ξτ ψ β β τ

τ

∞ ∞

= =

⎡ ⎤= − Γ −Γ Γ⎣ ⎦

− Γ −Γ Γ

∑∑ ∫

∫
 (54)

 
Substituting for α  from Eqs. (43)-(45) into Eq. (54), the non-dimensional impact force for 
the three stages of the impact process may be given by  

 
 Elastic stage 

( )( )3/2 2
3 1 2

1 1 0

0

[ ( , )] / ( ) ( ) sin ( )

                                                ( )( )

mn mn mn

m n
F m X X K F d

F d

τ

τ

τ ξτ ψ β β τ

τ

∞ ∞

= =

⎡ ⎤= − Γ −Γ Γ⎣ ⎦

− Γ −Γ Γ

∑∑ ∫

∫
 (55)

 Elastic-plastic stage 

( ) 2
3 1 2

1 1 0

0

2 1
[ ( , )] / ( ) ( ) sin ( )

3

                                                ( )( )

mn mn mn

m n

F
m X X K F d

F d

τ

τ

τ
ξτ ψ β β τ

τ

∞ ∞

= =

+
⎡ ⎤= − Γ −Γ Γ⎣ ⎦

− Γ −Γ Γ

∑∑ ∫

∫
 (56)

 Elastic unloading phase 

( ) ( )

2
3 1 2

1 1 0

0

3/2
2 2 2

[ ( , )] / ( ) ( ) sin ( )

                                          ( )( )

3 21 1 1
2 3

mn mn mn

m n

m X X K F d

F d

F

τ

τ

α ξτ ψ β β τ

τ

τ α α α α α

∞ ∞

= =

⎡ ⎤= − Γ −Γ Γ⎣ ⎦

− Γ −Γ Γ

⎡ ⎤= − − + + − +⎢ ⎥⎣ ⎦

∑∑ ∫

∫  (57)

 

The solution of Eqs. (55)-(57) may be obtained by means of the small increment method 
where the contact force is regarded as constant during any time increment .τ∆  The time 
increment τ∆  is conveniently chosen as some small fraction of the fundamental period of 
vibration of the plate. 
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5  Convergence study 
 
In order to chose the upper limit of the double summation in Eqs. (55)-(57) the convergency 
study should be carried out. Reaching to a proper convergency depends on the number of the 
modes that are used in predicting the structural dynamic response. Also because of using the 
small increment method, the time increment τ∆  could be very important. In this section, we 
will consider the effect of these two important parameters on the maximum impact force. 
Using the material properties listed in Table 1 together with the selected time increment τ∆  
and the number of the modes listed in the second and the third columns of Table 2 predicts 
the maximum impact force listed in the forth column of Table 2.  
 
 

Table  1 Assumed Material properties for convergence study 

m  ξ  2κ  λ  pυ  δ  η  

01.0  5/2  86667.0  5.0  3.0  1.0  4.0  
 
 
 
The trend of the calculated impact force shows that a decrease in time increment causes an 

increase in maximum non-dimensional force. On the contrary an increase in the number of 
modes causes a decrease in maximum non-dimensional force. Hence based on the result 
given in Table 2 appropriate convergence can be achieved for 005.0=∆τ  and number of 
modes equals to 1000. 

  
Table  2 Maximum impact force resulted from time increment and number of mode shapes variation 

Maximum impact force Number of mode shapes τ∆   
0.884969 100 0.05 Case 1 
0.882542 200 0.05 Case 2 
0.879779 500 0.05 Case 3 
0.877477 1000 0.05 Case 4 
0.894522 1000 0.01 Case 5 
0.896666 1000 0.005 Case 6 

 
 

It is shown that the percentage of difference for the maximum impact force when the time 
increment varies from 0.05 to 0.005, is only %14.2  and when the number of modes vary 
from 100 to 1000, is %835.0 . Note that by reducing the time increment and increasing the 
number of modes accuracy of the result can be improved, but the calculations time will be 
increased. In all calculations the time increment and the mode numbers are selected as 0.005 
and 3000 respectively. 
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6  Numerical examples and discussion 
 
In Fig. 4 the force-time history calculated by the present method on a basis of the Hertz law 
of contact is compared with those given in reference [16] for both the classical and the 
Mindlin plate theory neglecting the effect of rotary inertia. The plate and impactor properties 
are taken from [16] and presented in Table 3. 
 

Table 3 The plate and impactor properties 

impactor plate 

3

206.85
0.3

7837 /
:0.0127

i

i

i

i

E GPa

kg m
R m

υ

ρ

=
=

=  3

206.85

0.3

7837 /
, :0.762,0.0127

p

p

E GPa

kg m
a b m

υ

ρ

=

=

=
 

 
It can be seen that because of the present method take into account the effect of both shear 

deformation as well as the effect of rotary inertia the maximum impact force diminishes in 
comparison with the maximum force related to the force-time history given in [16]. Thus 
neglecting the effect of rotary inertia causes an increase in the maximum force. In Fig. 5, the 
force-time history calculated by the present method based on the elastic-plastic impact law is 
compared with the one given in reference [16]. The difference between two curves quite 
noticeable showing that the theory used in the interpretation of the elastic-plastic contact 
could play a major rule in reliability of result. 

 

 
 Figure 4 Comparison of result obtained from exact solution of Mindlin theory with result of MPT and CPT 

given in Ref.  [16] 
 

( )1/23/ 2
2/F k h

( )1/25/2
2/ /t h kρ
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Figure 5 Comparing of  impact force history with Ref.  [16] 

 
 

 There are many theory of elastic-plastic contact. The theory used in this article is known 
as Andrew’s theory. It is used by several researchers in recent years [24-27]. Variation of the 
non-dimensional central transverse displacement ( )3

3 0/pE a h q bψ  against the dimensionless 

time / /t E bρ  for simply supported Mindlin  plate are shown in Figs. (6)- (8) using 

,15.0=pυ  ,12/22 πκ = 1.0=δ  and 1.=η  
 
 

 
Figure 6 Comparing of non-dimensional central displacement history with Ref. [9] 

 

( )2
3 0/pE a h q bψ

/ /pt E bρ

( )1/ 23 / 2
2/F k h

( )1/ 25 / 2
2/ /t h kρ
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 In Fig. (6) the plate is subjected to in-plane load in the 1X  direction with magnitude 

crNN ~25.0~
1 −=  and resting on elastic foundation with foundation stiffness parameters 

2)/(~12 4
1

42
1 =λπηδυ K   and  )5.0(,1)/(~12 2

2
22

1 == λλπηδυ K .  
 

 
Figure 7 Comparison of the non-dimensional central displacement history with [9] 

 
In Fig. 7 the plate is the same as plate described in Fig. 6 but having no foundation. In Fig. 

8 the plate is not subjected to in-plane load but resting on elastic foundation with the same 
coefficients as described for plate in Fig 6. All three cases are compared with those given in 
reference [9] and good agreement can be observed. 

 

 Figure 8 Comparison of the non-dimensional central displacement history with [9] 

( )2
3 0/pE a h q bψ

/ /pt E bρ

( )2
3 0/pE a h q bψ

/ /pt E bρ
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 In order to study the effect of the Winkler stiffness parameter on the force-time history the 
dimensionless force is plotted against the dimensionless time for a simply supported plate 
using data given in Table 1 but  replacing 100.ξ =  The result is displayed in Fig. 9. Similar 
plot is also obtained for the displacement-time history and the result is shown in Fig. 10. 
 

 
Figure 9 Effect of Winkler stiffness of elastic foundation on impact force history 

 
 It can be clearly seen in Fig. 9 that increasing the Winkler stiffness parameter causes a little 
effect on the impact force, although slight increase can be observed but an increase in 
duration of contact is more dominant. Reduction in the central displacement of the plate due 
to increasing the Winkler stiffness parameter may be observed in Fig. 10. 
 

 
Figure 10 Effect of Winkler stiffness of elastic foundation on displacement history 
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This is because of increase in resistance of the plate as a result of increasing stiffness. To 
investigate the effect of shear stiffness parameter similar studies are carried out through Figs. 
11 to 14. As shown in these Figs. the same effects as explained for the effects of the Winkler 
stiffness parameter can be observed on both force-time and displacement-time histories.  
 

  
Figure 11 Effect of shear foundation coefficient on impact force history 

 
 

 
Figure 12 Effect of shear foundation coefficient on displacement history 
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Figure 13 Effects of both elastic foundation stiffness parameters on impact force history 

 
However as far as the effects of Winkler and shear stiffness parameters on the plate response 
is concern the more dominant effects may be performed by the shear stiffness parameter.  

 

 
 

Figure 14 Effects of both elastic foundation stiffness parameters on displacement history 
 

The effect of in-plane load on the force-time history for SCSS plate is investigated in Fig. 15 
using data given in Table 1 and selecting new value for ξ   as 100.ξ =  
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Figure 15 Effect of in-plane load coefficient in 1X  direction on impact force history 

 

 It is shown that the variations of the in-plane load have a very little effect on the force-
time history. The effect of the in-plane load on the displacement-time history is also 
displayed in Figs. 16 and 17 for a plate under uniaxial in-plane load in the 1X  direction. 

 
Figure 16 Effect of in-plane load coefficient in 1X  direction on displacement history 
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Figure 17 Effect of uniaxial in-plane load  acting in  the 1X  direction on central displacement-time history of 
the plate subjected to central impulsive load  

 
It can be observed that as the in-plane load increases the non-dimensional central 
displacement decreases. The same effect may be seen in Fig. 18 when the plate is subjected to 
biaxial load in both 1X  and 2X  directions. 

 

 
Figure 18 Effect of biaxial in-plane load on non-dimensional central displacement-time history of the plate 

subjected to central impulsive load 
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7  Conclusion 
 
The elastic-plastic impact on relatively thick rectangular plate with two opposite edges 
simply supported and resting on Pasternak elastic foundation is investigated. 
 The dimensionless equations of motion are derived based on the Mindlin plate theory 
considering the in-plane load. 
The eigenvalue expansion method is used to obtain the response of the plate to the impulsive 
load. 
The force-time history is calculated by means of small time increment method.  
The shear deformation and rotary inertia could effect the force-time history. 
As a result of using the closed form solution of eigenvalues and their corresponding mode 
shape functions, in obtaining the response of the plate to the impulsive load, the present 
method consumes less calculation time in comparison with the Rayleigh- Ritz method. 
The effect of the in-plane load and elastic foundation parameters on the impact force and the 
displacement histories are investigated and discussed.     
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Nomenclature 
 

 ,  a b                     Length and width of plate 
D                         Flexural rigidity of plate 

iE                         Young’s modulus of impactor  
pE                         Young’s modulus of plate  
( )F t                      Non-dimensional impact force  
( )F τ                     Shear modulus of plate  

G                          Shear modulus of plate  
h                          Plate thickness 

i                            1−  
1

~K                         Winkler parameter of elastic foundation 
2

~K                         Transverse parameter of elastic foundation 
ijM                         Resultant moments (i,j=1,2,3) 

im                          Mass of impactor 
pm                         Mass of plate  

21
~,~ NN                    Non-dimensional in-plane load 

( )1 2, ,p X X τ           Transverse impact of the impactor on plate 
kQ                          Transverse shear forces (k=1,2) 
iR                           Radius of impactor 
0q                           Yield stress  t                             Time  
0V                           Initial velocity of impactor 



 
          Iranian Journal of Mechanical Engineering                                  Vol. 12, No. 1, March. 2011 

 

66

jW                          Dimensionless potentials 

1 1 2 2,X X X X= =
 
Cartesian coordinate of position of impact load on plate 

 
Greek symbols 

α                           Indentation  
α                           Non-dimensional indentation  

1α                           Elastic indentation in elastic-plastic law  
maxα                       Maximum indentation in elastic law 
2α                          Maximum indentation in elastic-plastic law   
pυ                           Poisson’s ratio of plate  
iυ                            Poisson’s ratio of impactor 
δ                            Thickness to length ratio of plate 
η                            Aspect ratio of plate  
ξ                            Non-dimensional initial velocity 

iρ                           Mass density of impactor 
ρ                           Mass density of plate    

2,1ψ                         Rotational displacements  
3ψ                           Transverse displacement  
iψ                            Dimensionless displacement of the impactor 

ϕ                             Normalized time parameter 
λ                             Impact parameter  

2κ                            Shear correction factor  
τ                              Dimensionless time  
ω                             Natural frequency of plate 

mnβ                          Non-dimensional frequency  
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        چكيده                                                                                                                  
كه  ضخيم از برخورد يك كره بر روي يك ورق مستطيلي نسبتاناشي  الاستوپلاستيك در اين مقاله ضربه

ورق بر روي بستر . قرار گرفته است مطالعهمورد توزيعي قرار دارد   ثير نيروهاي صفحه اي يكنواختتاتحت 
دو لبه موازي ديگر ورق . تكيه گاهاي ساده در دو لبه موازي ميباشدالاستيك پستر ناك مستقر بوده و داراي 

معادلات  .شوند شاملو يا آزاد را گير دار  ساده، ، از قبيلتركيبي از تكيه گاهاي كلاسيك نوعميتوانند هر
با لحاظ نمودن اثرات تغير شكل برشي اجباري بر اساس استفاده از تيوري ميندلين  حاكم بر ارتعاشات آزاد و

بر اساس تيوري بكار  .ارايه شده اند و اينرسي چرخشي بشكل بي بعد جهت تسهيل محاسبات و تعميم نتايج
اين مراحل . شامل سه مرحله است مدت زمان دوام تماسستيك گرفته شده در تحليل ضربه الاستو پلا

منجر به يك دايره پايان  درعبارتند ازمرحله فشرده گي الاستيكي اوليه، مرحله فشرده گي بيشتر كه 
و بالاخره مرحله بازگشت كه در پايان تغير شكل  پلاستيك احاطه شده بوسيله يك حلقه الاستيك ميشود

نيرو و تقرب در هر يك از مراحل با استفاده از روش نمو كوچك زماني حل شده  .دايمي را موجب ميگردد
يافته ها با نتايج ارايه شده توسط ساير محققين جهت اعتبار سنجي نتايج بعد از بررسي همگرايي، . است

 درپايان اثرات پارامترهاي بي بعد از قبيل .مورد مقايسه قرار گرفته و توافق خوبي ملاحظه گرديده است
رفتارهاي  پارامترهاي سفتي بستر الاستيك  در دو محوري و اثرات نيروهاي صفحه اي تك محوري و اثرات
                                                                        .گرفته اندمورد بررسي قرار زمان - جابجايي زمان و -نيرو

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


