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The thermomechanical buckling of simply supported thin

shallow spherical shells made of functionally graded material is
presented in this paper. A metal-ceramic functionally graded
shell with a power law distribution for volume fraction is
considered, where its properties vary gradually through the shell
thickness direction from pure metal on the inner surface to pure
ceramic on the outer surface. The mechanical properties of the
metal and ceramic are assumed to be temperature dependent.
The governing equations are derived using the first-order shell
theory of Love and Kirchhoff, the Donnell-Mushtari-Vlasov
kinematics equations, and the calculus of wvariations. The
analytical results are obtained for various types of loadings. The
detailed results are compared and validated with the known data
in the literature.
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1 Introduction

Functionally graded materials (FGMs) are microscopically inhomogeneous commonly
manufactured from a blend of metals and ceramics with continuous composition gradation
from pure ceramic on one surface to pure metal on the other surface. Dissimilar to fiber-
matrix composites, where cracking and debonding may take place at high temperatures due to
the material properties mismatch at the interface of two discrete materials, the ceramic
constituents of FGMs are capable of withstanding high temperature environments because of
their better thermal resistance characteristics, while the metal constituents provide stronger
mechanical performance and decrease the possibility of catastrophic fracture. FGMs are now
developed for general use as structural components in high-temperature environments and
high temperature changes [1]. Due to their special benefits of being able to withstand high-
temperature environments while maintaining structural integrity, FGMs, whose material
properties vary uniformly and continuously from one surface to the other by gradually
varying the volume fraction of their constituent materials, have received substantial attention
in various industries, particularly in high-temperature applications [2].

Shahsiah and Eslami [3] analyzed the thermal buckling of FGM cylindrical shell. The same
authors [4] utilized the improved Donnell equations for the thermal instability analysis of
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FGM cylindrical shell. Sofiyev [5] analyzed the stability of FGM truncated conical shells
subjected to aperiodic impulsive loading. Wu et al. [6] conducted studies on the thermoelastic
stability of functionally graded cylindrical shells. Sofiyev [7] considered the stability of
compositionally graded ceramic-metal cylindrical shells under aperiodic axial impulsive
loading. A thermoelastic finite element model to study the linear buckling behavior of FGM
hemispherical shell with a cut-out at apex in thermal environment was developed by Bhangale
and Ganesan [8]. Kadoli and Ganesan [9] studied the buckling and free vibration analysis of
FGM cylindrical shells subjected to a temperature-specified boundary condition. Sofiyev [10]
analyzed the thermoelastic stability of FGM truncated conical shells. Mirzavand et al. [11]
studied the effect of imperfections on the thermal buckling of FGM cylindrical shells.
Bhangale et al. [12] considered the linear thermoelastic buckling and free vibration behavior
of FGM truncated conical shells. The study considers temperature-dependent material
properties. The thermal buckling of a simply supported imperfect FGM cylindrical shell based
on the Wan-Donnell geometrical imperfection model was studied by Mirzavand and Eslami
[13]. Sofiyev et al. [14] presented the vibration and stability analysis for generic three-layered
conical shells containing an FGM layer subjected to axial compressive load.

Shahsiah and Eslami [15] developed a thermal instability analysis of FGM shallow
spherical shell. Li and Batra [16] surveyed the buckling of axially compressed thin cylindrical
shells with FGM middle layer. Matsunaga [17] presented a 2D higher-order theory for
analyzing the natural frequencies and the buckling stresses of FGM shallow shells. The
thermal and mechanical buckling of truncated conical shells made of FGM was considered by
Naj et al. [18]. Sofiyev et al. [19] conducted a study on the stability analysis of thin three-
layered, truncated, conical shells containing an FGM layer subjected to nonuniform lateral
pressure. Mirzavand and Eslami [20] developed the thermal buckling of simply supported
FGM cylindrical shells that are integrated with surface-bonded piezoelectric actuators. Sheng
and Wang [21] investigated the thermal vibration, buckling and dynamic instability of FGM
cylindrical shells embedded in an elastic medium, subjected to mechanical and thermal loads,
considering rotary inertia and the transverse shear strains along the shell thickness. The
buckling behavior of FGM stiffened cylindrical shells by rings and stringers under axial
compression loading was studied by Najafizadeh et al. [22]. Naj et al. [23] presented a
solution on the instability of FGM truncated conical shells with temperature-dependent
material under combination of thermal and mechanical loads. Sofiyev [24] carried out the
study of the vibration and buckling behaviors of freely supported FGM truncated and
complete conical shells subjected to hydrostatic and lateral pressures.

Huang and Han [25] investigated the buckling behaviors of geometrically imperfect FGM
cylindrical shells under axial compression by using the Donnell shell theory and the nonlinear
strain-displacement relations of large deformation. Matsunaga [26] derived the free vibration
and stability of FGM circular cylindrical shells according to a 2D higher-order deformation
theory. Sofiyev et al. [27] have conducted a study on the buckling behavior of a thin FGM
hybrid truncated conical shell subjected to hydrostatic pressure. The same workers [28]
studied the stability of a three-layered composite conical shell containing an FGM layer
subjected to external pressure. Huang and Han [29] extended the non-linear large deflection
theory of cylindrical shells to discuss the non-linear buckling and postbuckling behaviors of
FGM cylindrical shells which are synchronously subjected to axial and lateral loads. By
taking the temperature-dependent material properties into account, various effects of external
thermal environment were also investigated.

In this paper the equilibrium equations of an FGM shallow spherical shell are derived
using the variational method, the first-order shell theory of Love and Kirchhoff, and the
Donnell-Mushtari-Vlasov (DMV) kinematics equations [30]. The stability equations are then
obtained by consideration of the second variation of the functional of total potential energy.
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The aim of this work is to analyze the stability of simply supported shallow spherical shells
made of an FGM with different power law index values under the combination of mechanical
and thermal loads, where temperature-dependent material properties are considered.
Approximate one-term solutions that satisfy the boundary conditions are assumed for the
displacement components. The Galerkin method is used to minimize the errors due to this
approximation. The critical buckling loads of the simply supported FGM shallow spherical
shell under two different types of loading, hydrostatic pressure and uniform temperature rise,
and their combinations are obtained. The results are confirmed with the known data in the
literature. The novelty of the present work is to obtain analytical closed-form solutions for
buckling loads of the FGM shallow spherical shells, which can be easily and safely used in
engineering design applications. The improvements and differences of this paper comparing
Shahsiah and Eslami [15] one which is the nearest paper on the subject are as follows:
thermomechanical analysis, various power law index values for volume fraction of
mechanical properties of the shell, and temperature-dependent material properties rather than
thermal analysis, linear volume fraction of mechanical properties of the shell, and
temperature-independent material properties, respectively.

2 Derivations
As shown in Fig. (1), an FGM thin shallow spherical shell of mean radius R and thickness # is

considered. The shell is assumed to be a mixture of ceramic and metal, where the mechanical
properties are assumed to be [18]

22+ 0\

E(z,T)—Em(T)JrEcm(T)( > j

k
a(Z,T)=0!m(T)+acm(T)(ZZZZh) , (D

v(z,T)=v,
where

Ecm(T) = Ec(T)_Em(T)a
a,,T)=a,(T)-«a,(T).

)

In Egs. (1), z is measured along the thickness direction, positive outward, and vary from
-h/2 to h/2. Subscript m indicates metal and subscript ¢ indicates ceramic. Poisson's ratio is
assumed to be constant through the shell thickness. The mechanical properties change
gradually from pure metal on the inner surface to pure ceramic on the outer surface. In the
spherical shell, ¢, 6, and z are the meridional, circumferential, and radial directions,
respectively. According to the first-order shell theory of Love and Kirchhoff, the normal and
shear strains at a distance z from the middle surface of the shell are [31]

8¢ = 8¢m +Zk¢,
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where ¢&; and y;; are the normal and shear strains, respectively, kg and k¢ are the middle surface
bending curvatures, kgo is the middle surface twisting curvature, and the subscript m refers to
the middle surface. According to the DMV strain-displacement relations, we have [31]
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where u, v, and w are the meridional, circumferential, and radial displacements of the shell
middle surface, respectively, and the subscript (,) indicates partial derivative. According to
Hooke’s law, the stress-strain relations for the spherical shell are [15]

o, = li(z’];)(%m +veg, +zk, + vzke)— E(z,Tia(z,T)AT )
-v -V
)= El(_Z;/J;) (59m +VE,, + 2k, + Vka)— E(Z’Tioi(j’T)AT , )

Tpp = G(Z’T)(7/¢9n1 + 2Zk¢9)'

The force and moment resultants according to the first-order shell theory are [30]
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Substituting Egs. (5) in Egs. (6) yields
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The equilibrium equations are derived using the functional of total potential energy
equation and employing the Euler equations. Generally, the total potential energy of a loaded
shell is the sum of the strain energy and the potential energy of the applied external loads
[30]. For the shallow spherical shell of the present study, there exists a thermal term in the
strain energy and the potential energy of the applied loads consists of the energy of the
applied external hydrostatic pressure. Thus, the equilibrium equations using the variational
principle are derived as [15]
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w
N4
By =-=2,
¢ R (10)
W
Bo=-——
¢ Rsin ¢

In Egs. (10), Sy and S are the rotations of the normal vector to the middle surface about
the ¢ and 6 axes, respectively.

The stability equations are obtained by consideration of the second variation of the
functional of total potential energy. The displacement components are related to the terms
representing the stable equilibrium and the terms of the neighboring state.

Accordingly, the force resultants N; and the moment resultants M;; are divided into two
terms representing the stable equilibrium and the neighboring state. Through the linear strain-
displacement relations, the expression for the total potential energy is obtained. This
expression, via the Taylor expansion, results in the sum of first and second variations in the
total potential energy. Applying the Euler equations to the second variation of the total
potential energy function results in the stability equations as [15]
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Equations (11) are the stability equations of a shallow spherical shell. In Egs. (11) the
subscript 0 refers to the equilibrium state and the subscript 1 refers to the stability state. The
terms with the subscript 0 are the solution of the equilibrium equations for the given load.

For simplicity, the membrane solution of the equilibrium equations is considered. By
solving the membrane form of the equilibrium equations, it is found that
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where P is the applied hydrostatic pressure and AT is the temperature change. The linear form
of the strains and curvatures in terms of the displacement components are
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For the state of stability, the force and moment resultants are
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Substituting Eqgs. (1) into Egs. (8) yields
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Substituting Eqgs. (13)-(15) into Egs. (11), the stability equations in terms of the
displacement components are derived. These equations, in terms of u;, v;, and wy, are a
coupled set of three partial differential equations.

Consider a shallow spherical shell with the simply supported boundary edges. The
boundary conditions are assumed as [15, 31]

u1’¢ - Vl - W1’¢¢ - Wl - 0 at ¢ - ¢L' (16)

The approximate one-term solutions for Egs. (11), satisfying the boundary conditions
given by Egs. (16), may be assumed to be [15, 31]

u, = A, cos n@cos ¢
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where A =mr /¢, m=1,2,3, ... and n =1, 2, 3, ... are the numbers of the meridional and
circumferential waves, respectively, and 4;, B;, and C; are constant coefficients. The
approximate solutions (17) are substituted in Egs. (11), utilizing the Galerkin minimization
technique, to yield

a4, +a,, B, +a;C, =0,
The coefficients a;; (i, j = 1, 2, 3) are calculated using Egs. (11) and are given in Appendix.

To derive the buckling load for the shallow FGM spherical shells, the determinant of the
coefficients matrix of algebraic Eqgs. (18) must be set equal to zero as

ayp 4y a4

a3 Az dsg

Ay Ay

The critical buckling load is the minimum load with respect to m and n.
3 Resultsand Discussion

Consider a metal-ceramic FGM shallow spherical shell. The geometry and loading of the shell
are illustrated in Fig. (1). The combination of materials consists of steel and ceramic with
temperature dependent Young's modulus and the thermal expansion coefficients as given in
Table (1) [23, 32, 33].

Poisson's ratio is assumed to be 0.3 for the steel and ceramic. Simply supported boundary
conditions are assumed.

Results are shown in the figures for a hydrostatic pressure and uniform temperature rise,
and their combinations. The uniform temperature rise is considered with respect to the
reference room temperature at 25°C.
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3.1 Mechanical buckling

The classical hydrostatic buckling pressure for a shallow spherical shell is [34]

2
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Figure (2) and Table (2) compare the result of this paper for a pure isotropic (metal)
shallow spherical shell, where E = E,,(T), with those reported in reference [32]. Figure (2) and
Table (2) show the dimensionless critical hydrostatic pressure versus the dimensionless
parameter 4/R for different values of ¢;. The dimensionless critical hydrostatic pressure is the
ratio of the critical hydrostatic pressure to the classical one given by Eq. (20), where the ratio
1 shows identical estimated buckling pressure with that of the classical load. Close
agreements between the results of this paper and those reported in reference [32] are
observed, as seen from Fig. (2) and Table (2). It is found that for the larger values of ¢y,
better agreement between the values of the critical hydrostatic pressure and the classical one
are observed. In Table (2), the numbers in the parentheses are related to the circumferential
and meridional buckling modes of the shells, respectively.

Figure (3) illustrates the critical hydrostatic pressure versus the dimensionless parameter
h/R for the steel shallow spherical shells with ¢, = 10°, ¢, = 20°, and ¢, = 30°. It is found
that the classical buckling hydrostatic pressure expression has more reliability for larger
values of ¢,. The most precise expression is for a complete spherical shell.

Figure (4) demonstrates the dimensionless critical hydrostatic pressure versus the
dimensionless parameter 4/R for the steel, the ceramic, and the FGM shallow spherical shells
with ¢, = 10° and different power law indices k. The curves show the critical hydrostatic
pressure decreases as the power law index increases.

Figure (5) indicates the dimensionless critical hydrostatic pressure versus the
dimensionless parameter 4/R for the FGM shallow spherical shells with k£ = 2 and various ¢;.
It is found that the higher the value of ¢;, the lower the value of dimensionless critical
hydrostatic pressure will be.

3.2 Thermal buckling

Figure (6) displays the dimensionless critical temperature difference versus the dimensionless
parameter A/R for the steel, the ceramic, and the FGM shallow spherical shells with different
power law indices k and ¢, = 10°. The dimensionless critical temperature difference is critical
temperature difference times the steel thermal expansion coefficient. The material properties
are assumed to be temperature independent. The temperature difference is compared with the
reference temperature (I = 25°C). The curves illustrate that under thermal loading, the
stability of an FGM shallow spherical shell is larger than that of a pure metallic one and
smaller than that of a pure ceramic one. Additionally, the stability of FGM shallow spherical
shell decreases as the power law index k increases. These curves show that the stability of
FGM shallow spherical shells increases as the dimensionless parameter 4/R increases. The
curves for metallic and FGM shallow spherical shells with k£ = 1, are compared with those
given in reference [31] and [15], respectively. From this comparison, close agreement
between the results of this paper and those reported in the related references are observed. The
reason of the small differences between the results of the present study and the given
references is the selection of different material properties, as follows: Eslami et al. [31]
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(metallic shell): £ = 200 GPa, a = 11.7 x 10°® °C" and v = 1/3; Shahsiah et al. [15] (FGM
shell): En =200 GPa, an = 11.7 x 10° °C™", E. =380 GPa, a. = 7.4 x 10° °C™, and v=0.3.

Figure (7) shows the dimensionless critical temperature difference versus the
dimensionless parameter 4/R for the FGM shallow spherical shells with £ = 2 and various ¢;.
The material properties are assumed to be temperature independent. It can simply be observed
from the curves that the higher the value of /4/R, the higher the value of the dimensionless
critical temperature difference will be.

Figure (8) presents the critical temperature difference versus the dimensionless parameter
h/R for the FGM shallow spherical shells with £ = 2 and various ¢;. The material properties
are assumed to be temperature independent. Similar to Fig. (7), the higher the value of A/R,
the higher the value of the critical temperature difference will be.

3.3 Thermomechanical buckling

Figure (9) indicates the dimensionless critical hydrostatic pressure versus the dimensionless
parameter 4/R for the FGM shallow spherical shells with £ = 2 and ¢, = 10° at T = 25°C,
T=350°C, and T = 100°C. The buckling load is obtained using both the temperature dependent
and independent material properties, as given by Table (1). According to this figure, it is
found that at higher temperatures the value of the buckling pressure becomes less. This is an
obvious fact due to the increase of thermal stresses at larger temperatures. Furthermore,
another phenomenon that can be realized is the less effect of the temperature change on the
critical pressure value for larger values of 4/R.

Figure (10) presents the critical hydrostatic pressure versus the dimensionless parameter
h/R for the FGM shallow spherical shells with k=2 and ¢, = 10° at 7= 100°C. The buckling
load is obtained using both the temperature dependent and independent material properties.
As the curves illustrate, at 7= 100°C, the value of the buckling pressure related to the
temperature dependent material curve is less than the one related to the temperature
independent material curve. According to Table (1), at higher temperatures, Young's modulus
decreases and thermal expansion coefficient of steel and ceramic increases. Therefore,
according to the relations between the material properties and the dependence of the
mechanical and thermal strains on material properties (€mechanical ~ 0> 1/E; €thermal ~ @, AT), at
the same temperature the hydrostatic buckling pressure for the case of temperature dependent
condition is less than that of temperature independent condition. The reason is the increase of
1/E and thermal expansion coefficient for the temperature dependent case. However, in
Fig. (9), it is observed that at 7= 100°C for larger 4/R the value of dimensionless buckling
pressure related to the temperature dependent material curve is more than the one related to
the temperature independent material curve. At this temperature for smaller /4/R, the value of
the dimensionless buckling pressure related to the temperature dependent material curve is
less than the one related to the temperature independent material curve. This happens because
of the different values of the classical buckling hydrostatic pressure for the temperature
independent and dependent cases.

Figure (11) gives the dimensionless critical hydrostatic pressure versus the power law
index k for the FGM shallow spherical shells ¢, = 10° and A//R = 0.01 at 7= 25°C, T = 50°C,
and T = 100°C. The buckling load is obtained using the temperature dependent material
properties. It is found that as the temperature rises, the dimensionless critical hydrostatic
pressure decreases. The higher the value of £, the lower the value of the dimensionless critical
hydrostatic pressure will be.

Figure (12) shows the dimensionless critical hydrostatic pressure versus the dimensionless
parameter A/R for the steel, the ceramic, and the FGM shallow spherical shells with £ = 0.5,
k=2,and ¢ = 10° at T = 100°C. The material properties are assumed to be temperature
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dependent. According to this figure, under the thermomechanical loading the critical buckling
pressure of an FGM shallow spherical shell is less than that of a pure ceramic shallow
spherical shell and higher than that of a pure metallic shallow spherical shell.

Figure (13) illustrates the dimensionless critical hydrostatic pressure versus the
dimensionless parameter 4/R for the FGM shallow spherical shells with k£ = 2, various ¢, and
the temperature dependent material at 7 = 100°C. According to the curves at high
temperatures, the higher the value of 4/R, the higher the value of the dimensionless critical
hydrostatic pressure will be.

Figure (14) demonstrates the dimensionless critical hydrostatic pressure versus the power
law index k for the FGM shallow spherical shells with ¢, = 10°, various A/R, and the
temperature dependent material at 7= 100°C. It is found that as the value of A/R falls, the
dimensionless critical hydrostatic pressure decreases. Moreover, similar to Fig. (11), the
higher the value of £, the lower the value of the dimensionless critical hydrostatic pressure
will be.

Figure (15) presents the critical temperature difference versus the dimensionless parameter
h/R for the FGM shallow spherical shells with £ = 2 and ¢, = 10° under P = 0, P = 40 kPa,
and P = 80 kPa. The material properties are assumed to be temperature independent.
According to this figure, it is found that for higher hydrostatic pressures the value of the
buckling temperature difference becomes less. This occurs because of the increase of
mechanical stresses at larger values of the hydrostatic pressure. For higher values of 4/R the
effect of internal pressure on the critical buckling temperature becomes less.

Figure (16) displays the critical temperature difference versus the dimensionless parameter
h/R for the steel, the ceramic, and the FGM shallow spherical shells with £ = 0.5, k=2, and
¢r = 10° under P = 80 kPa. The material properties are assumed to be temperature
independent. The curves illustrate that under thermomechanical loading, the stability of an
FGM shallow spherical shell is larger than that of a pure metallic one and smaller than that of
a pure ceramic one. Additionally, the stability of FGM shallow spherical shell decreases as
the power law index k£ increases.

Figure (17) gives the critical temperature difference versus the dimensionless parameter
h/R for the FGM shallow spherical shells with £ = 2and various ¢; under P = 80 kPa. The
material properties are assumed to be temperature independent. It can easily be perceived
from the curves that the higher the value of A/R, the higher the value of the critical
temperature difference will be.

Figure (18) indicates the thermomechanical stability for the steel, the ceramic, and the
FGM shallow spherical shells with different values of 4/R, k, and ¢, under a thermal load and
hydrostatic pressure. The material properties are assumed to be temperature independent. The
curve shows that for the steel, the ceramic, and the FGM shallow spherical shells with
different values of 4/R, k, and ¢, under a thermal load and hydrostatic pressure, the stability
boundary is a perfectly straight line. The area above the stability boundary can be considered
as the instability region. Adversely, the area below the stability boundary is the stability
region.

4 Conclusion

In the present paper, the thermomechanical buckling of simply supported shallow spherical
shells made of functionally graded materials is considered. The equilibrium and stability
equations for the FGM shallow spherical shells are obtained. Derivations are based on the
first-order shell theory and Sanders kinematics relations. The buckling analysis of FGM
shallow spherical shells under two different types of loading (hydrostatic pressure and
uniform temperature rise) and their combinations are investigated. To compute the critical
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hydrostatic pressure in a given thermal environment, the mechanical properties are assumed
to be temperature dependent. However, to calculate the critical temperature difference under a
given hydrostatic pressure, the temperature independent material is assumed. That is, the
mechanical properties at room temperature are utilized. The following conclusions are drawn:

1.

At any given temperature, the critical mechanical buckling load of an FGM shallow
spherical shell is less than that of a pure ceramic shallow spherical shell and higher
than that of a pure metallic shallow spherical shell, where the material temperature
dependency is considered. Additionally, under any given hydrostatic pressure, the
critical thermal buckling load of an FGM shallow spherical shell is less than that of a
pure ceramic shallow spherical shell and higher than that of a pure metallic shallow
spherical shell, where the material temperature independency is applied.

The thermomechanical stability boundary for a steel, ceramic, or FGM shallow
spherical shells with different values of 4/R, k, and ¢, under a combined thermal load
and hydrostatic pressure is always a straight line, as shown in Fig. (18).

The stability of an FGM shallow spherical shell decreases with increasing temperature
or hydrostatic pressure.

When the power law index k increases, the critical buckling hydrostatic pressure and
temperature of an FGM shallow spherical shell decrease.

At any fixed temperature, the buckling hydrostatic pressure of a temperature
dependent FGM shallow spherical shell is less than that of a temperature independent
FGM shallow spherical shell.

The higher the value of #/R, the higher the stability of an FGM shallow spherical shell
under a thermal, mechanical, or thermomechanical load.
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Nomenclature

En, E.: moduli of elasticity of the metal and the ceramic respectively

G modulus of rigidity

h thickness

k: power law index

kij: curvature of the middle surface

M;;: moment resultant

M, moment resultant related to the stable state

Ny force resultant

Nijo: force resultant related to the equilibrium state

Nij: force resultant related to the stable state

P: hydrostatic pressure

P classical buckling hydrostatic pressure

P.: critical buckling hydrostatic pressure

R: mean radius

T, AT: temperature and temperature difference

AT, critical buckling temperature difference

u, v, w: the middle surface meridional, circumferential, and radial displacements
respectively

up, vi, Wi the middle surface meridional, circumferential, and radial displacements
related to the stable state respectively

z: radial direction

Greek symbols

Oy Ol thermal expansion coefficients of the metal and the ceramic respectively

Po: rotation of the normal vector to the middle surface about the ¢ direction

Po:: rotation of the normal vector to the middle surface about the ¢ direction
related to the stable state

Ly rotation of the normal vector to the middle surface about the 6 direction

Lo rotation of the normal vector to the middle surface about the 6 direction

related to the stable state
Vij: shear strain
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Vijm: shear strain of the middle surface
Vijmi: shear strain of the middle surface related to the stable state
&l normal strain
Eim: normal strain of the middle surface
Eimi normal strain of the middle surface related to the stable state
G circumferential direction
v Poisson’s ratio
o; normal stress
Tjjt shear stress
@ meridional direction
@i supportive angle

Appendix

The arrays of the coefficients matrix of algebraic Eqs. (18) are as follows:

a, = %Jom [(cos? A¢g cos’ ¢+%sin 24 sin 2¢ + (A° +v)cos’ Agsin’ @) B, +n’ cos’ 1¢ B,]1d4,
TN 1 . ) . 1 . ) .
a, = _TJ") [(—Esm 219 cos g +v Acos” A¢ sin @) f, +(—Esm 2A¢ cos g+ Acos” Agsin @) B,]1dg,

a; :%J.O¢L[—A(I+V)Rcos2/1¢ sin® ¢ B, +(—cos> A cos’ ¢ — (A* +v) Acos’ Ag sin’ ¢

2

2
+ A+vin® sin 21¢ cot ¢ — % sin 2A¢ sin 2¢ — Av n’ cos’ 1¢) 3,

+n’ (=22 cos” A¢ +sin 214 cot $)B,] d ¢,

a, = —”ITn :" [(%sin 214 cos ¢ —v Asin’ Ag sin @), + (%sin 2A¢ cos ¢ —Asin’ Apsin @) B,] dg,

a,, = %I:L[—nz sin® Agp, + (=2sin’ Ag cos 2¢ + %sin 2¢ sin 2¢ — 2> sin” Ag sin” @) B,] d§,

ay, = ;—?J.Om [-(1+Vv)Rsin* A sin ¢ B, + (%sin 2A¢ cos ¢ — (v A* +n’csc’ @)sin’ Ag sin @) 5,

+2(1- A*)sin’> Ag sin ¢ B;] d§,

a, = %I:L [(1+Vv)R(Asin> A¢g sin > ¢—%sin 24 sin 2¢) B, + (1 + A* +v) Asin* Ag sin” ¢

+M7_V/2)sin 2A¢ sin 2¢ + (cos > g +vn’)Asin’ Ag +wsm 2A¢ cot @) B,

+2Ansin? Ag B]dg,

a, = _ﬂlTn :L [(1+Vv)Rsin’ Agsin ¢ B, + (%sin 2A¢ cos ¢ — (1— A% v)sin* Ag sin ¢

+(n*> —cos’ g)sin* Ag csc @) B, + 2(=1+ A*)sin > Ag sin ¢ B;] d @,
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T [

=7 ) [20+Vv)R*sin* Agsin* ¢ B, + (1+ v)R(—%sin 2A¢ sin 2¢ + 2(n?

ay; =

+A7sin” ¢)sin> Ag) B, + (A*sin* Ag cos’ ¢ + %(cot2 #(1-2v)+24-24> —v)sin 2A¢ sin 2¢

+(n” +cos*@)Avsin 2Ag cot g —2(1+v)n’sin® Agcot> g+ (1+ 2> +v) A’ sin> Agsin* ¢
+(-1=v+22v +n’csc’ g)n’sin’ Ag) B, + (4(=1+ A* —cot’ ¢)n’ sin* 1¢

2

+2An” sin 2¢ cot @) B, + ((n” + A*sin > )R* sin * 1g — AR

sin 2A¢ sin 2¢) N, 1 d¢.

Tables

Table 1 Temperature-dependent Young's moduli of elasticity and thermal expansion
coefficients for steel and ceramic (from Refs. [23, 32, 33])

Steel Ceramic
Thermal Thermal
Modulus of expansion Modulus of expansion
Temperature  elasticity coefficient elasticity coefficient
(°C) (GPa) (10°°C™) (GPa) (10°°C™)
25 202.97 11.7 361.3 5.59
50 201.44 11.76 359.6 5.66
100 198.12 12.05 356.8 5.89
150 195.01 12.37 3523 6.17
200 191.29 12.7 350.0 6.42
400 171.13 13.83 338.7 7.15

Table 2 Variation in the dimensionless critical hydrostatic pressure P, /P, (n,m) with
the dimensionless parameter //R for various ¢,

b

/R 10° 20° 30° 45° 60°

0.0005 1.0291 (1,4)  1.0021 (1,9) 1.0034 (1,14) 1.0011 (1,20) 1.0005 (1,27)
0.0006 1.0071 (1,4) 1.0039 (1,8) 1.0030 (1,12) 1.0019 (1,19) 1.0008 (1,25)
0.0007 1.0147 (1,4)  1.0078 (1,8) 1.0045 (1,11) 1.0011 (1,17) 1.0007 (1,23)
0.0008 1.0408 (1,4) 1.0036(1,7) 1.0033 (1,11) 1.0011(1,16) 1.0016 (1,21)
0.0009 1.0241 (1,3) 1.0072(1,7) 1.0021 (1,10) 1.0013 (1,15) 1.0011 (1,20)
0.0010 1.0111(1,3) 1.0103(1,6) 1.0061 (1,10) 1.0026 (1,14) 1.0011 (1,19)
0.0011 1.0090 (1,3) 1.0043 (1,6) 1.0026 (1,9)  1.0024 (1,14) 1.0015 (1,18)
0.0012 1.0150 (1,3) 1.0068 (1,6) 1.0044 (1,9)  1.0017 (1,13) 1.0027 (1,17)
0.0013 1.0274 (1,3) 1.0158 (1,6) 1.0070 (1,8)  1.0036 (1,13) 1.0015 (1,17)
0.0014 1.0447 (1,3) 1.0144(1,5) 1.0031(1,8)  1.0020 (1,12) 1.0016 (1,16)
0.0015 1.0656 (2,2) 1.0076 (1,5) 1.0044 (1,8)  1.0030 (1,12) 1.0025 (1,16)
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Figures

Figure 1 The geometry and loading of the FGM shallow spherical shell.
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Figure 2 The dimensionless critical hydrostatic pressure versus the
dimensionless parameter //R for the homogenous isotropic (steel) shallow
spherical shells with various ¢;.
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Figure 4 The dimensionless critical hydrostatic pressure versus the
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spherical shells with different power law indices .
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Figure5 The dimensionless critical hydrostatic pressure versus the
dimensionless parameter /4/R for the FGM shallow spherical shells with various
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dimensionless parameter //R for the steel, the ceramic, and the FGM shallow
spherical shells with different power law indices k and the temperature
independent material.
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Figure 10 The critical hydrostatic pressure versus the dimensionless parameter
h/R for the FGM shallow spherical shells with the temperature dependent and
independent material in the thermal environment.
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Figure 11 The dimensionless critical hydrostatic pressure versus the power law
index k for the FGM shallow spherical shells with the temperature dependent
material under various temperature rises.
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Figure 12 The dimensionless critical hydrostatic pressure versus the
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spherical shells with different power law indices k and the temperature
dependent material in the thermal environment.
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Figure 14 The dimensionless critical hydrostatic pressure versus the power law
index k for the FGM shallow spherical shells with various /#/R and the
temperature dependent material in the thermal environment.
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Figure 15 The critical temperature difference versus the dimensionless
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Figure 16 The critical temperature difference versus the dimensionless
parameter //R for the steel, the ceramic, and the FGM shallow spherical shells
with different power law indices & and the temperature independent material
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