
 

 
 
 
Keywords: Fractional calculus; Non-Fourier heat conduction; Generalized Taylor’s Formula; 

Diffusion-to-Thermal wave propagation; Exact solution 
 
1. Introduction 

 
The relation between the heat flux vector and temperature gradient is called heat conduction 
constitutive model. The most well known constitutive relation in heat transfer is Fourier 
model which is originally based on experimental observations. This model which is pure 
diffusive in nature considers the instantaneous flow of heat in the medium in the presence of 
even a small temperature gradient. In other words, the velocity of Thermal propagation is 
infinite according to Fourier model which is in conflict with physical laws. Although it works 
well in many physical and engineering applications, many experimental studies have shown 
the inadequacy of Fourier model in some situations of practical interest. Up to now, some 
non-Fourier constitutive models have been introduced among which Cattaneo and phase-
lagging models have found greater applications. 
On the other hand, in the past three decades fractional calculus has proved its efficiency in 
modeling the intermediate anomalous behaviors observed in different physical phenomena. 
Fractional calculus is the calculus of differentiation and integration of non-integer orders. It is 
as old as classical (integer-order) calculus. However, until the recent decades it had not found 
considerable applications in practical and engineering fields and had been studied only in pure 
mathematics. Today, fractional calculus has shown great promise in different fields of science 
and engineering because of its inherent great abilities in modeling anomalous behaviors 
observed in many complex processes. Some main areas of application of fractional calculus 
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are modeling anomalous diffusion, viscoelasticity, finance, control theory and bioengineering 
[1-3].  
In this study, by expanding the single-phase lag model with the recently introduced fractional 
Taylor series formula, a fractional Cattaneo constitutive model is obtained. Then by 
combining the fractional Cattaneo model with energy equation, a generalized heat equation is 
derived. Then, exact solutions for two examples of the proposed fractional heat conduction 
constitutive equation are presented. 
Rest of the paper is organized as follows: In section 2, classical Cattaneo and also phase-
lagging models are briefly introduced. In section 3, the concept of fractional heat conduction 
constitutive model is introduced and a generalized heat conduction equation is derived. In 
section 3, two illustrative problems including step and pulse heating are investigated and for 
the former case, exact solutions are obtained by using finite sine-Fourier and Laplace 
transforms and in terms of two-parameter Mittag-Leffler function and graphical results are 
presented for both cases. and finally, conclusion ends the note in section 4. 
 
2. Integer-order non-Fourier constitutive models 
 
In this section, Cattaneo and phase lagging non-Fourier models are briefly introduced. In 
Cattaneo model, in order to consider finite velocity of thermal perturbations, heat flux is 
relaxed through a relaxation time τ in the following form: 

,Ԧݎሺݍ ሻݐ ൅ ߬
,Ԧݎሺݍ߲ ሻݐ
ݐ߲ ൌ െ݇ܶ׏ሺݎԦ, ሻ    (1)ݐ

where 2
tτ= D C is thermal relaxation time, k, D and Ct are thermal conductivity, thermal 

diffusivity and speed of thermal wave in the medium, respectively. 
If we combine Eq.    (1) with energy equation 

( )div∂
∂ gen
Tρc = - q(r,t) + q
t

v  (2)

and eliminate the flux term, it results to the following Cattaneo heat transfer equation 
2

2
2

gen
gen

qT Tρc ρcτ k T τ q
t t t

∂∂ ∂
+ = ∇ + +

∂ ∂ ∂
 (3)

Since Eq. (3) is damped wave equation, it is also called thermal wave model because it is 
purely propagative in nature. Cattaneo model has been studied both experimentally and 
theoretically in different fields of engineering which are, but not limited to, microscale heat 
transfer [4, 5], laser interaction with metals [6, 7], bioheat transfer [8-11], heat transfer in 
porous materials [12], fluid mechanics [13], and heat transfer in solid reactanats [14]. 
Different ranges of values for the relaxation time τ in Cattaneo model have been given in 
different heat transfer processes and materials. Table 1 lists the values of relaxation time for 
some typical materials. As can be seen from Table 1, τ for nonhomogeneous materials differs 
greatly to that of metals and semi- and super conductors. The possible explanation for this 
difference is given in [12].  
Another well-known and extensively used non-Fourier model is based on phase-lagging or 
delayed constitutive models. The simplest model of this kind is single-phase-lag model which 
is based on the assumption of the existence of a delay between the heat flux and its 
temperature gradient in the following form: 
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qq(r,t + τ ) k T(r,t)= − ∇v v  (4) 

where τ is phase-lag in time. Expanding Eq. (4) up to first order by Taylor series expansion 
(assuming τ is small compared with t) results to  

,Ԧݎሺݍ ݐ ൅ ߬ሻ ൌ ,Ԧݎሺݍ ሻݐ ൅ ߬௤
,Ԧݎሺݍ߲ ሻݐ
ݐ߲ ൌ െ݇ܶߘሺݎԦ, ሻ (5)ݐ

Equation (5) is identical to Eq.    (1) but has been derived through phase-lagging concept. 
Another phase-lagging based model is Dual-Phase Lag (DPL) model in which there exists 
another time lag in the constitutive model in the following form 

( ) ( , )= − ∇q tq r,t +τ k T r t +τv v  (6)
where τt is called temperature gradient time lag. τq has the same explanation as in Eq.    (1) 
and is called heat flux time lag. Based on microscale approach, τt is responsible for the time 
lag resulting from the microstructural interaction. However, DPL model is widely used not 
only in modeling heat transfer processes in microscale but also in modeling anomalous 
behaviors of thermal transport observed in macroscale. This anomalous behavior which is for 
some cases wave-like and for other cases sub- or super-diffusive, cannot be captured through 
Fourier or thermal wave model which are purely diffusive and propagative in nature, 
respectively. Some fields of application of DPL model are modeling heat transfer in 
microscale heat transfer [5], porous medium [15] and bioheat transfer [16, 17]. 
 
3. The fractional heat conduction constitutive model 
 
As observed in the previous section, in both thermal wave and DPL models, expanded heat 
conduction equation can be obtained by inserting (at least) first-order Taylor series expansion 
of non Fourier constitutive equations (single- or dual-phase lag models) into the heat balance 
relation i.e. eliminating heat flux between two equations.  
Recently, Odibat et al. [18] introduced a fractional Taylor series expansion according to 
which we can expand single-phase lag constitutive model (Eq. (4)) in the following form: 
 

( ) ( ) ( )
( ) ( ) , 1

1

α

α

q r,tτq r,t + q r,t + -k T r,t 0 < α
+ tα

α∂
τ = = ∇ ≤

Γ ∂

v
v v v

 
 

(7)

where α is fractional order of  differentiation. This kind of fractional Taylor series formula has 
been recently used to derive the fractional-order conservation of mass equation and it has 
been shown that fractional Taylor series of mass flux is able to exactly represent non-linear 
flux in a control volume using only the first two terms as long as the flux can be written as a 
power law function with the same exponent as the order of differentiation α [19].  
Returning to Eq. (7), it is obvious that the dimension of time lagτ  remains “second” as in the 
two previous non-Fourier models. From Eq. (7), it is obvious that when τ = 0 , no thermal 
lag, the fractional non-Fourier model reduces to Fourier model (pure diffusion) and for 

1τ 0,α =≠ , it reduces to thermal wave model and traditional integer-order Taylor series is 
also recovered. Finally for ,≠ < <0 0 1τ α , because of the non-local property of fractional 
derivative introduced through the memory kernel (memory integral) existing in the definition 
of fractional derivative, it models the intermediate processes between thermal wave and pure 
diffusion (parabolic) which cannot be captured through integer-order Taylor series expansion 
of single-phase lag model i.e. Eq. (1). This feature is carried out in DPL model by adjusting 
the values of τq and τt. 
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Several definitions of a fractional derivative have been proposed, for example the definitions 
of Riemann-Liouville, Grünwald-Letnikov and Caputo [3]. From the historical point of view, 
Riemann-Liouville definition seems to be the most important definition among the others, 
because many of the later achievements of fractional calculus have come from this definition. 
However, the fractional Taylor series is valid only with Caputo definition [18]. Caputo 
definition enables us to use initial/boundary conditions (in this study initial conditions since 
fractional derivative has been applied in time domain) of practical type in the formulation. 
Also it has the advantage of employing the classical Laplace transform for fractional 
derivatives which is very useful in deriving the analytic solution as is done in the next section. 
In other words, Riemann-Liouville definition is more preferred in pure mathematics, but not 
in applied and engineering problems which involve standard definitions for initial/boundary 
conditions. For this reason Caputo definition is preferred in modeling practical problems. On 
the other hand, Grünwald-Letnikov definition serves as an efficient definition for numerical 
approximation of a fractional derivative based on Riemann-Liouville definition. Since these 
two definitions are equivalent for a wide class of functions.   
These three definitions are defined as [3]: 

( )
( )

1Riemann-Liouville : ,
tα n

0 α+1-mα n
0

f τd fD f(t) dτ m -1< α< m, m N,
dt (m -α) t t - τ

α ∂
≡ ≡ ∈

Γ ∂ ∫ (8-a)

( ) ( )1Grunwald Letnikov : D -1
α n

ν
n-να α

ν=0

αd ff(t) f t ,
νdt t

α ⎛ ⎞
− ≡ ≡ ⎜ ⎟∆ ⎝ ⎠

∑&& (8-b)

( ) ( )
( )

m

*
0

1Caputo : D ,
tα

α+1-mα

f τd ff(t) dτ m -1< α< m, m N,
dt (m -α) t - τ

α ≡ ≡ ∈
Γ ∫  (8-c)

Since the generalized Taylor formula is based on Caputo definition, Eq. (7) is consequently 
based on Caputo definition Eq. (8-c) with the following Laplace transform 

{ } ( ) ( )⎧ ⎫
≡⎨ ⎬

⎩ ⎭
∑

α n-1
n- k -1α k

α
k =0

d f s f(t) - s f 0 ,
dt

L L  (9)

Inserting Eq. (7) into energy balance equation (2) and eliminating the flux term results in the 
following generalized fractional heat conduction equation: 

( )
( )

( ) ( )
2 ∂∂ ∂

+ = ∇ + +
∂ Γ Γ ∂∂

α+1
gen

genαα+1

qT c Tc k T q
t 1+α 1+α tt

αα αρ τ τρ  (10)

 
4. Illustrative example 
 
In order to understand the role of fractional order α in Eq. (7), two illustrative examples are 
chosen to be solved analytically through finite sine-Fourier and Laplace transforms. The 
details of the procedure are also presented, for they are thought to be useful in the context of 
fractional calculus.  
Consider a one dimensional fractional non-Fourier heat conduction problem in a finite slab 
with no heat generation 

( )
( )

( )

2

t
∂ ∂ ∂

+ =
∂ Γ ∂∂

α+1α

2α+1

T ρcτ T Tρc k
t α+1 x

 (11)

under homogeneous initial conditions 

0,∂
=

∂

t = 0 : T = 0,
Tt = 0 :
t

 (12)
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and the following constant step heating boundary conditions 
0x = 0 : T = T = constant,

x = L : T = 0,
 (13)

Taking the finite sine-Fourier transform of Eq. (11) and applying boundary conditions (13), 
we obtain 

( )

( ) ( ) ,
Γ

α+1α
2
n n 0α+1

dT τ d T+ = -ξ T +ξ T
dt (α+1) dt

D  (14)

where k ρc=D  is thermal diffusivity, nξ = nπ L and  

sin d∫
L

n
0

T = T(n,t) = T(x,t) (ξ x) x ,  (15)

is the finite sine-Fourier transform of T(x,t). Taking the Laplace transform of Eq. (14) and 
using Eq. (9) and initial conditions (12), we obtain 

⎛ ⎞
⎜ ⎟Γ⎝ ⎠

* n 0
α

α+1 2
n

ξ TT = ,
τs s + s + ξ

(α+1)

D

D
 

(16)

where asterisk denotes Laplace transform. Using partial fraction, Eq. (16) takes the form 
⎡ ⎤
⎢ ⎥Γ⎢ ⎥
⎢ ⎥
⎢ ⎥Γ⎣ ⎦

α
α

* 0
α

α+1 2n
n

τ1+ s
T 1 (α+1)T = - ,

τξ s s + s + ξ
(α+1)

D
 (17)

Eq. (17) can be simplified as 
⎡ ⎤
⎢ ⎥Γ⎣ ⎦

α
* -1 α0 0

n n

T T1 ς τ ςT = - s + s ,
ξ s ξ 1+ς (α+1) 1+ ς

 (18)

where  
( )

( )
Γ

Γ

-α

α+1 2 -α
n

τ α+1 s
ς = ,

s + ξ τ α+1D
 (19)

We can rewrite Eq. (18) in the following form 

( ) ( ) ( )( )
( )( )

( ) ( )( )
( )( )

∞

∞

Γ
Γ

Γ
Γ

∑

∑

k
k +1k -α k +1* 0 0

k +1α+1 2 -αk =0n n n

k +α
kk -αk0

k +1α+1 2 -αk =0n n

T T1 sT = - -1 τ α+1
ξ s ξ s + ξ τ α+1

T s- -1 τ α+1 ,
ξ s + ξ τ α+1

D

D

 

(20)
Considering the Laplace transform of Mittag-Leffler function [3] 

( ) ( )( )
( )

E d ,
∞

=∫
α - β

n-st αn+β -1 α
α,β n+10 α

n!se t ±at t
s am

 (21)

where ( )En
α,β z is the two-parameter Mittag-Leffler function which can be said as a counterpart 

of exponential function in fractional calculus 

( ) ( ) ( ) ( )
( )

E E ,
∞

≡ =
Γ∑

jn
n
α,β α,βn

j =0

j + n !zdz z
dz j! αj +αn + β

 (22)

then, term-by-term Laplace inversion of (20) gives 
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( ) ( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

E

E

∞

∞

Γ
Γ

Γ
Γ

∑

∑

k +1k -α k +1 α k +1
(k) 2 -α α+10 0
α+1,α+1- k n

k =0n n
kk -αk αk

(k) 2 -α α+10
α+1,1- k n

k =0n

-1 τ t α+1T TT = - - ξ τ α+1 t
ξ ξ k!

-1 τ t α+1T- - ξ τ α+1 t ,
ξ k!

D

D

 

(23)
Taking the inverse finite sine-Fourier transform of Eq. (23) gives the exact explicit solution of 
temperature distribution as 

( ) ( ) ( )( ) ( )

( )( )

( ) ( )( ) ( )( ) ( )

E

E sin

∞ ∞

∞

⎡ Γ
⎢ Γ
⎢⎣

⎤Γ
⎥Γ
⎥⎦

∑ ∑

∑

k +1k -α k +1 α k +1
(k) 2 -α α+10 0
α+1,α+1- k n

n=1 k =0n n

kk -αk αk
(k) 2 -α α+10
α+1,1- k n n

k =0n

-1 τ α+1 tT T2T = - - ξ τ α+1 t
L ξ ξ k!

-1 τ α+1 tT- - ξ τ α+1 t ξ x ,
ξ k!

D

D

(24)
If τ=0, the result is reduced to classical Fourier model. In this case, the solution (24) becomes 

( )exp sin
∞

⎡ ⎤⎣ ⎦∑ 20
n n

n=1 n

T2T = 1 - (- ξ ) ξ x ,
L ξ

D  (25)

If α=1 and τ≠0, then solution is reduced to thermal wave mode. From Eq. (16) we obtain 
( ) ( ) ( )exp exp

sin
∞ ⎡ ⎤

⎢ ⎥
⎣ ⎦

∑ 2 1 1 20
n

n=1 n 1 2

s s t - s s tT2T = 1+ ξ x ,
L ξ s - s

 (26)

where 
2
n

1,2

-1 ± 1 - 4 ξ τ
s = ,

2τ
D

 (27)

The dimensionless form of the final solution (24) can be obtained by introducing the 
following dimensionless parameters in the solution: 

2 2
0

x Tε = , η = nπ, δ = τ , κ = t, θ =
L L L T

D D
 (28)

Then the compact dimensionless form of the solution becomes: 

( ) ( )

( )( ) ( )

( ) ( )( ) ( ) ( )

Γ E Γ

Γ E Γ sin

α∞ ∞

α

α∞

α

⎡ ⎛ ⎞⎛ ⎞⎢ ⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎝ ⎠⎣

⎤⎛ ⎞⎛ ⎞ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎥⎝ ⎠⎦

∑ ∑

∑

k α k +1 +1
k +1 (k) 2

α+1,α+1- k
n=1 k =0

k αk +1
k (k) 2

α+1,1- k
k =0

-11 1 κ κθ = 2 - α+1 - η α+1
η η k! δ δ

-11 κ κ- α+1 - η α+1 εη ,
η k! δ δ

 

(29)
As can be seen from Eq. (29), multiple summations appear in the solution which is very 
common in finding the analytic solution of fractional partial differential equations. The 
problem which arises next is the slow convergence of the solution and the difficulty of 
numerical processing of Eq. (29). Therefore, Laplace transform and Riemann-sum 
approximation for Laplace inversion have been used as an alternative approach. In this 
technique, we first take the Laplace transform of the governing partial differential equation 
and then, by applying the boundary conditions, solve it for finding Θ(s,ε) which is the 
Laplace transform of the dependent variable θ(κ,ε) of the problem. Then for Laplace 
inversion, we use Riemann sum approximation for Bromwich contour integral in the 
following form: 
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( ) ( ) ( )
1

1, , Re , 1
2

N
n

n

e ins s
=

⎡ ⎤⎛ ⎞= = + = + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑

γκ πθ κ ε Θ γ ε Θ γ ε
κ κ

 (30)

where the value of γ is equal to ( )2 e+ κ for faster convergence of the numerical summation 
and Re returns to the real part of the summation. In Eq. (30), e is the neperian number. 
Figures 1-6 show the temperature distribution for the case of step heating for α in decreasing 
order. As α changes from 1 (thermal wave solution) in Fig. 1 to zero (Fourier solution) in Fig. 
6, the sharpness of the propagation of step boundary perturbation into the medium decreases; 
in other words, hyperbolicity decreases and diffusivity becomes more and more dominant as α 
decreases. This feature can be more observable if we find the temperature distribution for the 
case of a pulse heating. In this case, initial conditions are the same as step heating but 
boundary conditions are defined as follows 

0 0.02
0.02

θ ≤ κ <⎧
ε ⎨θ ≤ κ⎩
ε θ

= 1,
= 0 :

= 0,
= 1 : = 0,

 

(31)
The procedure in finding the analytic solution for pulse heating is similar to that of step 
heating presented above. Therefore, it has not been included for the sake of preserving space. 
In Figs. 7-12, temperature distribution for the case of pulse-heating has been presented. Two 
important features are readily observable in these results: first: as α decreases from 1 in Fig. 7 
to zero in Fig. 12, heat effected zone in the medium resulted from boundary thermal 
perturbation increases. This feature can be observed from the wider dome (solid line indicated 
in figures 7-12) that is formed as α decreases through figures 7-12. Second feature returns to 
the change in the concept of memory of modeling as α reduces from thermal wave case in Fig. 
7 to Fourier (purely diffusive nature) in Fig. 12. Again, taking a closer look at dome in these 
figures we observe that the height of the dome reduces as α decreases. Keeping in mind that 
the boundary perturbation is a pulse, we conclude that as α decreases, the modeling loses its 
memory from the thermal perturbation applied at x=0.  
It should be mentioned that in DPL model, as mentioned in previous section, in order to 
capture the wave-like behavior of thermal response, some diffusion is injected through 
adjusting the value of τt in order to affect the purely wave behavior of τq. In fractional 
Cattaneo model presented in this study and as observed in graphical results, this wave-like 
behavior is captured through lowering the hyperbolicity of the modeling through fractional 
(non-integer) order of differentiation α introduced in Eq. (7). 
 
5  Conclusions 
 
By applying the generalized Taylor’s formula on single-phase lag equation, a macroscopic 
fractional heat conduction constitutive model is derived. Based on the resulting fractional 
model and using the Laplace and finite sine-Fourier transforms, exact solutions for step and 
pulse heating are obtained and shown graphically. It has been shown that the resulting 
fractional constitutive model can capture the intermediate processes between pure diffusion 
and thermal wave through changing the order of fractional differentiation α. In other words, 
fractional constitutive model allows the interpolation between pure diffusion and thermal 
wave nature of heat transfer. Considering the great capabilities of fractional derivatives in 
modeling dynamics of complex systems and processes, it seems promising to use fractional 
calculus to model anomalous heat transfer processes more accurately in future. 
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Nomenclature 
 
C: Specific heat at constant pressure 

Ct: Thermal wave speed 

D: Thermal diffusivity 

Eα,β: Two parameter Mittag-Leffler function 

k: Thermal conductivity 

q: Heat flux 

qgen: Heat source term 

t: Time 

T: Temperature 

T0: Constant temperature used as boundary condition 

T : Finite sine-Fourier transform of T 

Greek symbols 

α : Fractional (non-integer) order of time derivative (fractionality) 

δ : Dimensionless time lag 

ε : Dimensionless space variable 

κ : Dimensionless time  

θ : Dimensionless temperature 

ρ : Density 

τ : Time lag 

qτ : Heat flux time lag 

tτ : Temperature gradient time lag 
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                             Table 1 values of relaxation time τ [18] 

Materials τ (in seconds) as function of T 
cryogenic room high 

Metals    
Aluminum 10-11-10-6 10-14-10-11 <10-14 
Tantalium 10-8-10-6 10-13-10-8 <10-13 

Superconductors    
Tantalium ≈10-8   
Niobium ≈10-8   
YBaCuO ≈10-10 ≈10-12  

Semiconductors    
Gallium Arsenide 10-10-10-7 10-13-10-10 <10-13 

Organic Materials    
Tissue 10-1000 1-100  

Porous materials    
Sand (187 µm, 42% porosity)  ≈20  
Glass (206 µm, 36% porosity)  ≈10  
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Figures 

Figure 1 Thermal response for the case of step heating, 
α=1.0, δ=0.05 

Figure 2 Thermal response for the case of step heating, 
α=0.95, δ=0.05 

 
 
 

Figure 3 Thermal response for the case of step heating, 
α=0.8, δ=0.05 

 
 
 
 

Figure 4 Thermal response for the case of step heating, 
α=0.5, δ=0.05 
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Figure 5 Thermal response for the case of step heating, 
α=0.3, δ=0.05 

 
 
 
 

Figure 6 Thermal response for the case of step heating, 
α=0.0, δ=0.05 

Figure 7 Thermal response for the case of pulse heating, 
α=1.0, δ=0.05 

Figure 8 Thermal response for the case of pulse heating, 
α=0.95, δ=0.05 
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Figure 9 Thermal response for the case of pulse heating, 
α=0.8, δ=0.05 

 
 
 

Figure 10 Thermal response for the case of pulse heating, 
α=0.5, δ=0.05 

 

Figure 11 Thermal response for the case of pulse 
heating, α=0.3, δ=0.05 

Figure 12 Thermal response for the case of pulse heating, 
α=0.0, δ=0.05 
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  چكيده
در اين مقاله، با اعمال بسط سري تيلور كسري بر روي مدل ساختاري تاخير زماني منفرد، يك معادله 

معادله با تركيب معادله ساختاري كسري معرفي شده با . گرددساختاري كسري انتقال حرارت معرفي مي
معادله انتقال حرارت بدست آمده قادر است كه  اين .آيدبالانس انرژي، معادله كلي انتقال حرارت بدست مي

با همچنين، . هاي كلاسيك فوريه و موج حرارتي را مدل نمايدبين مدلرفتارهاي مياني انتقال حرارت 
براي تحريك  كسري انتقال حرارت استفاده از تبديل لاپلاس و تبديل فوريه سينوسي، جواب دقيق مسئله

   .ارائه گرديده استپله و پالس 


