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An Enhanced Flux Treatment in Solving
Incompressible Flow in a Forward-

S.E. Razavi’ Facing Step

Associate Professor | The aim of this paper is to give a detailed effect of several
parameters such as step height, Reynolds number, contraction
ratio, and temperature difference between the entrance and
solid boundaries, of a forward-facing step. An accurate length
of separation and reattachment zones are achieved. A finite-
volume method (FVM) has been developed to study
incompressible flow in a forward-facing step along with
artificial compressibility technique. The governing equations
are solved by time marching using a fifth-order Runge-Kutta

S. Ezazi T jtime stepping. The proposed explicit finite volume method uses a

Lecturer | New biasing discretization in space. The proposed model reveals

that pressure and velocity fields are determinable in a wide

range of Reynolds numbers up to 330 without artificial

dissipation. The numerical results agree well with the available
experimental and numerical data.
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1. Introduction

The existence of flow separation and subsequent reattachment due to a sudden compression in
the flow passages, such as forward-facing steps, plays an important role in the design of a
wide variety of engineering applications where heating or cooling is required. These heat
transfer applications appear in cooling systems for electronic equipments, combustion
chambers, and energy systems equipment, environmental control systems, high performance
heat exchangers, and cooling passages in turbine blades. A great deal of mixing of high and
low energy fluid occurs in the reattachment flow regions of these devices [2]. The
configuration of a forward-facing step has been investigated much less than its counter part,
the backward-facing step. Thisis mainly due to the fact that the backward-facing step is often
used as a benchmark test for computations whereas the calculation of the forward-facing step
is quite a delicate task. In other words, very little has been published on the problem of the
laminar separation on a forward-facing step, and neither its topology nor its relevant scales
are known in a predictable form. Although forward-facing step configurations appear in flows
over obstacles, such as buildings [1]. In the forward-facing step, the flow field is more
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complicated and one or two separated regions may develop with upstream and downstream of
the step [2].

An efficient code is the key to solution methodologies which would produce results using
the least amount of computing time and memories. Thisis particularly true for problems with
high Reynolds numbers. Algorithms for solving the Euler and Navier-Stokes equations with
FVM have been grown in recent years [4, 5]. The FVM of Jameson et a has proved to be
useful as a tool for aerodynamic applications and Navier-Stokes equations [6]. Among the
various schemes proposed for the flux calculation in FVM, the Jameson's flux averaging is
still of use because of its robustness. The artificial compressibility approach of Chorin [7] is
applied, to incompressible Navier-Stokes equations which produces a hyperbolic dominated
system of equations. It was shown by Volpe that the compressible codes can predict
accurately the flow features of incompressible flows [8]. The advantage of the proposed
algorithm is that it can solve the flow field at high Reynolds number up to 2300 relative to
hydraulic diameter and 330 relative to step height of reference [1]. In fact we solved the two
dimensional flow-field at central line and in vicinity of the step and obtained high precision
numerical results and extracted the exact location of separation and exact length of
recirculation region at each Reynolds number in comparison with experimental data. This
problem is not well clarified by PTV method and it is not able to explain the flow quality in
the vicinity of step and at the central line [1]. A pressure based method is used by Barbosa
and Anand to achieve properties of flow field [3]. Wilhelm and Kleiser presented some results
using spectral element method. The present benchmark case suffers from the lack of
published works in the technical literature. Therefore, the authors have tried to give the
maximum possible effort in this regard. In this work the finite-volume method is equipped by
a biased flux treatment to simulate the flow behavior in a forward-facing step. A set of
upwind-biased schemes, has recently been cited in [9]. Also, a class of characteristic based
schemes has been developed based on wave propagation, applying to backward-facing step
[10].

2. Governing Equations

The integral form of Navier-Stokes equations with artificial compressibility can be written as:

d
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in which A and 0A are the domain area and perimeter respectively. Thef is artificial
compressibility parameter and Re is based on the step height. Pr shows the Prandtl number
assumed to be constant. Equation (1) is in non-dimensional form by applying the following
relations:
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Where 0" denotes the uniform wall temperature. For simplicity the * has been eliminated in
equation (1). The grid is generated algebraically and shown in figure 1.

3. Discretization of the Governing Equations

3.1. Space Discretization

The second term of equation (1) is discretized over the face asin figure 2:

4
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The enhanced flux treatment plays an important role in accuracy and stability of solutions.
A pressure based flux upwinding has been used by defining a parameter as:

Pi;
g=—u__ ©
Pij + Piia

For example, at right side of primary cell, flux averaging is computed by
Fas =CF,; +(1-E)F,,; or K =EF; +(1-¢)F,,; instead of relation (5).

i+1,]
The second-order derivatives are discretized as the following manner:
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¢ standsfor u,v,0. Applying relation (7) on cell ABCD yields:
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3.2. Time Discretization

37

(8)

the secondary cells are used. As an instance at face AB from

(9)

(10)

(11)

(12)

(13)

(14)

A fifth-order Runge-Kutta algorithm is used for time discretization because of its wide range
of stability and rapid convergence in comparison to other schemes. By averaging the flow

parameters over acell equation (1) becomes:

aU 1
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Whereas U is mean value of variables over thecell and S" isthe cell area

(15)
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The equation (15) is considered as follow:

%+ Q(U)=0 (16)

In which afifth-order Runge-Kutta algorithm is applied as:

Um=U°-a, AtQ™Y(U), a,=1/4,1/6,3/81/2,1 m=12345 (17)

4. Boundary conditions

Consistent solid boundary conditions must ensure the disturbance dissipation in the
discretized domain without reflection. On the solid boundaries, the usual no-dlip conditionsis
applied, i.e. u=0,v=0. For the temperature and pressure, 6=1, py =1.5p,, —0.5p,,
where py implies the solid boundary pressure. The inflow boundary conditions are computed
by v=0, p=15p,; -0.5p,,,;, T=T,.

To provide a fully developed velocity profile a parabolic profile at inlet is used i.e.
u=(-3y? +12y)/8 this profile satisfies corresponding boundary conditions. For outflow
boundary conditions(u, v, T) are extrapolated from inside of computational domain while the
pressure is fixed.

5. Numerical results and discussion

To investigate the performance of the proposed FVM, a series of tested were conducted. Error
norm is defined by:

M
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= LY <10°® (18)
X

N
i=1

Error =

where N and M are the cell numbers in horizontal and vertical directions respectively. In this
research a complete study for possible cases that can exist in engineering problems is done.
Grid independencies have accomplished for Reynolds number 330 in figure 3 by four levels
of grids namely 40x 240, 40x 360, 60x 240 and 60x360. In fact, the difference in velocity

profile appeared to be negligible for four finest successive levels of grids. This has leaded us
to use mentioned grids in al subsequent calculations considering relative cost of computation
with achievable accuracy. In order to study the effect of artificial compressibility parameter
on the solution accuracy, the distribution of local Nusselt number for different values of it are
plotted at Re=200 in figure 4. This figure 4 reveals that the steady-state results are not
sensitive to artificial compressibility parameter, although our findings illustrated that its value
influences stability and convergence rate of the solution. For this particular case study,
artificial compressibility method parameter of 1 shows better behavior. In figure 5, the
enhanced method resulted in a faster convergence rate. Figure 6 shows substantial agreement
between Nusselt number by this research and other numerical results. At the channel entrance
the distribution of Nusselt number starts with a high value and behaves as the classical
thermal entry flow problem. However, at the vicinity of the step edge the Nusselt distribution
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suddenly decreases. This particular behavior is associated with the recirculation zone
upstream of the step and adjacent to the bottom wall. Then it is observed that the distribution
sudden increases to a maximum value due to the cause of the sudden contraction.

The numerical results agree well with the available experimental and numerical data.
Figures 7, 8, 9 and 10 represents stream lines and separation location for the selected
Reynolds numbers to show different cases for creation diverse recirculation regions up stream
and together upstream and down stream of step. It is observed that as contraction ratio (H/h)
increases, down stream recirculation region disappears and also, as Reynolds number
increases the presence of recirculation regions become more prominent by having larger
regions of negative u-velocity component in the X, y coordinate directions. Streamline plots
show that recirculation region place and its length is a direct function of boundary layer
thickness approaching the step and step height (5/h). Same results are present for lower Re

numbers (165, 134, 50, 10).

6 . Conclusion

In present research, a FVM second order scheme is developed to solve incompressible flows.
Convective flux terms are discretized first turn by averaging and second turn by enhanced
flux treatment which results in more rapid convergence rate. Viscous and thermal conduction
terms are discretized by a second-order technique. Governing equations are discretized in time
by fifth-order Runge-Kutta scheme. Artificia compressibility technique is employed to
couple continuity to momentum equation.
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Nomenclature
A,0A : Domain area and perimeter

CFL:
F, G:
H/h:

M:

M, N:

X, Y

Courant-Friedrichs-Levy number
Convective flux vectors
Contraction ratio

Center of cdll

Céll numbers

Nusselt number

Pressure

Prandtl number

Viscous flux vectors

Reynolds number

Cell area

Secondary cell area
Temperature

Dimensionless time
Dimensionless state vector
Horizontal dimensionless velocity component
Free stream velocity

Vertical dimensionless velocity component
Physical coordinates

Greek symbols

S D e O Q

Runge-K utta coefficient

Artificial compressibility parameter
Boundary layer thickness
Standsfor u, v, 6

Dimensionless temperature
Kinematic viscosity

Enhanced flux treatment parameter
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Subscripts and superscripts

wW: wal

0: Environment

" Dimensionless
Mean

Figures

h

Figure 1 A part of 40x 240 algebraic grid for the forward-facing step

Figure 2 Primary cells (bold lines) and secondary cells (thin lines)

in the finite-volume method
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Figure 7 Streamlines for Re=330 with
contraction ratio (H/h)=4

Figure 8 Separation location for Re=330
contraction ratio (H/h)=4
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