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1.  Introduction 
 
The existence of flow separation and subsequent reattachment due to a sudden compression in 
the flow passages, such as forward-facing steps, plays an important role in the design of a 
wide variety of engineering applications where heating or cooling is required. These heat 
transfer applications appear in cooling systems for electronic equipments, combustion 
chambers, and energy systems equipment, environmental control systems, high performance 
heat exchangers, and cooling passages in turbine blades. A great deal of mixing of high and 
low energy fluid occurs in the reattachment flow regions of these devices [2]. The 
configuration of a forward-facing step has been investigated much less than its counter part, 
the backward-facing step. This is mainly due to the fact that the backward-facing step is often 
used as a benchmark test for computations whereas the calculation of the forward-facing step 
is quite a delicate task. In other words, very little has been published on the problem of the 
laminar separation on a forward-facing step, and neither its topology nor its relevant scales 
are known in a predictable form. Although forward-facing step configurations appear in flows 
over obstacles, such as buildings [1]. In the forward-facing step, the flow field is more 
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An Enhanced Flux Treatment in Solving 
Incompressible Flow in a Forward-
Facing Step 
The aim of this paper is to give a detailed effect of several 
parameters such as step height, Reynolds number, contraction 
ratio, and temperature difference between the entrance and 
solid boundaries, of a forward-facing step. An accurate length 
of separation and reattachment zones are achieved. A finite-
volume method (FVM) has been developed to study 
incompressible flow in a forward-facing step along with 
artificial compressibility technique. The governing equations 
are solved by time marching using a fifth-order Runge-Kutta 
time stepping. The proposed explicit finite volume method uses a 
new biasing discretization in space. The proposed model reveals 
that pressure and velocity fields are determinable in a wide 
range of Reynolds numbers up to 330 without artificial 
dissipation. The numerical results agree well with the available 
experimental and numerical data.  
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complicated and one or two separated regions may develop with upstream and downstream of 
the step [2].  

An efficient code is the key to solution methodologies which would produce results using 
the least amount of computing time and memories. This is particularly true for problems with 
high Reynolds numbers. Algorithms for solving the Euler and Navier-Stokes equations with 
FVM have been grown in recent years [4, 5]. The FVM of Jameson et al has proved to be 
useful as a tool for aerodynamic applications and Navier-Stokes equations [6]. Among the 
various schemes proposed for the flux calculation in FVM, the Jameson's flux averaging is 
still of use because of its robustness. The artificial compressibility approach of Chorin [7] is 
applied, to incompressible Navier-Stokes equations which produces a hyperbolic dominated 
system of equations. It was shown by Volpe that the compressible codes can predict 
accurately the flow features of incompressible flows [8]. The advantage of the proposed 
algorithm is that it can solve the flow field at high Reynolds number up to 2300 relative to 
hydraulic diameter and 330 relative to step height of reference [1]. In fact we solved the two 
dimensional flow-field at central line and in vicinity of the step and obtained high precision 
numerical results and extracted the exact location of separation and exact length of 
recirculation region  at each Reynolds number in comparison with experimental data. This 
problem is not well clarified by PTV method and it is not able to explain the flow quality in 
the vicinity of step and at the central line [1]. A pressure based method is used by Barbosa 
and Anand to achieve properties of flow field [3]. Wilhelm and Kleiser presented some results 
using spectral element method. The present benchmark case suffers from the lack of 
published works in the technical literature. Therefore, the authors have tried to give the 
maximum possible effort in this regard. In this work the finite-volume method is equipped by 
a biased flux treatment to simulate the flow behavior in a forward-facing step. A set of 
upwind-biased schemes, has recently been cited in [9]. Also, a class of characteristic based 
schemes has been developed based on wave propagation, applying to backward-facing step 
[10]. 

 
2. Governing Equations 

 
The integral form of Navier-Stokes equations with artificial compressibility can be written as: 
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in which A  and A∂  are the domain area and perimeter respectively. β The  is artificial 
compressibility parameter and Re is based on the step height. Pr  shows the Prandtl number 
assumed to be constant. Equation (1) is in non-dimensional form by applying the following 
relations: 
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Where *θ  denotes the uniform wall temperature. For simplicity the ∗  has been eliminated in 
equation (1). The grid is generated algebraically and shown in figure 1.  
 
3. Discretization of the Governing Equations 

3.1. Space Discretization 

The second term of equation (1) is discretized over the face as in figure 2: 
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The enhanced flux treatment plays an important role in accuracy and stability of solutions. 
A pressure based flux upwinding has been used by defining a parameter as:    
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For example, at right side of primary cell, flux averaging is computed by 
j,1ij,iAB F)1(FF +ξ−+ξ=  or j,1ij,i1 F)1(FF +ξ−+ξ=  instead of relation (5). 

The second-order derivatives are discretized as the following manner: 
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φ  stands for θ,v,u . Applying relation (7) on cell ABCD yields: 
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For calculating 
y∂
φ∂  and 

x∂
φ∂  the secondary cells are used. As an instance at face AB from 

AEBM secondary cell, one has: 
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EBEB,EBEB xxxyyy −=∆−=∆                                                  (12) 

)(
4
1

EMSSEA φ+φ+φ+φ=φ                                                    (13) 

 

∑ ∑
= =

∆−∆=∆−∆+
∂
∂ 4

1k

4

1k
kkkkkkkk )xSyR()xGyF(

t
U.vol                           (14) 

 
  
3.2. Time Discretization 
A fifth-order Runge-Kutta algorithm is used for time discretization because of its wide range 
of stability and rapid convergence in comparison to other schemes. By averaging the flow 
parameters over a cell equation (1) becomes: 
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Where as U  is mean value of variables over the cell and S ′′  is the cell area.              
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The equation (15) is considered as follow:  
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In which a fifth-order Runge-Kutta algorithm is applied as:  
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4. Boundary conditions 
 
Consistent solid boundary conditions must ensure the disturbance dissipation in the 
discretized domain without reflection. On the solid boundaries, the usual no-slip conditions is 
applied, i.e. .0v,0u ==  For the temperature and pressure, ,1=θ  2,i1,isi p5.0p5.1p −=  
where sip  implies the solid boundary pressure. The inflow boundary conditions are computed 
by ,0v = 0j,1ij,i TT,p5.0p5.1p =−= + . 

To provide a fully developed velocity profile a parabolic profile at inlet is used i.e. 
8/)y12y3(u 2 +−=  this profile satisfies corresponding boundary conditions. For outflow 

boundary conditions )T,v,u( are extrapolated from inside of computational domain while the 
pressure is fixed. 
 
5. Numerical results and discussion 
 
To investigate the performance of the proposed FVM, a series of tested were conducted. Error 
norm is defined by: 
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where N and M are the cell numbers in horizontal and vertical directions respectively. In this 
research a complete study for possible cases that can exist in engineering problems is done. 
Grid independencies have accomplished for Reynolds number 330 in figure 3 by four levels 
of grids namely ,24040× ,36040× 24060×  and 36060× . In fact, the difference in velocity 
profile appeared to be negligible for four finest successive levels of grids. This has leaded us 
to use mentioned grids in all subsequent calculations considering relative cost of computation 
with achievable accuracy. In order to study the effect of artificial compressibility parameter 
on the solution accuracy, the distribution of local Nusselt number for different values of it are 
plotted at Re=200 in figure 4. This figure 4 reveals that the steady-state results are not 
sensitive to artificial compressibility parameter, although our findings illustrated that its value 
influences stability and convergence rate of the solution. For this particular case study, 
artificial compressibility method parameter of 1 shows better behavior. In figure 5, the 
enhanced method resulted in a faster convergence rate. Figure 6 shows substantial agreement 
between Nusselt number by this research and other numerical results. At the channel entrance 
the distribution of Nusselt number starts with a high value and behaves as the classical 
thermal entry flow problem. However, at the vicinity of the step edge the Nusselt distribution 
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suddenly decreases. This particular behavior is associated with the recirculation zone 
upstream of the step and adjacent to the bottom wall. Then it is observed that the distribution 
sudden increases to a maximum value due to the cause of the sudden contraction. 

The numerical results agree well with the available experimental and numerical data. 
Figures 7, 8, 9 and 10 represents stream lines and separation location for the selected 
Reynolds numbers to show different cases for creation diverse recirculation regions up stream 
and together upstream and down stream of step. It is observed that as contraction ratio (H/h) 
increases, down stream recirculation region disappears and also, as Reynolds number 
increases the presence of recirculation regions become more prominent by having larger 
regions of negative u-velocity component in the x, y coordinate directions. Streamline plots 
show that recirculation region place and its length is a direct function of boundary layer 
thickness approaching the step and step height ).h/(δ  Same results are present for lower Re 
numbers (165, 134, 50, 10).  

 
6 . Conclusion  
 
In present research, a FVM second order scheme is developed to solve incompressible flows. 
Convective flux terms are discretized first turn by averaging and second turn by enhanced 
flux treatment which results in more rapid convergence rate. Viscous and thermal conduction 
terms are discretized by a second-order technique. Governing equations are discretized in time 
by fifth-order Runge-Kutta scheme. Artificial compressibility technique is employed to 
couple continuity to momentum equation.  
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Nomenclature 
A, A∂ : Domain area and perimeter 
CFL:      Courant-Friedrichs-Levy number 
F, G:     Convective flux vectors 
H/h:      Contraction ratio 
M:    Center of cell 
M, N:     Cell numbers 
Nu:       Nusselt number 
p:           Pressure 
Pr:     Prandtl number 
R, S: Viscous flux vectors 
Re:       Reynolds number 
S ′′ : Cell area 
s′ :        Secondary cell area 
T: Temperature  
t:  Dimensionless time 
U: Dimensionless state vector 
u : Horizontal dimensionless velocity component 

0V : Free stream velocity 
v :    Vertical dimensionless velocity component 
x, y:   Physical coordinates 
 
Greek symbols 
α : Runge-Kutta coefficient        
β : Artificial compressibility parameter 
δ : Boundary layer thickness 

φ : Stands for u, v, θ      
θ :    Dimensionless temperature 
υ : Kinematic viscosity  
ξ :       Enhanced flux treatment parameter     
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Subscripts and superscripts 
w: Wall  
0 : Environment 
∗ :  Dimensionless 
_:            Mean  
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Figure 1 A part of 24040× algebraic grid for the forward-facing step 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Primary cells (bold lines) and secondary cells (thin lines) 

 in the finite-volume method 
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  Figure 3 Grid independency                                                    Figure 4 Independency of results to the artificial 

                                                                                             compressibility parameter 
 
 
 
 
 
                                                                                                                                                                                                                 
 

                            
 

 

                                                                                    

                                                                                         

             

 

                                                                                                                                              

     Figure 5 Comparison of convergence rates between               Figure 6 Comparison of Nusselt number                                         
                     averaging and enhanced method for Re=134 
    
                                                                                                                      
        

 

 

 

                                                                                                                        

 

 

            

 

 

 

    Figure 7 Streamlines for Re=330 with                                   Figure 8 Separation location for Re=330 
                   contraction ratio (H/h)=4                                                         contraction ratio (H/h)=4  
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  Figure 9 Streamlines for Re=330 with                                 Figure 10 Separation location for Re=330 
                 contraction ratio (H/h)=2                                                         contraction ratio (H/h)=2 
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  چكيده
بين مقطع  نسبت انقباض و اختلاف دما هدف اين مقاله ارائه تاثير چند پارامتر مانند ارتفاع پله، عدد رينولدز،

طول دقيق نواحي جدايش جريان و . جريان و مرزهاي جامد در هندسه پله رو به جلو مي باشدورودي 
ي گيري تكنيك تراكم پذيري مصنوعي براحجم محدود با به كارروشي  .پيوست دوباره آن ارائه شده است

بر رفتار جريان  معادلات حاكم .تراكم ناپذير در هندسه پله رو به جلو توسعه داده شده است جريانمطالعه 
 مدل پيشنهادي، ميدانهاي فشار و .پنج حل شده اند كوتاي مرتبه -از الگوي زمانروي رانگ با استفاده سيال

اند، آشكار  بدون اتلاف عددي مصنوعي قابل تعيين 330تا د رينولدز اعداسرعت را كه در گستره وسيعي از 
  .ددارنتطابق خوبي ي و عددي موجود، نتايج عددي با داده هاي تجرب .كندمي 

  


