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1     Introduction 
 

Nanocomposites hold the promise of advances that exceed those achieved in recent decades in 

composite materials. The nanostructure created by a nanophase in polymer matrix represents a 

radical alternative to the structure of conventional polymer composites. These complex hybrid 

materials integrate the predominant surfaces of nanoparticles and the polymeric structure into 

a novel nanostructure, which produces critical fabrication and interface implementations 

leading to extraordinary properties [1].  

                                                           
* M.Sc. Student, University of Tehran, School of Mechanical Engineering, College of Engineering, Tehran, Iran  
† Professor, University of Tehran, School of Mechanical Engineering, College of Engineering, Tehran, Iran   

arastgo@ut.ac.ir 
‡M.Sc. Student, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran h.vossough@gmail.com 
§ Assistant Professor, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran 

  r.kolahchi@gmail.com 
**Corresponding Author, Professor, Faculty of Mechanical Engineering, Institute of Nanoscience &  

Nanotechnology, University of Kashan, Kashan, Iran  aghorban@kashanu.ac.ir  

 
 

A. H. Ghorbanpour-Arani* 
M.Sc. Student 

 

 

 

A. Rastgoo† 
Professor 

 

 

 

H. Vossough‡ 
M.Sc. Student 

 

 

 

R. Kolahchi§ 
Assistant Professor 

 

 

 

A. Ghorbanpour Arani** 
Professor 

 
 

 

Vibration Analysis of Coupled Double-

Nanocomposite Microplate-systems 
The aim of the paper is to analyze electro-thermo nonlinear vibration 

of a double-piezoelectric composite microplate-system (DPCMPS) 

based on nonlocal piezoelasticity theory. The two microplates are 

assumed to be connected by an enclosing elastic medium which is 

simulated by Pasternak foundation. Both of smart composite 

microplates are made of poly-vinylidene fluoride (PVDF) reinforced 

by zigzag double walled boron nitride nanotubes (DWBNNTs). The 

micro-electromechanical model is employed to calculate mechanical, 

thermal and electrical properties of composite. Using nonlinear 

strain-displacement relations and considering charge equation for 

coupling between electrical and mechanical fields, the motion 

equations are derived based on energy method and Hamilton's 

principle. These equations can't be solved analytically due to their 

nonlinear terms. Hence, differential quadrature method (DQM) is 

employed to solve the governing differential equations for the case 

when all four ends are clamped supported and free electrical 

boundary condition. The frequency ratio of DPCMPS is investigated 

for three typical vibrational states, namely, out-of-phase, in-phase 

and the case when one microplate is fixed in the DPCMPS. A 

detailed parametric study is conducted to scrutinize the influences of 

the small scale coefficient, stiffness of the internal elastic medium, 

the volume fraction and orientation angle of the DWBNNTs 

reinforcement, temperature change and aspect ratio. The results 

indicate that with increasing geometrical aspect ratio, the effect of 

coupling elastic medium between two smart nanocomposite 

microplates reduces. This study might be useful for the design and 

smart control of nano/micro devices such as MEMS and NEMS. 
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PVDF is an ideal piezoelectric matrix due to characteristics including flexibility in 

thermoplastic conversion techniques, excellent dimensional stability, abrasion and corrosion 

resistance, high strength, and capability of maintaining its mechanical properties at elevated 

temperature. It has therefore found multiple applications in nanocomposites in a wide range of 

industries including oil and gas, petrochemical, wire and cable, electronics, automotive, and 

construction. Boron nitride nanotubes (BNNTs) used as the matrix reinforcers, apart from 

having high mechanical, electrical and chemical properties, present more resistant to 

oxidation than other conventional nanoreinforcers such as carbon nanotubes (CNTs).  

Hence, they are used for high temperature applications [2-5]. Both PVDF and BNNT are 

smart materials, since they have piezoelectric property.  

Piezoelectricity is a classical discipline traced to the original work of Jacques and Pierre Curie 

around 1880. This phenomenon describes the relations between mechanical strains on a solid 

and its resulting electrical behavior resulting from changes in the electric polarization. One 

can create an electrical output from a solid resulting from mechanical strains, or can create a 

mechanical distortion resulting from the application of an electrical perturbation. Piezoelectric 

materials have been used to manufacture various sensors, conductors, actuators, etc. in fact, 

they have become one of the smart materials nowadays [6].  

Regarding research development into the use of smart nanocomposite, Mosallaie et al. [7] 

investigated electro-thermo-mechanical torsional buckling of a piezoelectric polymeric 

cylindrical shell reinforced by DWBNNTs with an elastic core. They concluded that the 

higher the in-fill core, the higher is dimensionless critical torsional buckling load. In another 

research, he and his co-workers [8] studied nonlinear buckling response of embedded 

piezoelectric cylindrical shell reinforced with BNNT under electro-thermo-mechanical 

loadings using harmonic differential quadrature method (HDQM). They found that the critical 

buckling load increases when piezoelectric effect is considered. Ghorbanpour Arani et al. [9] 

carried out nonlinear vibration and stability of a smart composite micro-tube made of PVDF 

reinforced by BNNTs embedded in an elastic medium under electro- thermal loadings is 

investigated. They concluded that stability of the system is strongly dependent on the imposed 

electric potential and the volume percent of BNNTs reinforcement. Electro-thermo-

mechanical nonlinear vibration and instability of a fluid conveying smart composite 

microtube made of PVDF were investigated by Ghorbanpour Arani et al. [10] based on the 

modified couple stress theory and Timoshenko beam model. In another work by the same 

author [11], static stresses analysis of carbon nano-tube reinforced composite (CNTRC) 

cylinder made of PVDF was investigated. 

In recent years, small scale effect in micro- and nano-applications of beam, plate, and shell-

type structures has been utilized on the basis of nonlocal elasticity theory which was initiated 

in the papers of Eringen [12, 13]. He regarded the stress state at a given point as a function of 

the strain states of all points in the body, while the local continuum mechanics assumes that 

the stress state at a given point depends uniquely on the strain state at the same point. 

Ghorbanpour et al. [14] studied Pasternak foundation effect on the axial and torsional waves 

propagation in the embedded double-walled carbon nanotubes (DWCNTs) using nonlocal 

elasticity cylindrical shell theory. They concluded that the frequencies are dependent to small 

scale coefficient and shear modulus of the elastic medium. Ghorbanpour Arani and Jalaei [15] 

studied transient analysis of simply-supported orthotropic single-layered graphene sheet 

(SLGS) resting on orthotropic visco-Pasternak foundation subjected to dynamic loads. Wang 

et al. [16] examined the circumferential nonlocal effect on the buckling and vibration of the 

carbon nanotubes based on Eringen’s nonlocal theory. Vibration behavior of Bilayer graphene 

sheets in a magnetic field using classic plate theory combined with nonlocal elasticity theory 

to account for the small-scale effect was investigated by Zhang et al. [17]. 

http://www.sciencedirect.com/science/article/pii/S0020722516300064
http://www.sciencedirect.com/science/article/pii/S0020722516300064
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The above studies on the nanostructures are on the basis of the nonlocal elasticity theory, 

which is not proper for a direct use in the piezoelectric materials. Recently, the Eringen’s 

nonlocal elasticity theory was extended by Zhou et al. [18] for the piezoelectric materials. In 

the nonlocal piezoelectric materials, the stress state and the electric displacement at a given 

point are, respectively, as a function of the strain state and electric potential of all points in the 

body. Ke et al. [19] employed nonlocal piezoelasticity model to nonlinear vibration analyze of 

the piezoelectric nanobeams. They used DQM for study the effects of nonlocal parameter, 

temperature change and external electric voltage on the nonlinear frequency of the 

piezoelectric nanobeams. Surface stress and small-scale effects on nonlinear vibration 

analysis of a single-layer boron nitride sheet were investigated by Ghorbanpour Arai et al. 

[20] based on theories of nonlocal and surface piezoelasticity. In another work by the same 

author [21], control and analyze the nonlinear dynamic stability of SLGSs integrated with 

zinc oxide (ZnO) actuators and sensors were studied based on surface piezoelasticity theory. 

With respect to developmental works on mechanical behavior analysis of nano- and micro-

plates, it should be noted that none of the researches mentioned above, have considered a 

coupled double-plate-system. Herein, Murmu and Adhikari [22] analyzed vibration of 

nonlocal double-nanoplate- system (NDNPS). Their study highlighted that the small-scale 

effects considerably influence the transverse vibration of NDNPS. Besides, they elucidated 

that the increase of the stiffness of coupling springs in the NDNPS reduces the small-scale 

effects during the asynchronous modes of vibration. Also, buckling behavior of the NDNPS 

was investigated by Murmu et al. [23] who showed that the nonlocal effects in the coupled 

system are higher within creasing values of the nonlocal parameter for the case of 

synchronous buckling modes than in the asynchronous buckling modes. Moreover, their 

analytical results indicated that the increase of the stiffness of the coupling springs in the 

double-GS-system reduces the nonlocal effects during the asynchronous modes of buckling. 

Exact solution for nonlocal vibration of double-orthotropic nanoplates embedded in elastic 

medium was reported by Pouresmaeeli et al. [24] who indicated that the frequency of double-

orthotropic nanoplates is always smaller than that of double-isotropic nanoplates. The three 

papers [22-24] have considered the Winkler model for simulation of elastic medium between 

two nanoplates. In this simplified model, a proportional interaction between pressure and 

deflection of SLGS’s is assumed, which is carried out in the form of discrete and independent 

vertical springs. Whereas, Pasternak suggested considering not only the normal stresses but 

also the transverse shear deformation and continuity among the spring elements, and its 

subsequent applications for developing the model for buckling analysis, which proved to be 

more accurate than the Winkler model. Free vibration of viscoelastic double-bonded 

polymeric nanocomposite plate reinforced by FG-CNTs embedded in viscoelastic foundation 

was investigated by Mohammadimehr et al. [25]. 

None of the aforementioned studies [22-25] have considered smart coupled structures while 

these structures may be used in mechanical behavior control of coupled micro- and nano-

structures. Recently, Buckling analysis and smart control of SLGS using elastically coupled 

PVDF nanoplate using the nonlocal piezoelasticity were studied by Ghorbanpour et al. [26] 

who showed that the imposed external voltage is an effective controlling parameter for 

buckling of the SLGS. Moreover, their results indicated that the effect of external voltage 

becomes more prominent at higher nonlocal parameter and shear modulus. But paper [26] is 

linear analysis and just one of two plates is smart.   

However, to date, no report has been found in the literature on the vibration of an elastically 

coupled DPCMPS. Motivated by these considerations, in order to improve optimum design of 

smart microstructure, we aim to study the electro-thermo nonlinear nonlocal vibration of an 

elastically coupled DPCMPS. Herein, the two PVDF microplates reinforced by DWBNNTs 

are coupled by an enclosing Pasternak foundation.  

http://www.sciencedirect.com/science/article/pii/S0263822315004602
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Considering the nonlinear strain-displacement relations and charge equation, the nonlinear 

governing equations are derived using energy method and Hamilton's principle. Hence, the 

DQM is presented to solve the nonlinear governing equations and estimate the frequency ratio 

of clamped supported DPCMPS. In present study, the influences of nonlocal parameter, 

geometrical aspect ratio, temperature gradient, elastic medium constants, orientation angle 

and volume fraction of DWBNNTs in polymer have been taken into account.   

     

2 Formulation 

 

2.1 Nonlocal piezoelasticity and classical plate theories 

 

2.1.1 Nonlocal piezoelasticity 

 

Based on the theory of nonlocal piezoelasticity, the stress tensor and the electric displacement 

at a reference point depend not only on the strain components and electric-field components at 

same position but also on all other points of the body. The nonlocal constitutive behavior for 

the piezoelectric material can be given as follows [21]: 

 
v

l

ij

nl

ij VxxdVxxx ),(),()(   (1) 

 
v

l

k

nl

k VxxdVDxxD ),(),(   (2) 

 where 
nl

ij and
l

ij are, respectively, the nonlocal stress tensor and local stress tensor, nl

kD and 

l

kD  are the components of the nonlocal and local electric displacement. ),(  xx  is the 

nonlocal modulus. xx   is the Euclidean distance, and lae /0  is defined that l is the 

external characteristic length, 0e  denotes a constant appropriate to each material, and a  is an 

internal characteristic length of the material. Consequently, ae0  is a constant parameter which 

is obtained with molecular dynamics, experimental results, experimental studies and 

molecular structure mechanics. The constitutive equation of the nonlocal elasticity can be 

written as [21]: 

,)1( 2 l

ij

nl

ij    (3) 

where the parameter 2

0 )( ae denotes the small scale effect on the response of structures in 

nano/ micro size, and 
2 is the Laplacian operator in the above equation. Similarly, Eq. (2) 

can be written as [21]: 

,)1( 2 l

k

nl

k DD   (4) 

 

2.1.1 Classical plate theory 

 

Based on the classical plate theory (CPT) which satisfy Kirchhoff assumption, displacement 

field is expressed as [28]: 
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
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(5) 

   where ( wvu ,, ) denote the total displacements of a point along the ( zyx ,, ) coordinates and 

( 000 ,, wvu ) are the displacements of points on the mid-plane. The von Kármán nonlinear 
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strains associated with the above displacement field can be expressed in the following form 

[28]: 
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On the basis of the CPT, shear strains xz , yz  are considered negligible. Hence, the strain 

equations in terms of the mid-plane displacements are derived by substituting the Eq. (5) into 

the Eq. (6) as follows 
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The strain components xx , yy  and xy at an arbitrary point of the sheet are related to the 

middle surface strains and curvatures tensor as follows 
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(8) 

 

where (
000 ,, xyyyxx  ) are components of the membrane strains (middle surface strains) tensor 

and (
111 ,, xyyyxx  ) are components of the bending strain (curvature) tensor.    

 

2.2 Modeling of the problem 

 

An elastically coupled DPCMPS having the length L , the width b  and the thickness h , 

assuming that blh , [27], is shown in figure (1). The origin of the Cartesian coordinate 

system is considered at one corner of the middle surface of the microplate. The x , y  and z  

axes are taken along the length, width, and thickness of the microplates, respectively. The two 

microplates are made from PVDF and reinforced by DWBNNTs in x-direction so that both 

microplates are identical. The DPCMPS is subjected to uniform temperature change and 

polarized in x-direction. The two microplates are coupled by an elastic medium which is 

simulated by the Pasternak foundation. As is well known this foundation model is 

characterized by two parameters: the Winkler modulus wk  and shear modulus gk . 
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Figure 1 Schematic of double-smart composite microplate-system 

 

2.3 Constitutive equations for piezoelectric materials 

 

In a piezoelectric material, application of an electric field to it will cause a strain proportional 

to the mechanical field strength, and vice versa. According to a piezoelectric microplate under 

electro-thermal loads, constitutive equations can be represented as: 
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where ),(),6,...,1,(, yxkjie kijij   and T  are piezoelectric constants, dielectric 

constants, thermal expansion coefficients and temperature gradient, respectively. ijC  denote 

transformed stiffness components and is defined as [28] 
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where ijC  are components of stiffness tensor.   is the orientation angle between the global 

and local Cartesian coordinates, corresponding to the angle between DWBNNTs and the main 

axis of the matrix. 

Electric field tensor E can be written in term of electric potential  as [26]: 

.E  (12) 

Using approach adopted by Tan and Tong [29] in which they use representative volume 

element (RVE) based on micro-electro-mechanical models, the mechanical, thermal and 

electrical properties of the DPCMPS can be obtained from Refs. [9, 29].  

 

2.4 Equations of motion  

 

The governing differential equations of motion are derived using the Hamilton's principle 

which is given as [25]: 
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where U is the virtual strain energy, V  is the virtual work done by external applied forces 

and K is the virtual kinetic energy. The motion equations can be derived using Eq. (13) as 
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where ),( 20 mm are mass moments of inertia and 0 denotes the density of the material. 

Meanwhile, the force resultants ),,( xyyyxx NNN and the moment resultants ),,( xyyyxx MMM of 

plate can be defined as 
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Charge equation for coupling electrical and mechanical fields is [26] 
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In this study, transverse vibration is investigated (i.e. 000 vu ). Considering 
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As well as substituting combination of Eqs. (5)-(12) and (15)-(16) into Eqs. (14) and (17), the 

dimensionless nonlinear nonlocal motion equations of DPCMPS can be written as 
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(21) 

 

 

where subscript (1) and (2) denote the upper and the lower microplates, respectively. The 

clamped supported mechanical and free electrical boundary conditions can be expressed as 

 

0/,0 *

)(

*

)(  mm WW   at edges 0  and 1  

0/,0 *

)(

*

)(  mm WW   at edges 0  and 1  
(22) 

 

 

 

2.5 Vibrational states of DPCMPS  

 

In this paper, vibrational states of DPCMPS including out-of-phase sequence, in-phase 

sequence, and one-microplate being stationary as shown in figures (2a), (2b), and (2c), are 

discussed, respectively. 
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Figure 2 Vibrational states of DSCMPS; (a) out-of-phase vibration, (b) in-phase vibration,  

(c) one microplate fixed 

 

 

2.5.1 Out-of-phase vibration 
 

In this case, both microplates vibrate asynchronously, and 0*

)2(

*

)1( WW , as shown in figure 

(2a) for first mode.   

 

  

a)) 

c)) 

b)) 
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2.5.2 In-phase vibration 
 

In this case, both microplates vibrate synchronously, hence the relative displacement between 

them disappear (
*

)2(

*

)1( WW  ), as shown in figure (2b) for first mode. Thus, any one of the two 

microplates could represent the vibration of the coupled system.  

 

2.5.3 One microplate being stationary 
 

 In this case, one microplate is fixed in the DPCMPS (i.e. 0*

)2( W ), as shown in figure (2c) for 

first mode. In mentioned case, the DPCMPS behaves as if upper microplate is embedded in 

Pasternak foundation.    

 

Generally, Since there are nonlinear terms in governing equations, we can't obtain natural 

frequency for all mentioned cases similar to the references [22-24] analytically. Therefore, we 

performed the aforementioned conditions in computer code which written by MATLAB 

software based on DQ method.  

  

2.6 DQ method 

 

As can be seen the coupled governing equations contain nonlinear terms and should be solved 

using a numerical method such as DQM. In this method, the differential equations are 

changed into a first order algebraic equation by employing appropriate weighting coefficients. 

Weighting coefficients do not relate to any special problem and only depend on the grid 

spacing. For implementation of the DQ approximation, consider a function ),( f which has 

the field on a rectangular domain ( 10  and 10  ) with  nn  grid points along x and 

y axes. According to DQ method, the rth derivative of a function ),( yxf can be defined as 

[30]: 
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where 

ijC  are weighting coefficients and defined as: 
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where )( iM  is Lagrangian operators which can be presented as: 
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The weighting coefficients for the second, third and fourth derivatives are defined as: 
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(26) 

 

In a similar method, the weighting coefficients for y-direction can be obtained. The 

coordinates of grid points are chosen as:  
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The motion equations using DQM can be rewritten as: 
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In order to carry out the eigenvalue analysis, the domain and boundary points are separated 

and in vector forms they are denoted as {d} and {b}, respectively. Hence, the discretized form 

of the motion equations (Eqs. (28)–(30)) together with the boundary conditions (Eqs. (22)) 

can be expressed in matrix form as 

   
 
 

,02

][

























b

d
MKK

K

NLL 
 

(31) 

 

in which  M ,  LK  and  NLK  are the mass matrix, linear stiffness matrix and nonlinear 

stiffness matrix. This nonlinear equation can now be solved using a direct iterative process as 

follows: 

 First , nonlinearity is ignored by taking 0][ NLK  to solve the eigenvalue problem 

expressed in equation (31). This yields the linear eigenvalue ( L ) and associated 

eigenvector. The eigenvector is then scaled up so that the maximum transverse 

displacement of the microplate is equal to the maximum eigenvector, i.e. the given 

vibration amplitude *

maxW .  

 Using linear eigenvector,  NLK  could be evaluated. Eigenvalue problem is then 

solved by substituting  NLK  into equation (31). This would give the nonlinear 

eigenvalue ( NL ) and the new eigenvector.  
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 The new nonlinear eigenvector is scaled up again and the above procedure is repeated 

iteratively until the frequency values from the two subsequent iterations ‘ r ’ and ‘ 1r

’ satisfy the prescribed convergence criteria [30] as 

0

1









r

rr

 

(32) 

where 0  is a small value number and in the present analysis it is taken to be %1.0 . 

 

3 Numerical results and discussion 

 

Mechanical, thermal and electrical properties of PVDF matrix and DWBNNT reinforcement 

are presented in Table (1) [10]. The final converged solution using the numerical procedure 

outlined in Section 2.6 above is illustrated as the influences of the elastic medium, nonlocal 

parameter, aspect ratio, temperature change on the frequency ratio of the DPCMPS. The 

frequency ratio is defined as 

,FrequencyRatio =




NL

L

 
 

where NL  and L  are the nonlinear and linear frequencies of the DPCMPS, respectively. 

Since, no reference to such a work is found to-date in the literature, its validation is not 

possible. However, the present work could be partially validated based on a simplified 

analysis suggested by Shen et al. [15] on thermal nonlinear vibration of the SLGS for which 

the coupled plate and volume percent of DWBNNT in polymer were ignored. For this 

purpose, a SLGS with 0 , KT 300 , nmL 496.9 , nmb 877.4 , nmh 145.0 , 
3

0 /5624 mkg
, 

0 Gw KK
 and 

nmae 67.00 
 is considered.  

 

Table (2) illustrates the result of validation exercise by showing nonlinear-to-linear frequency 

for different dimensionless amplitude and temperature. As can be seen, the results obtained 

are in good agreement with those expressed in [15]. 

In order to show the effect of dimensionless coupling elastic medium between two smart 

composite microplates, the frequency ratio ( LNL  / ) versus the dimensionless maximum 

amplitude (
*

maxW ) is demonstrated in figures (3a)-(3d) for three different cases of vibration 

characteristic. These cases are: 

 
Table 1 Mechanical, electrical, and thermal properties of PVDF and DBNNT 

 

DBNNT 

 

PVDF 

1.8( )E Tpa  11 238.24( )C Gpa 

0.34 
  22 23.6( )C GPa 

2

11 0.95( / )e C m 12 3.98( )C GPa 

1.2 6(1/ )x e K   66 6.43( )C GPa 
0.6 6(1/ )y e K   2

11 0.135( / )e C m  

 2

12 0.145( / )e C m  
 81.1068 10 ( / )F m  
 7.1 5(1/ )x e K   

 7.1 5(1/ )y e K   
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Case 1: Out-of-phase (asynchronous) vibration. 

Case 2: Vibration with one smart composite microplate fixed. 

Case 3: In-phase (synchronous) vibration. 

 

Noted that the coupling elastic medium in this study is simulated as spring constants of 

Winkler-type (
*

WK ) and shear constants of Pasternak-type (
*

GK ). In general, the frequency 

ratio decreases with increasing elastic medium constants. This is because increasing Winkler 

and Pasternak coefficients increases the system stiffness. In addition, the difference between 

three cases becomes remarkable with increasing values of stiffness parameter. The frequency 

ratio of cases 1 and 2 decreases with increasing elastic medium constants. Furthermore, 
LNL  /  for case 2 is higher than case 1 because in case 2, the DPCMPS treats as a single 

smart composite microplate with the elastic foundation effect.  

Therefore, the stiffness of the system in case 2 is lower than case 1 and consequently, its 

frequency ratio is higher with respect to case 1. It is also worth mentioning that the frequency 

ratio of case 3 is independent of elastic medium stiffness. It is due to the fact that in the case 

of in-phase vibration, the DPCMPS acts as a single smart composite microplate without the 

internal elastic foundation effect. Figures (4a)-(4d) demonstrates the effects of dimensionless 

nonlocal parameter (
* ) on the frequency ratio versus the dimensionless maximum amplitude 

for three cases of out-of-phase vibration, vibration with one microplate fixed and in-phase 

vibration.  

It should be noted that the nonlocal parameter 0*   corresponds to the classical microplate 

without the nonlocal effect. As can be seen, the frequency ratio for the case of in-phase 

vibration is higher than cases of out-of-phase vibration and one microplate fixed. The higher 

frequency ratio for in-phase vibration is due to the absence of coupling effect of the spring's 

foundation between the two smart composite microplates. It is also concluded that the small 

scale effect in the case of in-phase vibration is higher than that in the out-of-phase vibration 

and one microplate fixed cases.  

Obviously, increasing the 
*  increases the frequency ratio. This is due to the fact that the 

increase of nonlocal parameter decreases the interaction force between microplate atoms, and 

that leads to a softer structure.  

 

 
Table 2 Comparing dimensionless nonlinear frequency obtained in the this study and those of Shen et al. [15] 

 

LNL  /
 

Temperature
 

2/ hw 5.1/ hw 1/ hw 5.0/ hw  

 

 

     

1.2933 1.1742 1.0802 1.0208 Present work 

Shen et al. 2010 

T=300 

1.2900 1.1720 1.0798 1.0205  

      

1.4492 1.2738 1.1292 1.0339 Present work T=400 

1.4485 1.2719 1.1289 1.0337 Shen et al. 2010  

      

1.8498 1.5372 1.2668 1.0731 Present work T=500 

1.8477 1.5355 1.2663 1.0728 Shen et al. 2010  
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Figure 3 The effect of dimensionless coupling elastic medium on the frequency ratio  

versus the dimensionless maximum amplitude 

 

The effect of geometrical aspect ratio ( x ) on the frequency ratio versus the dimensionless 

maximum amplitude for three different cases (i.e. out-of-phase, one microplate fixed and in-

phase) is shown in figures (5a)-(5d). It is clear that the LNL  /  increases with increasing the 

*

maxW  and the influence of three cases on the frequency ratio becomes more prominent at the 

higher dimensionless maximum amplitude. It is also found that the LNL  /  is decreased 

with increasing the x , since the equivalent stiffness of the system increases.  

Furthermore, the difference between three cases of out-of-phase vibration, in-phase vibration 

and vibration with one microplate fixed becomes less at higher aspect ratio.  

Hence, it can be concluded that with increasing geometrical aspect ratio, the effect of 

coupling elastic medium between two smart nano composite microplates reduces.  
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Figure 4 The effect of dimensionless nonlocal parameter on the frequency ratio  

versus the dimensionless maximum amplitude 

 

  

  
Figure 5 The effect of aspect ratio on the frequency ratio versus the dimensionless maximum amplitude. 
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Figure 6 The effect of DWBNNT orientation angle in polymer on the frequency ratio  

versus the dimensionless maximum amplitude 

 

Figures (6a)-(6d) demonstrates variations of the frequency ratio versus the dimensionless 

maximum amplitude for three different cases. Case 1, case 2 and case 3 represent the 

vibration in the states of out-of-phase, one microplate fixed and in-phase. Noted that figures 

(5a)-(5d) is plotted for different values of DWBNNT orientation angle in polymer which are 

taken as 0 , 6/  , 3/   and 2/  , respectively. As can be seen LNL  /  is 

significantly dependent on   so that the frequency ratio increases with increasing orientation 

angle. Moreover, frequency ratio of 2/   and 0  are maximum and minimum, 

respectively. This is most likely due to the fact that in 0 , the direction of polarization for 

both reinforcements (DWBNNT) and matrix (PVDF) are the same which makes the system 

stiffer and leads to increase in frequency and consequently, decrease in frequency ratio. 

Comparing three cases mentioned above, it can be concluded that the effect of orientation 

angle on frequency ratio is remarkable at the in-phase vibration case. It is also observed that 

the difference between three cases becomes more distinguished at higher maximum 

amplitude. In realizing the influence of DWBNNT volume percent (  ) in polymer, figures 

(7a)-(7d) indicates how frequency ratio changes with respect to the dimensionless maximum 

amplitude. Out-of-phase vibration, vibration with one microplate fixed and in-phase vibration 

is considered in this figure. Generally, the frequency ratio of the coupled system is decreased 

with increasing  . This is why, the Yong's modulus of reinforcer (e.g. DWBNNT) is much 

greater than polymer (e.g. PVDF). Therefore, with increasing   , elastic constants of the 

composite increase and consequently the smart composite microplates become more stable. 

The results indicate that increasing volume percent decreases the in-phase frequency ratio 

compared to the other cases. This is due to the absence of coupling effect of the elastic 

foundation between two microplates.  
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Figure 7 The effect of DWBNNT volume percent in polymer on the frequency ratio  

versus the dimensionless maximum amplitude 

 

Figures (8a)-(8d) illustrates the influence of thermal gradient ( T ) on the frequency ratio 

versus the dimensionless maximum amplitude. Here, similar to previous figures, three cases 

for vibration of the DPCMPS are considered. In three cases of out-of-phase vibration, 

vibration of one microplate fixed and in-phase vibration, it is evident that an increase in 

temperature change does not affect on the frequency ratio. 

 

4 Conclusion 

 

Vibration response of smart nano/micro composites have applications in designing many 

NEMS/MEMS devices such as hydraulic sensors and actuators. In the present study, electro-

thermo nonlinear vibration of a double-smart composite microplate made of PVDF reinforced 

by DWBNNTs is investigated for three typical vibrational states, namely, out-of-phase, in-

phase and the case when one microplate fixed. The internal elastic medium between two 

microplates is simulated as Pasternak foundation. Considering charge equation, the nonlinear 

motion equations are derived based on nonlocal piezoelasticity theory. The DQM is applied to 

obtain to the nonlinear frequency ratio of the DPCMPS so that the effects of the small scale 

coefficient, stiffness of the internal elastic medium, the volume fraction and orientation angle 

of the DWBNNTs reinforcement, temperature change and aspect ratio are discussed. The 

results of this study are validated by Shen et al. [15]. The results indicate that with increasing 

geometrical aspect ratio, the effect of coupling elastic medium between two smart ocomposite 

microplates decreases. Furthermore, the effects of small scale parameter, volume percent and 

orientation angle of DWBNNT in the case of in-phase vibration is higher than that in the out-

of-phase vibration and one microplate fixed cases. It is also worth mentioning that the 

frequency ratio of the in-phase vibration is independent of elastic medium stiffness. 
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Figure 8 The effect of temperature change on the frequency ratio versus the dimensionless maximum amplitude. 
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Nomenclature 

L
 

plate length 

b
 

plate width 

h
 

plate thickness 
nl

ij  nonlocal stress tensor 

l

ij  local stress tensor 

nl

kD  nonlocal electric displacement 

l

kD  local electric displacement 

),(  xx   nonlocal modulus 

xx   Euclidean distance 

l external characteristic length 

0e  a constant appropriate to each material 

a
 

internal characteristic length of the material 
2

0 )( ae
 

Nonlocal parameter 

2
 

Laplacian operator 

wvu ,,  total displacements of a point along the ( zyx ,, ) 

000 ,, wvu
 

displacements of points on the mid-plane 

000 ,, xyyyxx 
 

components of the membrane strains 

111 ,, xyyyxx 
 

components of the bending strain 

wk
 

Winkler modulus 

gk
 

shear modulus 

ije
 

piezoelectric constants 

ij
 

dielectric constants 

k  
thermal expansion coefficients 

T
 

temperature gradient 

ijC
 

transformed stiffness components 

ijC
 

components of stiffness tensor 


 

orientation angle between the global and local Cartesian coordinates 

E
 

electric field 


 

electric potential 

U
 

virtual strain energy 

V  virtual work done by external applied forces 

K  virtual kinetic energy 

),( 20 mm  mass moments of inertia 

0  plate density 

),,( xyyyxx NNN  force resultants 

),,( xyyyxx MMM  moment resultants 

  frequency 

ijC  weighting coefficients 
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)( iM   Lagrangian operators 

 nn   grid points along x and y axes 

 M  mass matrix 

 LK  linear stiffness matrix 

 NLK  nonlinear stiffness matrix 

NL  Dimensionless nonlinear frequency 
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 چکیده
 

مکانیکی میکرو صفحه کامپوزیتی کوپله پیزوالکتریک بر  -ترمو -در این مقاله، ارتعاشات غیر خطی الکترو

اساس تئوری پیزوالاستیسیته غیر موضعی تحلیل و بررسی می گردد. دو صفحه نانوکامپوزیتی توسط محیط 

هر دو صفحه از جنس  پاسترناک شبیه سازی شده است، به یکدیگر متصل شده است.الاستیک که با محیط 

پلیمر پلی وینیلیدن فلوراید بوده که با نانولوله های نیترید بور دو لایه تقویت شده است. مدل 

با استفاده از روابط  میکروالکترومکانیک برای بدست آوردن خواص معادل کامپوزیت استفاده شده است.

تغییر مکانی غیر خطی و معادله شارژ برای کوپلینگ بین میدان های مکانیکی و الکتریکی، معادلات  -کرنش

روش عددی تفاضلات مربعی برای حل استخراج گردیده است. بر اساس روش انرژی و اصل همیلتون حرکت 

م برای سه معادلات حاکم و بدست آوردن فرکانس غیر خطی سازه استفاده شده است. نسبت فرکانس سیست

 حالت ارتعاشات غیر هم فاز، هم فاز و حالتی که یکی از صفحات ثابت است، محاسبه شده است. 

اثر پارامترهای مختلفی همچون پارامتر غیر موضعی، محیط الاستیک، درصد حجمی و زاویه چیدمان نانولوله 

نتایج نشان می دهد که با ها، دما و پارامترهای هندسی روی نسبت فرکانس سیستم بررسی شده است. 

 افزایش پارامترهای هندسی، اثر محیط الاستیک بین صفحات کمتر می شود.


