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1 Introduction 

 

Dynamic fracture mechanics of layered materials has been gaining lots of attentions among 

the researchers where the layered materials are extensively used in various products and 

devices to improve structural performance such as strength and durability. The influence of 

the crack moving speed on the the stress intensity factors was a popular subject in classical 

elastodynamics. Among the models of propagating crack, Yoffe crack is the simplest and the 

most classical one. In this model, a Griffith crack is assumed to propagate straight at a 

constant speed with its length unchanged. Most of the piezoelectric sensors are layered 

structures, and the control of laminated structures including piezoelectric devices has been 

extensively studied in the literature. In a practical application, bonding of piezoelectric layers 

frequently happens.  

The simplest structure is just composed of two piezoelectric layers and a substrate; therefore, 

the study of the fracture mechanics of the materials composed of piezoelectric layers is very 

substantial in the design of piezoelectric devices. Orthotropic composites are sometimes used 

as the substrate of layered piezoelectric devices to enhance mechanical performance. Sih et al. 

[1] studied the dynamic behavior of a moving crack in layered composites.  
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Chen et al. [2] analyzed a Yoffe-type crack along the interface of two dissimilar piezoelectric 

materials and revealed that the stress and electric displacement intensity factors depend on the 

moving speed of crack, differing from the case of a single piezoelectric media. The problem 

of an interface crack between piezoelectric and elastic strips was investigated by Kwon and 

Lee [3]. Das et al. [4] have solved the problem of propagation of two equal length collinear 

Griffith cracks in an orthotropic elastic layer of finite thickness sandwiched between two 

identical orthotropic half-planes. The problem of a finite Griffith crack moving with constant 

velocity along the interface of a two-layered strip composed of a piezoelectric ceramic and an 

elastic layers has been discussed by Kwon and Lee [5]. Jiang and Wang [6] made the dynamic 

analysis of Yoffe type crack propagating in a functionally graded layer bonded to dissimilar 

half planes. Kwon et al. [7] studied an eccentric crack moving at constant speed in a 

piezoelectric ceramic strip sandwiched between elastic half-planes under exact permeable 

condition. The dynamic intensity factor and the dynamic energy release rate have been 

presented graphically to show the effects of the crack propagation speed as well as the 

electromechanical coupling coefficient. The problem of an interfacial crack along the 

interface between a piezoelectric and two orthotropic materials under electromechanical shear 

loadings was analyzed by Lee et al. [8]. Kwon et al. [9] studied electromechanical behavior of 

an eccentric crack in a piezoelectric ceramic layer bonded between two elastic layers under 

anti-plane mechanical and in-plane electrical loadings. The stress intensity factor for cracked 

multi-layered and functionally graded coatings was obtained by Chi and Chung [10]. A finite 

crack with constant length propagating in the functionally graded orthotropic strip under in 

plane loading was investigated by Ma et al. [11].  

The effects of material properties, the thickness of the functionally graded orthotropic strip 

and the speed of the crack propagating upon the dynamic fracture behavior were studied. Das 

[12], Considered the interaction between three moving collinear Griffith cracks under 

antiplane shear stress situated at the interface of an elastic layer overlying a different half 

plane. The finite crack with constant length (Yoffe-type crack) propagating in a functionally 

graded strip with spatially varying elastic properties between two dissimilar homogeneous 

layers under in-plane loading was studied by Cheng and Zhong [13]. The multiple crack 

propagation along the interface of two bonded dissimilar strips are studied by Matbuly [14]. 

Li and Ding [15] determind mode III stress intensity factor for a crack in the functionally 

graded piezoelectric layer bonded to a piezoelectric half-plane. Feng et al. [16] investigated 

the problem of multiple cracks on the interface between a piezoelectric layer and orthotropic 

substrate and showed the stress intensity factor is dependent on the geometrical parameters 

and material orthotropy. The solution of dynamic crack problem in an functionally graded 

piezoelectric layer bonded to two piezoelectric strips was given by Shin and Lee [17].  

Ding and Li [18] investigated the problem of two collinear cracks perpendicular to the 

interface of functionally graded orthotropic strip bonded to an orthotropic substrate. They 

studied the effects of the orthotropy and nonhomogeneous parameters on the stress intensity 

factors. To the best knowledge of the authors, There are a few analytical studies have been 

conducted on the moving cracks in multilayer structures.  

The objective of this work to determin the stress intensity factors of multiple moving cracks 

with constant velocity in a three-layered medium composed of an orthotropic strip and two 

piezoelectric layers. The out-of-plane mechanical load is applied to the medium. Fourier 

transforms are used to reduce the problem to Cauchy singular integral equations. The 

resulting singular integral equations are solved using the method, developed by Erdogan and 

Gupta [19], to provide the dislocation density on the cracks surfaces.  

Finally, the stress intensity factors and strain energy density factor are addressed and 

discussed. 
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2    Formulation of the problem 
 

We consider an orthotropic layer of thickness h  bonded with two piezoelectric layers. 

Referring to Figure (1), let piezoelectric layer 1 occupy the upper ( 0y  , thickness 1h ), while 

piezoelectric layer 2 occupy the lower ( 2( h )h y h     , thickness 2h ) regions. In the 

orthotropic substrate, principal axes of orthotropy are respectively parallel and normal to the 

X  and Y  axes. The boundary value problem is simplified considerably if we consider only 

the out of-plane displacement and the in-plane electric fields. The constitutive equations for 

the piezoelectric layers can be written as:  

44 15 44 15(X, ) , ( , )i i i i
ZXi ZY i

W W
Y c e X Y c e

X X Y Y

 
 

   
   

   
,
 

15 11 15 11( , ) , ( , ) , 1,2i i i i
Xi Y i

W W
D X Y e d D X Y e d i

X X Y Y

    
    

   
, 

         (1) 

where ,Xi YiD D and i  are the components of electric displacements, and electric potential, 

respectively, 44c  , 15e  and 11d  are material constants. The governing equations of orthotropic 

strip under anti-plane deformation have the following forms: 

(X,Y) (X,Y)
(X,Y) , (X,Y) 0ZX X ZY Y

W W
G G h Y

X Y
 

 
    

 
 

 (2) 

In above equalities, XG and YG  are the orthotropic shear moduli of elasticity of material. From 

Eqs. (1) and (2), and by using the equilibrium equations and the Maxwell equation, The 

governing equations in this problem can be written in the following forms, 

 
2

2 2

44 15 2
( , , ) ( , , ) ( , , )i i i ic W X Y t e X Y t W X Y t

t
 


   


   (3a) 

2 2

15 11(X,Y, t) (X,Y, t) 0, 1,2i ie W d i         (3b) 

2 2 2

2 2 2 2

1
, 0

W W W
G h Y

X Y C t

  
    

  
    (3c) 

 

 

 

 
 

Figure 1 Schematic view of the medium with moving screw dislocation. 
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where X YG G G  and YC G   is the characteristic elastic shear wave velocity for the 

orthotropic layer in the Y direction. The governing equations of piezoelectric layers simplify 

considerably with the use of Bleustein function, i.e.,  

( , , ) ( , , ), i 1,2i iX Y t W X Y t         (4) 

In which 15 11e d  , Eqs. (3a,b) can be written as follows: 

2
2 2

2

44

, 0, 1,2i i
i i

W
W i

c t





    


, 

    (5) 

where 2

44 44 15 11( )c c e d   is the piezoelectric stiffened elastic constant. For the current 

problem, it is convenient to introduce the following Galilean transformation: 

.,,
x

V
t

yYVtxX








     (6) 

where ),( yx  is the translating coordinate system attached to the moving dislocation.  

The dislocation is characterized by Burger vector wzb , and moving with uniformly subsonic 

velocity V  in the horizontal direction. It is, however, assumed that the propagation of the 

crack has prevailed for such along time that the stress distribution around its tip is time 

invariant in the translating reference frame. In the transformed coordinate system, Eqs. (3) can 

be written based on the moving coordinate system as: 

 
2 2

2

2 2
0i iw w

x y

 
  

 
,     (7a) 

2 2

2 2
0, 1,2i i i

x y

  
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 
    (7b) 

2 2
2

2 2
0, 0

w w
h y

x y


 
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 
   (7c) 

In above equations  

2 2 244 , [G ( )] , [1 ( )] ,T T

c
c V C V c


       

  (8) 

where Tc  is the speed of the piezoelectrically stiffened bulk transverse shear wave. In this 

case, the boundary conditions of the problem take the form 

1 2( , ) 0, ( , ( )) 0yz yzx h x h h     , 

1 2( , ) 0, ( , ( )) 0y yD x h D x h h    , 

          (9) 

The continuity and dislocation conditions can be written as: 

 

( ,0 ) 0, ( ,0 ) ( ,0 )y yz yzD x x x     , 

1 2( ,0 ) ( ,0 ), ( , ) ( , )w x w x w x h w x h       , 

2( , ) ( , ), ( , ) ( , )yz yz yz yzx h x h x x            , 

 ( , ) ( , ) wzw x w x b H x      .x  

      (10) 
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where (.)H  is the Heaviside-step function. The superscripts  and   refer to the upper and 

lower edges of the cut, respectively. To solve the problem, Fourier transformation is 

introduced: 

* *1
( ) (x)e , (x) ( )e ,

2

isx isxf s f dx f f s ds


 



 

    

     (11) 

Application of the Fourier transform to the Eqs. (7), we obtain: 

 
*

1 1 2 1( , ) ( )sinh( ) ( )cosh( ), 0w s y A s s y A s s y y h       

1

*
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*
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*
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*

2 1 2 2( , ) ( )sinh( ) ( )cosh( ), ( )w s y C s s y C s s y h h y h        
*

2 3 4 2( , ) ( )sinh(sy) ( )cosh(sy), ( )s y C s C s h h y h       
 

           (12)
 

 

Superscript *  and s  denote Forier transform domain and Fourier transform parameter, 

respectively. In the above expressions, (s), (s), (s),( 1,2,3,4)i i iA B C i   are the unknown 

coefficients which will be determined from the conditions (9) and (10). Next, by using the 

coefficients, a simple calculations leads to the stress field in the orthotropic layer: 

 

1 1

0

2
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   (13) 

where 
2

15 11 44 11e d c , gdyG    . The expressions for (s)  is given by: 

2 1

2 1 2 1

(s) G [ cosh(s h)sinh[s (2 )]cosh(s ) cosh(s h)

cosh[s (2 )]sinh(s ) G cosh[s (2 )]cosh(s h )sinh(s h)]

y

y

h h h

h h h h h

    
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2 2

2 1sinh(s h)sinh[s (2 )]sinh(s )h h h       

     (14) 

The integrals in Eq. (13) diverge in the vicinity of dislocation. To circumvent this difficulty, 

the singular nature of the stress field must be examind. It may be seen that the integrals in Eq. 

(13) are bounded at 0s  . If we further observe that the integrands in Eq.(13) are continuous 

functions of s  , it is then clear that any singularity of the kernels may have must be due to the 

asymptotic behavior of the integrands as s  approaches infinity.  
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The singular parts may be evaluated by the use of following identities: 

2 20

2 20

sin( ) , 0

cos( ) , 0

sy

sy

x
e sx ds y
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e sx ds y
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    (15) 

By adding and subtracting the asymptotic expressions of the integrands obtained by using 

Eqs. (15) we find: 
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 (16) 

We may observe that stress components exhibit the familiar Cauchy type singularity at the 

dislocation location. Again, for large values of s  the integrals in Eq. (16) become unbounded. 

The integrations in Eq. (16) should be performed differently.  

Finally, stress components may be expressed as: 
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           (17) 

where 
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           (18) 

 

For computational efficiency it may also be more convenient. All integrals in Eq. (17) decay 

sufficiently rapidly as s  , which makes the integrals susceptible to numerical evaluation.  

 
3    Solutions to moving cracks 

 

The dislocation solutions obtained in the previous section is not restricted to single crack 

problems. It can be used to analyze layers containing multiple moving cracks. We consider an 

orthotropic layer weakened by N  arbitrary moving cracks. The cracks configuration may be 

described in parametric form as 

 
0

0

( ) L

( ) 1,2,..., , 1 1

i i i

i i

x x s s

y y s i N s

 

    
   (19)

 

suppose dislocations with unknown density (t)zjB  are distributed on the infinitesimal segment 

jdL  at the surface of j-th crack. The traction components on the surface of the i-th crack due 

to the presence of above-mentioned distribution of dislocations on the surfaces of all N cracks 

yield:  

1

1
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zn i i ij zj j
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where )(tBzj  are the dislocation densities on the nondimensionalized length 11  t . The 

kernel of integral equations (20) take the form: 
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



h y y j 

           (21) 

 

The left hand side of the Eqs. (20) are stress components at the presumed location of the 

moving crack with negative sign. Employing the definition of dislocation density functions, 

the equations for the crack opening displacement across j-th crack become: 
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1

( ) ( ) ( ) 1,2,..., .

s

j j zj jw s w s B t L dt j N 



                   (22) 

The displacement field is single-valued out of surfaces of moving cracks. Consequently, 

Cauchy singular integral Eqs. (20) should be complemented by closure requirements  
1

1

( ) 0, 1,2,..., .j zjL B t dt j N


     (23) 

The singular integral equations (20) are solved numerically by using (23) and an appropriate 

collocation technique to determine dislocation density functions. Therefor, the dislocation 

density function, )(tBzj , having the square root singularity at the crack tips, can be expressed 

as: 

2

( )
( ) , 1 1, 1,2,..., .

1

zj

zj

g t
B t t j N

t
    


   (24) 

The stress intensity factors at the tip of i-th crack in terms of the crack opening displacement 

reduce to: 

0

( ) ( )2
lim ,

4 Li

i i
Li zx zy

r
Li

w s w s
K G G

r

 




  

0

( ) ( )2
lim

4 Ri

i i
Ri zx zy

r
Ri

w s w s
K G G

r

 




     (25) 

where L and R designate, the left and right tips of a cracks, respectively. The function )(tg jz  

are obtained via solution of the system of equations. The stress intensity factors for the i-th 

crack are defined by: 
1

2 2 4[ ( 1)] [ ( 1)] ( 1)
2

y

Lj j j zj

GG
K x y g         

1
2 2 4[ (1)] [ (1)] (1)

2

y

Rj j j zj

GG
K x y g         (26) 

The details of the derivation of fields intensity factors to reach (26) are not given here. 

According to the theory of strain energy density criterion [20,21], the strain energy density 

factor S at the crack tip for the model III crack of orthotropic composites can be expressed as:  
2 2

2 2sin cos
4 2 4 2

III III

x y

K K
S

G G

 

 
       (27) 

Referring to the strain energy density criterion, the minimum value of S can be obtained as 

follows: 

0
S







                                                          (28) 

Substituting Eq. (27) into (28), it is found that 0   and    
2

min 0

2

min 0

, 0
4

, .
4

R
x y

y

L
x y

x

K
S G G

G

K
S G G

G



 

  

  
                                         

(29) 

where 0  is the angle of crack initiation. Eq. (27) can be made dimensionless by dividing by 

2

0
0

4 y

L
S

G


 , i.e., 
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2 2

0 0

[g (1)]
( L) 4 4

x y

zj

y

G GS

G 
  

2
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2 2

0 0

[g ( 1)] , j 1,2,..., N
( L) 4 4

y

zj

y

GS

G 
       (30) 

 

 

4    Results and discussions 

 

In this section we are mainly concerned with the determination of the dynamic stress intensity 

and strain energy density factors. The proposed approach makes it possible to consider an 

orthotropic strip bonded between two piezoelectric layers with multiple moving cracks. The 

thickness of each piezoelectric layer is normalized with respect to the thickness of the 

orthotropic layer. The medium is assumed to be loaded by constant tractions with the 

magnitude of 0  which are distributed on the boundaries.  

It should be noted that throught the paper, divisor 
0 0K L , with L being the half length of 

crack, is used to make the crack stress intensity factors dimensionless. We can take PZT-4 

ceramic as an example of which the engineering material constants are given by  

 

10 10 3

44 15 112 2 3
2.56 10 ( ), 12.7( ), 64.6 10 ( ), 7.5 10 ( )

N C C kg
c e d

m m Vm m
       ,(31) 

 

The verification is accomplished by comparing the stress intensity factor of a stationary crack 

by approaching h  to infinity and satisfies 
0/ 1.0K K   which agrees well with the previous 

result of singh et al. [22], see Figure (2). It is worth noting that, in case the thickness of 

orthotropic layer goes to infinity 
 
the stress intensity factor is not changed.  

 

                     Figure 2 Normalized stress intensity factor versus 2h L  for different crack speed. 
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Figure 3 Normalized stress intensity factor versus dimensionless crack speed for  

different ratios of shear moduli. 

 

 

The variation of normalized stress intensity factors 
0/K K  with the velocity of crack for 

different ratios of shear moduli is shown in Figure (3). It can be clear that, the problem is 

symmetric with respect to the y-axis, the thickness of the two piezoelectric layers are taken as 

1 2 0.25h h h  . The crack length is assumed as 2 1.25L h . It can be found that, the stress 

intensity factor increases with increasing the crack speed. It is worth noting that, the stress 

intensity factors are significantly influenced by changing the values of the ratios of shear 

moduli. Figure (4) displays the variations of normalized strain energy density factor with the 

normalized crack velocity for three different ratios of moduli. In all cases, it can be observed 

that the magnitude of 
min 0/S S  incrases with the increasing of the crack speed and decreases 

with increasing the ratios of shear moduli. 

Figure (5) shows the normalized stress intensity factor,
 

0/K K , as a function of the 

normalized crack position, /H h , for varying normalized crack speeds.  

 
           Figure 4 Variation of normalized strain energy density factor versus dimensionless crack 

 speed for  different ratio of the shear moduli. 
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Figure 5 Normalized stress intensity factor versus the ratio H h . 

 

 

 

 
Figure 6 Variation of normalized strain energy density factor with crack position for 

 different V C  values. 

 

 

Similar analysis can be made for Figure (6), which presents the variations of normalized strain 

energy density factor, min 0/S S  , versus crack position. On the other hand, if the crack velocity 

is constant, the ratios of the shear moduli and crack position have great influence on the strain 

energy density factor of the moving crack. In these examples, the ratios of shear moduli is 

chosen 0.5x yG G  . In the next example, we consider two collinear equal-length moving 

cracks which are located on the the center-line of the orthotropic strip.  

Figure (7) shows the normalized stress intensity factor, 
 

0/K K  as a function of crack speed 

for various values of the ratios of shear moduli of orthotropic strip. For all cases, stress 

intensity factors increase as the cracks velocity increase under anti-plane loading.  
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Figure 7 Normalized stress intensity factor versus the dimensionless crack speed for 

 different ratio of the shear moduli. 

 

 

 

The influence of the material parameter / Gx yG  on the stress intensity factors could be quite 

significant. In the case of coaxial cracks, due to symmetry, the stress intensity factors 
1L  and 

1R  are equal to those at
2R  and 

2L , respectively.  

Figure (8) shows the the variation of stress intensity factor, 
0/K K  versus the geometric size 

ratios L/ d  for different case of crack velocity. We keep the distance the crack centers 

constant and increase the crack length. The stress intensity factors increases as the ratio L/ d  

incrases. As it was expected, the stress intensity factors are incrased with incrasing the crack 

length. In this example, the value of the ratios of the shear moduli is chosen / G 0.5x yG  . 

The trend of variation remain the same by changing the ratios of shear mouduli.  

The variation of stress intensity factors of two intracting crack tips namly 
1R  and 

2L  is more 

pronounced than that of the tips 
1L and 

2R . Obviously, Approaching the crack tips leads to 

the more intractions and then 0/K K , are increased.  

The next example deals with the interaction of two off-centers equal length cracks which are 

parallel to the strip edges. The centers of cracks remaine fixed while the crack length are 

changing with the same rate. The normalized stress intensity factors versus crack length are 

depicted in Figure (9). As it might be observed the maximum stress intensity factors for the 

crack tips 1R  and 2L  occur when the distance between them is minima.  

The orthotropic strip contains two parallel identical moving cracks with length 2L  which are 

also parallel with strip edges. The crack 1 1L R  is located on the strip center-line and the crack 

2 2L R  is situated at the vertical distance H  below the interface of the layers. 
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Figure 8 Variation of normalized stress intensity factors with L d . 

 
Figure 9 Normalized stress intensity factors of crack tips versus the dimensionless crack length. 

 

 
Figure 10 Normalized stress intensity factor versus H h  for different dimensionless crack speed. 
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Figure 11 Normalized stress intensity factors of crack tips versus the dimensionless crack speed. 

 

 

Figure (10) shows the normalized stress intensity factors as a function of the normalized crack 

location, for change of the crack velocity. In this case, the stress intensity factors increases 

with an increase in crack speed regardless of the crack location.  

Figure (11) shows the variations of the normalized stress intensity factors with the normalized 

crack velocity /V C  for different ratios of shear moduli. A significant increase in 
0/K K  is 

observed with an increase in crack speed.  

 

 

5   Conclusions 

 

The solution of screw dislocation is obtained in an orthotropic strip bonded between two 

piezoelectric layers. The dislocation solution is utilized to perform the integral equations for 

the orthotropic strip with moving crack. These equations are of Cauchy singular type solvable 

by numerical methods to obtain dislocation density on the moving crack surfaces.  

To study the intractions between the cracks, and also the effect of crack speed, stress intensity 

factors are obtained for some examples. The results show that, in addition to the influences of 

the crack geometry on the stress intensity factors (as expected), the crack speed is also be very 

significant.  
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Nomenclature 

 

,B ,Ci i iA                            Unknown coefficients 

wzb                                       Burger vector 

B (t)zj                                   Dislocation density function 

44c                                        Elastic constant 

C                                         Elastic shear wave velocity 

11d                                        Dielectric permitivity 

,Xi Y iD D                               Electric displacement components 

,X YG G                                 Orthotropic shear moduli 

h                                         Thickness of orthotropic strip 

1 2,h h                                    Thickness of piezoelectric layers 

(x)H                                    Heaviside step function 

(s, t)ijK                               Kernel of integral equations 

,Li RiK K                             Stress intensity factors of left and right side of crack 

0K                                       Stress intensity factor of a crack in infinite plane 

L                                         Half length of crack 

N                                       Number of cracks 

S                                        Strain energy density 

W                                       Anti-plane displacement 

,x y                                   Translating coordinates 

                                        Electric potential 

                                        Mass density 

,zx zy                              Stress components 
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 چکیده
 

لایه پیزوالکتریک با استفاده از تبدیل پیک متصل به دو وحل نابجایی متحرک در لایه ارتوتردر این مقاله 

سپس به کمک روش توزیع نابجایی معادلات با تکینگی کوشی برای محیط حاوی فوریه بدست آمده است. 

چندین ترک متحرک بدست آمده است. با حل عددی معادلات انتگرالی و محاسبه دانسیته نابجایی بر روی 

در نهایت اثر خواص  ایب شدت تنش استفاده شده است.سطوح ترک های متحرک، از آن برای محاسبه ضر

 پارامترهای هندسی بر روی ضرایب شدت تنش و شدت انرژی کرنشی ارائه شده است.مواد 

 

 

 


