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1 Introduction 
 
The differential equations are usually involved in many branches of physics and engineering. 
The numerical solution of the algebraic differential equations has been greatly studied during 
recent years and much research have been carried out to develop such solutions. Many 
analytical and numerical methods such as Hirota’s two path scheme [1], symmetrical 
equations [2], homotopy perturbation [3], variable repetition [4], reversible derivative [5], 
Runge-Kutta [6], Pad estimations [7], and other numerical methods [8,9] are used for 
engineering problems. Qureshi et al. [10] used the homothopy scheme to solve the multi-point 
boundary value problems. They established an approximate method in a way that satisfies the 
boundary conditions exactly. Sumasolik and Wedagedera [11] used the finite difference 
method to solve the mathematical model of the corals’ growth inside a reservoir.  
They assumed the numerical model to be one dimensional and without heat flux boundary 
condition. The obtained numerical results were conformal to the analytic solution. Majeed et 
al. [12] studied the boundary layer transfer flow and the heat transfer in a fluid within the 
ferromagnetic dust particles on a tensioned flat plate regarding the magnetic bipolar effects.  
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Vibrational Analysis of Cables using 
the Non Standard Finite Difference 
Method 
In continuous systems such as rods, cables, and shafts, the 
differential equation governing the behaviour of the structure can 
be obtained by applying Newton's second law. Only a limited group 
of these equations have an analytic solution; hence the provision of 
efficient and stable numerical methods is of particular importance. 
The method used in this study is a nonstandard finite difference 
(NSFD) scheme, which is an effective numerical method for solving 
the above-mentioned equations. One of the important features of 
this method is its relatively high accuracy. Results obtained by 
nonstandard finite difference methods are more compatible with the 
exact behaviour of the problem than that of the standard finite 
difference method. In this research, the equations governing the 
vibrations of cables with three different boundary conditions are 
solved. Three solutions including the analytical solution, the 
standard finite difference method (SFD) and the NSFD method are 
compared. Results show that the error of the NSFD is significantly 
less than of the SFD.
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By simplifying the non-linear equations to linear equations, they solved the governing 
differential equation using the Runge Kutta scheme. In recent years, some partial differential 
equations have been analyzed and solved using the Adomin method [13]. Shakeri and 
Dehghan [14] used Adomin method in order to solve a system of equations including the 
differential and integral equations, which are of fundamental importance in biology. They 
solved the equations that describe the biologic model of the living species. Biazar et al. [15], 
introduced a new type of Adomin scheme. They obtained a general continuous method that 
does not require the Adomin polynomials’ calculation. They also compared the new method 
with both conventional method of Adomin’s separation and the variable repetition. Recently, 
this method has been used for solving the vibration problems in the structural and mechanical 
systems [16]. One of the powerful numerical methods in solving the differential equations is 
the finite difference method. Despite its accuracy, this method poses a significant challenge of 
choosing the step size. If the step size is selected to be small, the computational cost is 
significantly increased. On the other hand, if the step size is taken large, the results become 
less accurate and sometimes leads to divergent results. In order to solve this drawback, 
Mickens [17] introduced the nonstandard finite difference (NSFD) method. The basic idea of 
the nonstandard method stems from accurate difference methods. Thanks to this method, one 
could choose the length of the step size in a more efficient and suitable way compared to the 
standard finite difference method. The golden step size is indeed a function (denominator 
function) that gets the assumed step size as the input data and converts it to the efficient step 
size. At first, Mickens and Washington [18], and Rager and Mickens [19] used the above 
method to solve some differential equations. Afterward, González et al. [20] used the NSFD 
method for the numerical solution of the biologic and population models. Moaddy et al. [21] 
used the nonstandard finite difference method for the fractional partial differential equations. 
Also, Ongun and Turhan [22] compared the nonstandard and standard numerical methods for 
the ordinary differential equation system governing the replicating process of AIDS virus. 
Cresson and Pierret [23] studied the NSFD scheme for the general state of two dimensional 
differential equations including various models in a dynamic population based on the non-
local estimations. Regarding the discretization of the parameters, they proved the convergence 
of their method with retaining the constant points, and stability of the system. Zhang et al. 
[24] presented their algorithm of finite difference method for solving the coupled Burger’s 
viscous problems, which used the accurate solution within the NSFD based on the standard 
finite difference method. One of the methods which leads to the suitable denominator function 
in nonstandard method is the accurate discretized method which is used in this study.  
Mickens et al. [25] assumed a second order linear equation and presented an accurate 
discretization method for it. Roeger [26] solved a linear system using the NSFD method. 
Roeger [27] also studied a two dimensional linear system and presented an accurate finite 
difference method for the system. In this research, the vibrational equations of the continuous 
systems such as cables are analyzed through analytic and approximate methods. The solution 
of the differential equation presents the displacement of the various points on the cable, 
depending on two variables of location and time. Also in this research, a new computational 
viewpoint, which is described as a NSFD is used to solve the wave equation. However, this 
method is categorized as a general SFD condition. Despite having the exact solution, we still 
emphasize on solving the equations using the numerical scheme. This argument is addressed 
in the following discussion. Generally, the new numerical schemes should be examined across 
some factors to check their validity and performance. It is obvious that in this process, one 
cannot compare them with the other numerical scheme, because every numerical scheme has 
its own error due to its nature. Therefore, numerical solutions should be compared with the 
exact numerical solutions.  
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In this paper, a cable with three boundary conditions and with sinusoidal initial condition is 
considered and is solved using three methods of analytical, SFD and NSFD. These examples 
show the effectiveness of the NSFD method compared to the SFD method because the error 
of NSFD is less than of SFD. 
 
2 Theoretical fundamentals of the problem 
 
The analytical solution for the cable with the sinusoidal initial condition and 3 various BCs: 
The governing equation of the cable is solved using the analytical method: 
 
2-1 Analytical method 
2-1-1 Free Vibrations of a Fixed-Fixed end Cable 
 
A stretched cable of length l  is considered as shown in figure (1). For this uniform cable with 
a constant tension of P , the free vibrational equation is as follows: 
 

2

2

2

2 ),(),(

t

txu

x

txu
P







   (1)

or 

2

2

2

2
2 ),(),(

t

txu

x

txu
c







  (2)

in which: 

2

1

)(

P

c 
 

(3)

and  is the density of the cable, u is the vertical displacement, x is the horizental axis and t 
is the time. The BC and initial conditions are: 
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If 12 c , the exact solution of the above equation is: 
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2-1-2 Free Vibrations of a one free end Cable 
 
For this problem the BC is as follows: 
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Figure 1 The fixed-fixed end cable with sinusoidal initial condition 

 
The other relations are such as previous case. For the exact solution we have: 
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2-1-3 Free Vibrations of a Free-Free end Cable 
 
The BC is as follows: 
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Regarding equation (2), the exact solution is similar to the solution of the Fixed-Free end 
cable except the natural frequency which is: 
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2-1 The SFD method for the problem 
 
In this section, the governing equations of the cable’s free vibrations is solved using the SFD 
method.  
 
2-2-1 Fixed-Fixed Cable 
 

Using the central difference, the second derivative of time is: 
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Where  i and n are the points located in a 2-D plane and in a time instances. Furthermore, the 
average of the central approximation is used for the second derivative of the coordinates in of 
n-1 and n+1 grid surface: 
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According to the main equation of the free vibrations of the cable, the equality of equation 
(11) and (12) leads to: 
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For the simplification, it is assumed that: 
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Eventually, rearranging equation (13) we have: 
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Using the initial condition: 

11
11

0
2

)0,( 










ii

ii uu
t

uu

t

xu
(15)

With applying the discretization method for central time-location [1], we have: 
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If in the above equation n=0 ( tt 1 ), then the following equation is derived: 
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With the substitution of equation (15) in (17), we have: 
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By using of equation (18), one can calculate the whole points located on the surface n=1. As 
an example, with assumption of 1l  and dividing the distance into 4 equal parts (local step 
size of 0.25), we have: 
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Regarding the BC, we have  and . Now, the location of the other points in 
the other time step tt  , tt 2 etc can be calculated. For example, with choosing n=0 in 
equation (14), we have: 
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With the substitution of various i values in the above equation, we have: 
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The left-hand side of the equations show the unknown variables and their right-hand side 
show the known values. It can be observed that in this especial example, which divides the 
interval between 0 to 1 into 4 parts, in (21) three equations of three unknowns are created. 
The solution of these equations help us to calculate the whole points of the surface n=2.  
The higher surfaces of n could be calculated accordingly. 
 
 2-2-2  Fixed-Free Cable 
 
For this condition, equations (11) to (14) will be still applicable. In the following, regarding 
the BC in 0x , we have: 

nn
nn

uu
h

uu

x

tu
11

11 0
2

0
),0(


 





  (22)

If the interval of 0 to ml 1  is divided into 4 parts (similar to previous case), we have 5 points 
in the horizontal axis. Using equations (16) and (22) results in: 
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According to BC of 0),( tlu , we have 01
4 u . The solution continues similar to the previous 

case. 
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2-2-3 Free-Free Cable 
 
Similar to the previous case, equations (11) to (14) and (22) will be applicable. From BCs, we 
have: 
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In this equation, to represent a general condition, the interval is divided into m element. 
As an example, if the location interval is divided into 4 parts (m=4), it has 5 points. Applying 
equations (16), (22) and (24), the vertical displacement of these points can be calculated as: 
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The rest of the solution is similar to the first case. 
 
2-2 The solution of the problem using the NSFD method 

 
The issue of NSFD method is assessed using the discretization of the first-order differential 
equation as: 

h

xx

dt

dx kk 
 1

 (26)

where h is the step size. As it was mentioned in the introduction, in the standard method, the 
length is chosen randomly. By defining the denominator function, Mikens [17] presented a 
new scheme to select the step size: 
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The denominator function )(h operates in a way that it gets the initial pitch length from the 
user and then transforms it to a better or the golden pitch length. The denominator function 
should satisfy the following conditions: 
a) The order of accuracy should be the same as the accuracy of the equation. 
b) It should be a real and positive function. 
c) The denominator function should be an ascending function. 
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In general case, it is observed that the existing parameters in the main equation also appear in 
the denominator function. Some of the functions, which satisfy the above conditions, include 
the following functions: 


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 is a parameter in the equation that should be solved. 
For determining the denominator function, there are various methods. One of these methods is 
using the analytical solution of the equation to compute the denominator function. Jang et al. 
[24] used this method to obtain the denominator function. In the current study, this method is 
used to find the denominator function. 
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derived using the forward and backward derivatives. So we have: 
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Now using the relations: 
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In cases such as [24], while calculating the above differences, some functions are created, 
which are indeed non-standard method denominator functions. In such conditions, since the 
final answer is exponential, both sides of the equation can be simplified. Therefore, finding 
the denominator function is easier. Whereas in the current study, the final answer cannot be 
presented in exponential form. Therefore, the higher differences are formed and the idea of 
obtaining the denominator function is extracted from the final answer: 
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The reason of these calculations is to achieve the appearance of the denominator function. 
Therefore, this method is followed close to the h step size. 
Every coefficient functions of right-hand side of the equations (37) to (40), can be selected as 
the denominator function. The important point is that the order of accuracy of these functions 
should be of )(0 42 hh  order. Therefore, with the addition of the appropriate coefficients, this 
order of accuracy should be attained. After a few trial and error, the appropriate denominator 
functions are introduced as: 
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which are substituted for 2t and 2h , respectively. 

3  Results 
3-1 Fixed-Fixed Cable 
 
figure (2) shows the accurate solution of the displacements for ml 1 : 

Regarding the BCs in this Figure, it is observed that the cable has no displacement in both 
fixed ends. With considering 02.0h and 01.0t , and the final time of sT 1 , the 
standard and nonstandard solutions are shown in Figures (3 & 4), respectively: 
In these Figures, the standard and non-standard answers are generally similar to the exact 
solution confirming the validation of the approximate methods. The error is defined as the 
difference between each result and the exact solution.  
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Figure 2 The displacement of various points of Fixed-Fixed cable using the analytical method 
 

 

  
 

Figure 3 The displacement of various points of Fixed-Fixed cable using the standard methods 
   

 
 

Figure 4 The displacement of various points of Fixed-Fixed cable using the non-standard methods 
 
Figures (5&6) show the error of standard and nonstandard methods.  
It can be seen from Figures (5&6) that the maximum error in the standard method is 4107   
and in non-standard method is 4105.2  . In the general case, there are 3 matrices of exact, 
standard and the nonstandard solutions, which are shown by  exactU ,  SFDU  and  NSFDU , 

respectively. Every element of the above matrices shows a value of vertical displacement 
( , )u x t . Therefore, subtracting  SFDU  from  exactU , means elements of the vertical 

displacements are subtracted and the error of the standard method is determined with respect 
to the exact solution. So we have: 
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Figure 5 The error of the standard methods for the fixed-fixed cable  

 

  
Figure 6 The error of the nonstandard for the fixed-fixed cable 

 

     SFD exact SFDError U U   (43)

     NSFDexactNSFD UUError   (44)

To compare the error of two standard and non-standard methods, the sum of squared errors 
(SSE) is used. Therefore, the SSE parameter is defined, which is the sum of square elements 
of the error matrix. The less the SSE, the less the error value is and showing the solution 
method is more desirable. 
The value of the SSE in fig (5) is 4106633.4   and in fig (6) is 5109375.8  , which shows %81 
decrease in nonstandard method’s error compared to the standard method (relative error). The 
decrese is calculated as eq. (45): 

100%
SSE

SSE

SFD

SFD 
 NSDFSSE

 (45)

To show the advantage of the nonstandard method, some especial points can be considered 
inside the solution zone and the error value of the various methods are compared [28]. 
If the above approach is set as the basis of the analysis, it can be shown that the amount of 
error decrease is %350 in this example, because the maximum standard method’s error is also 
decreased from 4107   to 4105.2  in non-standard method. 
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Figure 7 The error of standard method for the fixed-free cable 

 

  
 

Figure 8 The error of nonstandard methods for the fixed-free cable 
 

3-2 Fixed-Free end cable 
 
For this problem, it is assumed that 25.0h , 12.0t  and sT 2.1 . The error of standard 
and nonstandard methods are ploted in Figures (7&8). 
For this example, according to Figures (7&8), the absolute value of the maximum error for 
standard and nonstandard methods are 0.41 and 0.36, respectively showing a lower error 
value of the nonstandard method. Comparing the sum square error for these methods again 
approves the efficiency of the nonstandard method. The SSE values are: 
SSE SFD=1.0227  ,  SSE NSFD =0.7718  
 
3-3 Free-Free end cable 
 
For the free-free cable, the step size, time step and the final time are considered as: 

25.0h  12.0t  ، , sT 2.1   
The errors are shown in Figures (9&10). 
For Figures (9&10), the calculated SSE values are: 
 SSE SFD=1.8453, SSE NSFD =1.5538 
Regarding the sum squared error, it can be shown that the error of NSFD is less than the SFD 
one. To show the advantages of the nonstandard method, the values of the sum square error 
for both methods of standard and nonstandard for three BCs of a cable are shown in table (1). 
According to table, it is shown that for the fixed-fixed end, the decrease in the percentage of 
the relative error in the non-standard is %82. For fixed-free end and free-free end cases, the 
decrease in percentages of the relative error is %24.5 and %15.7, respectively, which confirms 
the lower error in non-standard methods. 
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Figure 9 The error of standard method for the for a free-free cable 
 

  
 

Figure 10 The error of nonstandard method for the free-free cable 
 

Table 1 The comparison of the SSE of NSFD and SFD methods for three BCs of cabl 

No. BCs Step size 
and 

 time step 

SSE 
 in  

standard 
method 

SSE 
 in 

nonstandard 
method 

The percentage of 
decrease in 

relative error of 
the nonstandard 

1 Fixed-Fixed 
end 

02.0h
01.0t  

4106633.4   5109375.8   82% 

2 Fixed-Free 
end 

25.0h
12.0t  

0227.1 7718.0 24.5% 

3 Free-Free 
end 

25.0h
12.0t  

8453.1 5538.1 15.7% 

 
4  Conclusion 

 
In this paper, a cable with three various BCs and sinusoidal initial conditions was considered 
and solved using three methods of analytical, SFD and NSFD. The results clearly showed the 
advantage of the nonstandard method compared to the standard method. The error in the 
nonstandard method was significantly lower than the standard method. At the same time, with 
the SSE, the error in the nonstandard method was reported between 16 to 82 percent lower 
than the standard method. According to the lower error in the NSFD method, one can use this 
powerful method for the solution of some differential equations including the governing 
equations of cables. 
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Nomenclature 
l:            length of cable 
u:           vertical displacement 
x:            location 
t:             time 
P:            tension of cable 
Greek Symbol 
 :           natural frequency 
 :           density 

  


