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1 Introduction 

 
At the embodiment stage of design, engineers and researchers usually conduct rigorous analyses 
on a target component or structure. This can be obtained via analytical or numerical methods. In 
analytical methods, the governing equations of a component are solved by mathematical 
approaches such as Fourier series, Laplace transform and etc. However, in numerical methods 
the governing equations are handled with numerical calculations such as finite element method, 
finite difference method, generalized differential quadrature and etc. With the recent 
development of numerical algorithms and computer processors, numerical methods can 
efficiently solve complicated problems. As a result, several software packages are now available 
in a variety of engineering fields. The finite element method is one of the important numerical 
approaches which is commonly used in modeling and analysis of complex structures. In this 
method, a structure is discretized into many elements in which mathematical functions, so 
called shape functions, approximate a physical variable such as displacement or temperature 
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within the elements. Due to simplicity, basic geometries such as hexahedron or tetrahedron 
elements are commonly used to discretize a structure. Moreover, with these basic geometries, 
the physical variables are commonly approximated by means of polynomial shape functions. 
Although this combination is proved to be very efficient in analysis of components with 
complex geometry, its accuracy mostly relies on the quality of discretization, which normally 
depends on the number of elements. Recently, researchers proposed new elements with more 
complex shape functions and geometries, which are defined for components with specific 
geometries. These elements are called superelements [1].  Accordingly, a component can be 
analyzed with a limited number of such elements, which leads to a significant reduction of 
computational cost. In this regard, Koko and Olson first used the super plate and beam finite 
elements to calculate the natural frequency and modal shapes of stiffened rectangular plates. 
They validated the results with other numerical and experimental works [2]. Jiang and Olson 
[3, 4], introduced shell, curved beam, and straight beam superelements for the free vibration 
analysis of stiffened cylindrical shells. The foregoing superelements were further applied to 
analyze the static and dynamic behavior of orthogonally stiffened cylindrical shells. The 
stiffeners were also assumed to be in form of curved and straight beams. In addition, the 
results, including the natural frequencies and mode shapes, were compared with the 
conventional finite element method and experimental tests. The authors reported high rate of 
convergence and accuracy comparing with the results of other methods. Ahmadian et al. [5, 6] 
employed the plate superelement to analyze the forced and free vibrations of an orthotropic 
rectangular plate with different boundary conditions. They considered bending and in-plane 
effects on the response of the plate; they also assumed C0-continuity for in-plane displacements 
and C1-continuity for out of plane displacements. Kuntjoro et al. [7] conducted a stress and 
deflection analysis on a Figurehter wing structure by means of superelements. However, in this 
work, the authors did not define a new element with different shape functions and geometry, and 
they used the sub-structuring capability of NASTRAN FE software to group a large number of 
conventional elements to be considered as an individual element. On one side, this methodology 
still needs the discretization step, and hence, the hassle of meshing still exists; on the other side, 
it is not limited to special geometries and can be used in analysis of structures with complex 
shapes. Many studies, especially in the analysis of large or complex industrial components or 
structures, have reported the use of this type of superelements [8-15]. 
For structures with revolving geometries, Ahmadian et al. [16] first introduced a new cylindrical 
superelement which can be applied in structural analysis of laminated hollow cylinders. This 
element was later modified by Taghvaeipour et al. [17] to be used in structural and modal 
analysis of thick hollow cylinders made of functionally graded materials (FGM); the results were 
compatible with the ones obtained by the conventional elements. In an industrial application, 
Pourhamid et al. [18] incorporated the cylindrical superelement for thermo-mechanical analysis 
of a functionally graded cylinder-piston with an internal pressure. Recently, Fatan et al. [19] 
modified this superelement to conduct vibration analysis of FGM rings. The same concept 
helped other researchers to develop the spherical and tapered versions of superelement to be used 
in mechanical analysis of revolving geometries, and structural analysis of components such as 
biologic cells, nano bearings, pressure vessels, fullerene, and etc. [20, 21, 22]. In a recent study, 
Shamloofard and Movahhedy [23] extended the tapered and spherical superelements to be used 
in thermo-mechanical analysis as well. 
The shell structures have many applications in engineering design problems due to their 
advantages, which is superior to others. Some of the advantages are: high efficiency to handle a 
variety of loads, structural stability, strength to weight ratio, stiffness, and etc. Therefore, it is 
frequently used in the design of mechanical components such as pipes, turbine blades, pressure 
vessels, liquid retaining cylindrical shells, and aircraft structures. However, due to the presence 
of curvature, the analysis of a shell structure is more complex and cumbersome.  
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Since now, many researches targeted analytical and numerical analysis of shell structures in 
different conditions. Soleimani et al [24] has introduced a new cylindrical shell element by 
using modified couple stress theory. This new cylindrical shell element was developed to 
investigate the structural behavior of nanotubes. Torabi and Ansari [25] developed a new 
quadratic isoparametric superelement to analyze the vibration of FG circular shells. To show 
the accuracy and efficiency of the proposed superelement, different comparative studies were 
presented. Recently, a new shell superelement to study linear/nonlinear static analysis of 
spherical structures was presented by Shamloofard et al. [26]. The governing equations of 
spherical shells are derived based on the first-order shear deformation theory and considering 
large deformations. In this study, developing a new shell cylindrical superelement based on the 
classical shell theory is targeted. The geometry of this element is a hollow cylindrical shell, 
which one element can model the entire shell cylinder through the angular direction.  This 
element can be used in mechanical analysis of cylindrical shell structures, such as thin-walled 
tubes and pressure vessels. As case studies, two classical problems in mechanical analysis of 
shell structures are solved, and the results are compared with the ones obtained analytically in the 
literature, and the result of shell elements which is conducted in a commercial software package. 
 
2 Element Definition 

 
2.1 Geometry and Coordinates 

 
Generally, shell structures are divided into two types: thin- and thick-walled. The proposed 
shell superelement targets thin shells with a cylindrical geometry. The element has mid-
surface radius of R, the thickness of t and the length of 2L. The word "thin-walled" means, 
that t/R (wall thickness t to the mid-surface radius R ratio) is larger than 0.001 and less than 
0.05 [27]. Moreover, the thickness t is considered constant all over the element. The 
coordinate system is chosen to be cylindrical and located at the center of the element. The 
nodes are distributed uniformly on the mid-surface at the two ends of element. Geometrical 
properties, coordinates, and nodes are shown in Figure (1). For convenience in calculation of 
the stiffness, mass, and force matrices, a natural coordinate system is defined [16]. This 
coordinate system has two components ξ and which are related to the axial z and angular 
components α, namely 
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Figure 1 The shell superelement 
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2.2 The Shape Functions 
 

The proposed shell element is defined based on the classical shell theory. In this theory it is 
assumed that the radial displacement component is independent of the radial coordinate [28]. 
Accordingly, the displacements in an arbitrary point of the shell are defined as [27] 

(2)   
 

0

0

0
z

w w

v r R

u u R

v

r







  

  

  

  

Where w, v, and u are the radial, tangential and axial displacements, respectively, and w0, v0 and 
u0 are the displacement components at the mid surface of the shell. Also, βα and βz are rotations 
in the tangential and axial directions, respectively. Due to Eqs. (2), v and u are dependent on the 
radial coordinate r, and w is independent of it. The rotations are also defined as [27] 
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Since the rotations are functions of derivatives of w, the corresponding shape functions should be 
C1-continous. However, other components of displacement vector are needed to be C0- 
continuous [29, 30]. Therefore, the displacement vector at a point on the mid surface can be 
defined as 

(4)  
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u  

  

In this superelement, the shape functions are defined as a combination of trigonometric and 
polynomial functions. Based on the foregoing discussion, the element needs 8×4 C1-continuous 
and 8×2 C0-continuous shape functions. Hence, the approximation function for the radial 
displacement is written as [29, 30] 
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Where Ni, Ni
ʹ, Ni

ʺ, and Ni
ʹʹʹare C1-continuous shape functions that are presented in the appendix 

A. Moreover, the tangential and axial displacements at the mid surface of the element are 
approximated as 
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Where coefficients Mi are C0-contiuous shape functions, given in the appendix A, and vi
0 and ui

0 
are tangential and axial displacements at the nodes, respectively. As a result, this element has 32 
+ 8 = 40 distinct shape functions. By invoking to the FEM notation, the vector u in Eqs. (4) can 
be obtained by the following matrix relationship [16] 

(7)      u N q    

Where [N] is the matrix of shape functions and is defined below 
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And finally, the nodal displacement vector {q} is defined as following 
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3 Stiffness and Force Matrices 

3.1   Kinematic relations 

In the classical shell theory, the shear strains γrα and γzr and the radial strain εrr are neglected 
[28]. The remained strains are considered functions of strains at the mid surface and 
curvatures, namely [31] 
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Where ε0
z, ε0

α, and γ0
αz are strains at the mid surface which are functions of mid surface 

displacements 
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And also, χz, χα, and χαz are defined as the curvatures of shell which are defined below 
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3.2   Stress-strain relations 
 
The three non-zero stress components of the element are related to the strains with the 
constitutive law of [31] 
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The matrix [Q] is called the mechanical properties matrix and its components for an isotropic 
material equals 
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Where E is the modulus of elasticity, G is the shear modulus, and ν is the Poisson ratio. By 
adding the thermal effects to the relations of Eqs. (11), the strain vector can be defined as 
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In which αe is the thermal expansion coefficient and ΔT is the temperature difference of the shell 
from the reference temperature T0. The strain-displacement and curvature-displacement relations, 
Eqs. (11) and (12) respectively, can be cast in a matrix form as 

(16)       0 0 0 T

z z z z         ε L u    

In which [L] is an operator matrix which is given in the appendix A. After substitution of Eqs. 
(7) into Eqs. (16) it yields 
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Where 
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3.3   Element stiffness matrix and force vectors 
 
In FEM, the final form of the system of equations between the displacement and force vectors of 
element is expressed as 

(19)         e e euK q f    

Where [Ku] (e) is called the stiffness matrix of element, and here, it is derived from the Ritz 
method and in terms of the natural coordinates [29] 
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Also, [De] is the material properties matrix which is defined as [31] 
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The force vector {f}(e) in Eqs. (19) contains the external mechanical and thermal loads on the 
element [29], namely 
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where in the foregoing case study, the right hand vectors are defined below: 
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in which {Sr
T}is the force and momentum resultant vector that is produced due to a 

temperature difference, and its components are defined below 
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 The body force vector 
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 The distributed force vector 
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 The concentrated force vector 
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4 Results and discussion 

To validate the defined element, two classical shell structure problems are considered and the 
results are compared with the analytical solutions available in the literature and also with the 
results which is obtained by means of shell elements in a commercial software package. 
 
4.1 Problem I 

 
Consider a storage tank standing on the ground and filled with the water. The tank is open on 
top and water has a free surface. Therefore, the pressure varies linearly from the top to bottom 
of the tank. The tank is made of cement by the order of C25 with the elasticity modulus of E = 
20GPa and Poisson's ratio of ν = 0.2. Also, the specific weight of the water is γ = 10 kN/m3. 
The tank dimensions are depicted in Figure (2). The radial displacements of the tank through 
the length are desired. 
 
4.1.1 The Result 

 
By resorting to only five shell superelements, the deformations of the tank undergoing the 
water pressure are obtained, and the results are compared with the analytical solutions 
presented in [32]. Also, by resorting to a commercial software package, the results are 
compared with those obtained by 2000 shell elements. Figure (3) depicts the radial 
displacement curves obtained by superelements, the analytical method, and shell elements.  
As it is apparent, with only five elements the radial deformation curve is properly matched 
with the analytical one and 2000 shell elements. In the same Figure, the results for 10 
superelements are also presented. With the higher number of elements, the result is almost 
converged to the analytical one, however, according to the obtained maximum relative errors 
which are reported in the Table (1); five superelements adequately conduct the deformation 
analysis.  superelement, an analytical method presented in [32], and shell elements. By having 
the nodal displacements at hand, the stress components, at any location, can be derived. 
Figure (4) shows the tangential stress profile with respect to the height of the cylinder which 
is computed by 5 and 10 superelements.  In this Figure, the stress result which was obtained 
analytically in [32], and numerically with 2000 shell elements are also depicted. Apparently, 
the superelement method is also proved to be efficient in the calculation of stress result.  
In Table (1), the effect of number of superelements on the accuracy of the results is presented. 
 
 
 

 
 

Figure 2 The storage tank of problem I 
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Figure 3 The radial displacement curve of the storage tank with respect to the height obtained by the 

 

 
Figure 4 The tangential stress profile of the storage tank through the height obtained by the superelement, an 

analytical method presented in [32], and shell elements 
 

Table 1 Maximum relative errors of radial displacements and tangential stresses obtained with different 
number of superlements.  

 
Element Type Number of 

Elements 
Maximum Relative 
Error of ur (%) 

Maximum Relative 
Error of σαα (%) 

Superelement 5 2.32 3.31 
Superelement 10 1.18 2.65 
Superelement 15 0.66 1.22 
Superelement 20 0.19 0.41 
Shell element 1000 1.28 1.68 
Shell element 2000 0.95 1.46 

4.2 Problem II 
 

In this example, a thin cylindrical tank filled with the water is placed horizontally on the end 
supports (Figure (5)). The tank ends are simply supported so that the radial and tangential 
displacements vanish. The tank has a radius of R = 1m, thickness of t = 3mm and the length 
of Lc = 5m, and it is made of stainless steel with elasticity modulus of E = 200GPa and 
Poisson ratio of ν = 0.28.  



A Shell Superelement for Mechanical Analysis of ...    

  

99

Here, the effect of weight of water is neglected and only a distributed pressure inside the tank 
is considered. The boundary conditions at both ends are defined as following 

(29) 
0 0

0

α r

c α r

z          

      

u u

z L u u 

   

   
  

  

It is assumed that the distributed load is asymmetric through the angular direction, namely 

(30)   w 1 cosP γ R θ     

The analytical solutions of this problem are presented in [33] which, beside the results of shell 
elements in a commercial software package, will be used as a verification of the superelement 
method. 
 
4.2.1 The Results 

 
The problem is first solved by five and then by 10 superelements. The radial displacements at 
L = 2m with respect to angle θ are depicted in Figure (6). The analytical result which was 
presented in [33], and the ones which are obtained by 2400 shell elements are also depicted in 
Figure. 6. The corresponding tangential stress result is also plotted in Figure (7). The stress 
result is obtained based on the recovery method, which is thoroughly explained in [34]. 
Moreover, Figures (8) and (9) show the graphs of radial displacement and the tangential stress 
result at θ = 0 with respect to the length of cylinder, respectively. As it is obvious, the 
superelements can estimate the displacements and stresses properly, comparing with the 
analytical ones. Although the governing equations of the problem include the second 
derivative of the tangential displacement, the trigonometric shape functions of a superelement 
are properly estimate the results. Table (2) presents the maximum relative errors of the 
obtained radial displacements and tangential stresses calculated by different number of 
elements. As the stress result is derived from the nodal displacements, higher relative error is 
expected. From Figures (6), (7), (8) and (9) and the Table (2) it is apparent that even five 
superelements is enough to predict the deformation and stress results properly with almost 3% 
and 7% maximum relative error, respectively. However, if a better accuracy is needed, 
especially in stress analysis, more superelements is required. For example, as the Table (2) 
shows, by incorporating 10superelements the maximum relative error of the derived stress 
results drops to 2.65%. 

 

 

 
Figure 5 The cylindrical tank of problem II 
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Figure 6 The radial displacement with respect to θ obtained by superelements, the analytical method  

presented in [33], and shell elements. 
 

 

Figure 7 The tangential stress plot with respect to θ obtained by superelements, an analytical method 
 presented in [33], and shell elements. 

 

 

Figure 8 The radial displacement with respect to the length obtained by superelements, an analytical 
 method presented in [33], and shell elements. 
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 Table 2 Maximum relative errors of radial displacements and tangential stresses obtained with  
                   different number of superlements.  

Element Type Number of 
Elements 

Maximum Relative 
Error of ur (%) 

Maximum Relative 
Error of σαα (%) 

Superelement 5 2.32 3.31 
Superelement 10 1.18 2.65 
Superelement 15 0.66 1.22 
Superelement 20 0.19 0.41 
Shell element 2400 4.38 4.13 

 

Finally, the tangential stress contour of the cylindrical shell along the z and θ directions which 
is obtained by 10 superelements are displayed in the Figure (10). 

 

 
 

Figure 9 The tangential stress plot with respect to the length obtained by superelements the analytical  
method presented in [33], and shell elements. 

 

 
 

Figure 10 The tangential stress plot of the cylindrical shell through the z and θ directions 
obtained by 10 superelements. 
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5 Conclusions 

In this paper, the development of a novel cylindrical shell element is targeted. This element 
provides high speed and accuracy in the mechanical analysis of cylindrical shell structures. The 
shape functions of this element are a combination of polynomial and trigonometric functions 
which provide high accuracy in the estimation of nodal displacements and stress components in 
problems with asymmetric loadings. This was examined by a classical case study in which an 
asymmetric loading was applied. Although this type of elements is constrained by a certain 
geometry, it can be effectively incorporated in complex problems such as nonlinear analysis of 
structures made of complex materials, like composites or functionally graded materials. 
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Nomenclature 

Aij, Dij Material properties matrix elements 

E Modulus of elasticity 

Fi
α Tangential concentrated force 

Fi
z Axial concentrated force 

G Shear Modulus 

L Half-length of element 

MT
z Axial momentum resultant of temperature difference 

MT
α Tangential momentum resultant of temperature difference 

NT
z Axial force resultant of temperature difference 

NT
α Tangential force resultant of temperature difference 

Mi
z Axial concentrated momentum resultant 

Mi
α Tangential concentrated momentum resultant 

Ni
z Axial concentrated force resultant 
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Ni
α Tangential concentrated force resultant 

Qij Mechanical properties matrix elements 

r Radial Coordinate of element 

R Element radius 

ΔT Temperature difference 

u Total radial displacement 

u0 Radial displacement of element mid-surface 

v Total tangential displacement 

v0 Tangential displacement of element mid-surface 

w Total Axial displacement 

w0 Axial displacement of element mid-surface 

z Axial Coordinate of element 

Greek symbols 

α Tangential Coordinate 

αe Thermal expansion coefficient 

βα Tangential rotation of element 

βz Axil rotation of element 

γ Tangential local coordinate 

γαz Total shear strain 

γ0
αz shear strain of mid-surface 

εα Total tangential normal strain 

ε0
α Tangential normal strain of mid-surface 

εz Total Axial normal strain 

ε0
z Axial normal strain of mid-surface 

ν Poisson ratio 

ξ Axial local coordinate 

σα Tangential stress 

σz Axial stress 

ταz Shear stress 

χα Tangential curvature 

χz Axial curvature 

χαz Transverse curvature 
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Appendix A 

C1-continuous shape functions 
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C0-continuous shape functions: 
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(A2)  
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The numbering of indexes i and j in Eqs. (A1) and Eqs. (A2) are according to Figure (A1). 
Operator matrix [L] is defined as: 
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