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This article presents the coupled thermoelasticity of a truncated func-
tionally graded conical shell under thermal shock load. The classical
coupled thermoelasticity theory is employed to set the partial differ-
ential equations of motion of the conical shell. The shell governing
equations are based on the first-order shear deformation shell theory
that accounts for the transverse shear strains and rotations. The so-
lution is obtained by transforming the governing equations into the
Laplace domain and using the Galerkin finite element method in the
Laplace domain to calculate the displacement components. The phys-
ical displacement components in real time domain are obtained by
the numerical inversion of the Laplace transform. Temperature dis-
tribution is assumed to be linear across the shell thickness. Radial
displacement, axial stress, axial force, and temperature versus time
are calculated and the effect of relaxation time and power law index
are examined. Comparison indicates that an increase in the radial vi-
bration amplitude and a decrease of vibration frequency occur when
changing the material from ceramic to metal. The results are validated
with the known data in the literature.
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1 Introduction

The coupled thermoelasticity refers to the interaction of elastic and thermal deformations in
a continuum. The solution of this class of problems requires simultaneous consideration of
the equations of motion and the energy equation. Due to this nature, assumption of dynamic
coupled thermoelasticity requires a deep physical and mathematical understanding to properly
model and solve the governing equations.

One of the topics in thermoelasticity is the coupled thermoelastic analysis of structural mem-
bers such as beams, plates, and shells. Structural members in various industries may be sub-
jected to severe thermal loads in a short period of time. In such circumstances, the coupled ther-
moelastic assumption is necessary to evaluate the dynamic thermo-mechanical fields through
the structural members.
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Researches are conducted on the coupled thermoelastic analysis of structural members. Ig-
naczak and Nowacki [1] have addressed such an analysis. They presented the coupled thermoe-
lastic formulations for dynamical analysis of plates under non-steady temperature distributions.
Jones [2] presented an investigation on the coupled thermoelastic behavior of beams. This work
contains the EulerBernoulli and Timoshenko beam hypotheses, and presents formulations for
beams with different thermal and mechanical boundary conditions. Researches on coupled ther-
moelasticity of beams are extended to geometrically nonlinear analysis [3], and beams made of
functionally graded materials (FGMs) [4]. Among the early studies on the coupled thermoe-
lastic analysis of thin plates, the work done by Inan [5] could be mentioned. This work imple-
mented an analytical approach and investigated the free vibration as well as general solution of
the associated equations of motion of thin elastic plates for thermo-mechanically coupled con-
ditions. Chang and Wan [6] present a Galerkin-based investigation on the thermo-mechanically
coupled large amplitude vibrations of thin elastic plates. This work presents some results on
damping aspect of coupled thermoelastic analysis, and a comparison between the coupled and
un-coupled results. Trajkovski and Čukić [7] presented the dynamic coupled thermoelastic be-
havior of circular plates under a surface thermal shock load. This work uses a solution based on
the integral transforms which has the capability for exact implementation of boundary condi-
tions. For investigation on the effect of thermo-mechanical coupling on the nonlinear dynamics
of orthotropic plates, Yeh [8] used a Galerkin-based solution method. This work is presented
for plates with simply supported boundary conditions, and plate’s behavior is considered to be
governed by the classical plate theory. The results of this work mainly show the effects of ma-
terial and geometrical characteristics of plates, stemming from the thermo-mechanical coupling
and orthotropicity of plate’s material on the amplitude decaying of their vibrational motion.
Research is also conducted to investigate the dynamic coupled thermoelastic behavior of plates
made of functionally graded materrials. In this regard, works done by Akbarzadeh et al. [9] and
Jafarinezhad and Eslami [10], respectively, present dynamic thermoelastic analysis on behavior
of rectangular and annular plates subjected to lateral thermal shocks. The leading work on the
analysis of the dynamic thermoelastic response of shell structures belongs to McQuillen and
Brull [11]. The numerical results of this work address the behavior of infinite-length cylindri-
cal shells subjected to suddenly applied and rotating longitudinal lines of heat flux. Eslami et
al. [12], by means of the Galerkin finite element procedure, investigated the dynamic thermoe-
lastic response of long cylindrical shells subjected to thermal and mechanical shocks. Using
the Ritz finite element method, Chang and Shyong [13] presented an investigation on the vi-
brational behavior of laminated cylindrical shell panels subjected to a surface thermal shock.
Through the numerical results of this work, effects of themo-mechanical coupling, boundary
conditions, ply angles, and radius of curvature on dynamic thermoelastic response of lami-
nated cylindrical shell panels are studied. Eslami et al. [14] investigated the dynamic coupled
thermoelastic behavior for shells of revolution based on the Flügge second-order shell theory.
This work uses the Galerkin finite element method for solving the governing equations and
exhibits the effect of normal stress and strain on the response of shells to thermal and mechan-
ical shocks. The dynamic coupled thermoelastic response has also been studied for cylindrical
shells made of FGMs, see the work by Bahtui and Eslami [15]. This work utilizes a second-
order shear-deformable shell model as the kinematical idealization and a Galerkin trans-finite
element method as the solution procedure. Kraus [16] has presented the dynamic thermoelas-
tic analysis of spherical shells. However, the work is formulated in the context of un-coupled
thermoelasticity theory. Amiri et al. [17] have presented the dynamic coupled thermoelastic
response of thin spherical shells. Coupled thermoelasticity of thin conical shells under thermal
shock load is considered by Soltani et al [18]. The shell material is considered to be made of
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homogeneous/isotropic material, temperature distribution across the shell thickness is assumed
to be a quadratic function of the thickness variable and the Galerkin finite element method is
employed to solve the coupled equations. The coupled equations are directly solved in the space
and time domain using the Newmark method. Coupled thermoelasticity of rotating truncated
conical shells based on the Lord-Shulman model is presented by Heydarpour and Aghdam [19].
While the title of the paper is conical shells, but the authors consider a thick shell segment and
use the theory of elasticity and the equations of motion along the axial and radial directions.
The differential quadrature method is used to solve the governing equations. Since the theory
of elasticity is used to model the problem, the temperature and stress wave fronts should be
detected in the corresponding figures. No clear discussion for the wave fronts is given in the nu-
merical result section of the article. This conclusion is the critical issue and the authors should
have provided a brief discussion on the interaction of the speed of rotation and the magnitudes
and locations of the temperature and stress wave fronts.

The present work deals with the dynamic coupled thermoelastic response of truncated FGM
conical shells to suddenly applied thermal shocks. The work is formulated based on a first-order
shear-deformable shell model. The shell is considered to obey Hooke’s law for their mechanical
material properties and to accept infinitesimal strains under the applied load conditions. The
classical dynamic coupled energy equation is used to obtain the temperature distribution through
the shells. The temperature field in shell’s thickness direction is approximated to vary linearly.
Based on the governing equations, a flexural coupled thermoelastic element is derived. Also, the
effects of shell slenderness and thermal edge conditions on the dynamic coupled thermoelastic
response of thin conical hells to lateral thermal shock loads are investigated.

2 Analysis

A truncated conical FGM shell with radii Ri and Ro, thickness h, and the half apex angle β, as
shown in Figure (1), is considered. The functionally graded shell is made of metal and ceramic,
where the material properties continuously change in the thickness direction as a function of lo-
cation. The material properties such as Youngs modules E(z), coefficient of thermal expansion
α(z), coefficient of heat conduction K(z), specific heat C(z), and the mass density ρ(z) are
described across the shell thickness, where z is the shell thickness coordinate between −h/2
and h/2, positive outward. The volume fraction of constituent materials are denoted by

fm =
Vm

Vm + Vc
fc =

Vc
Vm + Vc

(1)

where fm and fc are the volume fractions of metal and ceramic of FGM, respectively, and satisfy
the following equation

fm + fc = 1 (2)

The effective material properties of functionally graded materials may be expressed as

Fcf (z) = Fmfm + Fcfc (3)

where Fm and Fc are the persistent material properties of each phase. The volume fraction is
assumed to follow a power law function as

i ≥ 0, fm =

(
2z + h

2h

)i
, fc = 1− fm (4)
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Figure 1 Truncated conical shell with displacement fields.

where i is the power law index and represents the material variation through the shell thickness.
When value of i equals to zero, it represents a fully metal and when infinity it represents a fully
ceramic shell. It is assumed that Poissons ratio is constant across the shell thickness due to its
negligible variation for the constituents.

2.1 Strain-displacement relations

Structure in this problem is a functionally graded truncated conical shell. The conical coordi-
nates (x, θ, z) are considered along the axial, circumferential, and normal to shell surface di-
rections. The displacement components based on the first order approximation are represented
as

u(x, θ, z) = u0(x, θ) + zψx(x, θ)

v(x, θ, z) = v0(x, θ) + zψθ(x, θ)

w(x, θ, z) = w0(x, θ) (5)

where u0, v0, and w0 represent the components of displacement vector in the middle plane of
the shell at a point along the x, θ, and z-directions, respectively.

The strain-displacement relations for the conical shell based on first order shear deformation
theory are given as

εx =
∂u◦
∂x

+ z
∂ψx
∂x

εθ =
1

1 + z
Rv

[
1

R

∂v◦
∂θ

+
u◦
R

sin β +
w◦
R

cos β +
z

R

(
∂ψθ
∂θ

+ ψx sin β

)]
γθz =

1

1 + z
Rv

(
1

R

∂w◦
∂θ

+ ψθ −
v◦
R

cos β

)
γxz =

∂w◦
∂x

+ ψx

γxθ =
∂v◦
∂x

+ z
∂ψθ
∂x

+ (
1

1 + z
Rv

)

[
1

R

∂u◦
∂θ
− v◦
R

sin β +
z

R
(
∂ψx
∂θ
− ψθ sin β)

]
(6)

where in these equations R = R(x) and Rv = R cos β.
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2.2 Stress-strain relations

The stress - strain relations for a functionally graded shell based on the assumed displacement
model, including the shear deformations, are

σx
σθ
τxθ
τxz
τθz

 =
E(z)

1− υ2


1 υ 0 0 0
υ 1 0 0 0
0 0 1−υ

2
0 0

0 0 0 1−υ
2

0
0 0 0 0 1−υ

2




εx − α(z)(∆T )
εθ − α(z)(∆T )

γxθ
γxz
γθz

 (7)

The force and moment resultants from the first order shell theory are

< Nxx, Nθθ, Nθx, Nxθ, Qxx, Qθθ >=

∫ h/2

−h/2
< σxx, σθθ, τθx, τxθ, τxz, τθz >dz

< Mxx,Mθθ,Mθx,Mxθ >=

∫ h/2

−h/2
< σxx, σθθ, τθx, τxθ >zdz (8)

2.3 Equations of motion

The following equations are obtained by the Hamilton principle, in conical coordinates, includ-
ing the shear deformations [16]

Nxx,x.R(x) +Nθx,θ + (Nxx −Nθθ) sin β = R(x)(I◦ü◦ + I1ψ̈x)

Nxθ,x.R(x) +Nθθ,θ + (Nxθ +Nθx) sin β +Qθ. sin β = R(x)(I◦v̈◦ + I1ψ̈θ)

Qx,x.R(x) +Qθ,θ +Qx. sin β −Nθθ. cos β = R(x)(q + I◦ẅ◦)

Mxx.sinβ +Mxx,x.R(x) +Mθx,θ −Mθθ. sin β −R(x)Qx = R(x)(I1ü◦ + I2ψ̈x)

Mxθ,x.R(x) +Mθθ,θ + (Mxθ +Mθx) sin β −R(x)Qθ = R(x)(I1v̈◦ + I2ψ̈θ)

(9)

where ∫ h/2

−h/2
ρ(z)dz = I0∫ h/2

−h/2
ρ(z)zdz = I1∫ h/2

−h/2
ρ(z)z2dz = I2 (10)

For the axisymmetric loading conditions, Eqs. (9) reduce to

Nxx,x + (Nxx −Nθθ)
sin β

R
= I◦ü◦ + I1ψ̈x

Qx,x +Qx.
sin β

R
−Nθθ

cos β

R
= q + I◦ẅ◦

Mxx,x + (Mxx −Mθθ)
sin β

R
−Qx = I1ü◦ + I2ψ̈x (11)
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Temperature distribution across the shell thickness may be assumed to be linear, as

T (x, θ, z, t)− Ta = T0(x, θ, t) + zT1(x, θ, t) (12)

where Ta is the reference temperature and T1 and T2 are the unknown functions to be obtained.
Substituting Eqs. (6) into Eqs. (7) and using Eqs. (10) and (12) and finally substituting the
resulting equations into the equations of motion (11), the equations of motion are obtained in
terms of the displacement components as

(A111
∂2

∂x2
+ A111

sin β

R

∂

∂x
− A111

sin2β

R2
− I0

∂2

∂t2
)u0 + (−A′111

cos β

R

∂

∂x

−A111
sin β cos β

R2
)w0 + (B111

∂2

∂x2
+B111

sin β

R

∂

∂x
−B111

sin2β

R2

−I1
∂2

∂t2
)ψx − (G11

∂

∂x
)T0 − (G22

∂

∂x
)T1 = 0

(−A′111
cos β

R

∂

∂x
− A111

cos β sin β

R2
)u0 + (A′′111

∂2

∂x2
+ A111

sin β

R

∂

∂x

−A111
cos2β

R2
− I0

∂

∂t2
)w0 + (A′′111

∂

∂x
−B′111

cos β

R

∂

∂x
+ A′′111

sin β

R

−B111
cos β sin β

R2
)ψx + (G11

cos β

R
)T0 + (G22

cos β

R
)T1 = 0

(B111
∂2

∂x2
+B111

sin β

R

∂

∂x
−B111

sin2β

R2
− I1

∂2

∂t2
)u0 + (−B′111

cos β

R

∂

∂x

−B111
sin β cos β

R2
− A′′111

∂

∂x
)w0 + (C111

∂2

∂x2
+ C111

sin β

R

∂

∂x

−C111
sin2β

R2
− I2

∂2

∂t2
− A′′111)ψx − (G22

∂

∂x
)T0 − (G33

∂

∂x
)T1 = 0

(13)

where A111, A
′
111, A

′′
111, B111, B

′
111, C111, Gii(i = 1..3) are constants given in the Appendix.

Three equations of motion contain five unknown dependent functions u0, w0, ψx, T0, and T1.
This means that two more equations are needed to complete the necessary equations and calcu-
late the dependent functions. These two equations are derived by employing the energy equa-
tion.

2.4 Energy equation

The first law of thermodynamics for heat conduction equation is assumed for the functionally
graded truncated conical shell. The classical theory of coupled thermoelasticity for the FG
truncated conical shell is considered as [21]

ρcεṪ + β̄Taε̇ii = (kT,i),i (14)

where ρ is the mass density, cε is the specific heat at constant strain, β̄ = α(3λ+ 2µ), Ta is the
reference temperature, and k is the heat conduction coefficient. This equation may be written
in expanded form for the assumed conditions. We move all parts of the equation to the left side
of the equation and call it the residue Re. The resulting residue Re is made orthogonal with
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respect to 1 and z. This yields two independent equations for T0 and T1, as it is made orthogonal
with respect to 1 and z for T0 and T1 [11]∫ h/2

−h/2
Re× dz = 0∫ h/2

−h/2
Re× zdz = 0 (15)

Five governing equations, including the equations of motion and the energy equations, must be
simultaneously solved to obtain the displacements and temperature functions.

As the thermal boundary conditions, it is considered that the heat flux Qin and Qout are
applied on the inside and outside surfaces of the cone

k(−h/2)
∂T

∂z

∣∣∣∣
−h

2

= hin
(
T − T in∞

)
, z = −h

2
(16)

k(h/2)
∂T

∂z

∣∣∣∣
h
2

= hout
(
T − T out∞

)
, z =

h

2
(17)

Using Eqs. (12) and (15) for the linear approximation of temperature distribution across the
thickness direction, two energy equations for the conical shell are obtained as

[
TaH1

(
∂2

∂x∂t
+ sinβ

R
( ∂
∂t

)
)]
u0 +

[
TaH1

cosβ
R

(
∂
∂t

)]
w0

+
[
TaH2

(
∂2

∂x∂t
+ sinβ

R
( ∂
∂t

)
)]
ψx

+
[
K1

(
∂
∂t

)
− J1

sinβ
R

∂
∂x
− J1

∂2

∂x2

]
T0

+
[
K2

(
∂
∂t

)
− J2

sinβ
R

∂
∂x
− J2

∂2

∂x2

]
T1

= Qout −Qin[
TaH2

(
∂2

∂x∂t
+ sinβ

R
( ∂
∂t

)
)]
u0 +

[
TaH2

cosβ
R

(
∂
∂t

)]
w0

+
[
TaH3

(
∂2

∂x∂t
+ sinβ

R
( ∂
∂t

)
)]
ψx

+
[
K2

(
∂
∂t

)
− J2

sinβ
R

∂
∂x
− J2

∂2

∂x2

]
T0

+
[
K3

(
∂
∂t

)
− J3

sinβ
R

∂
∂x
− J3

∂2

∂x2
+ J1

]
T1

= h
2
(Qout +Qin)

(18)

where the constants Hj, Kj, Jj(j = 1...3) are given in the Appendix.

2.5 Numerical solution

Consider a truncated conical shell under axisymmetric thermal shock load. Temperature dis-
tribution across the shell thickness is assumed to be linear. Under such assumed conditions
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five unknown functions u0, w0, ψ, T0, T1, as given by Eqs. (13) and (18), appear in the govern-
ing equations. These equations are transformed into the dimensionless form by the following
dimensionless parameters

x̄ = x
δ

t̄ = tC1

δ

∆T̄ = T−Ta
Ta

T̄0 = T0
Ta

T̄1 = δT1
Ta

ū0 = (λm+2µm)u0
δγmTa

w̄0 = (λm+2µm)w0

δγmTa
ψ̄x = (λm+2µm)ψx

γmTa

σ̄ij =
σij
γmTa

(19)

where γm = Emαm indicating that γm is evaluated for the metal constituent and

C1 =

√
λm + 2µm

ρm

δ =
km

ρmcmC1

Here, λ and µ are the Lamè constants and the subscript m denotes the material properties of
metal constituent. With the assumed dimensionless parameters, the governing equations are
transformed into the Laplace domain. Consider the linear shape function for the base element
of the dependent functions as

u0 =
〈
u0i u0j

〉{ Ni

Nj

}
w0 =

〈
w0i w0j

〉{ Ni

Nj

}
ψθ =

〈
ψθi ψθj

〉{ Ni

Nj

}
T0 =

〈
T0i T0j

〉{ Ni

Nj

}
T1 =

〈
T1i T1j

〉{ Ni

Nj

}
(20)

where Ni = 1 − x̄
l

and Nj = x̄
l
, l being the length of base element (e). Applying the Galerkin

method to the system of five Laplace transferred equations and employing the weak formula-
tions, yield

l∫
0

[
(−A111

δ
(λm+2µm)

∂Nl

∂x
∂Nm

∂x
− A′′′111

sin2β
R2

δ
(λm+2µm)

NlNm

−A′111
sinβ
R

δ
(λm+2µm)

∂Nl

∂x
Nm + A′′′111

sinβ
R

δ
(λm+2µm)

Nl
∂Nm

∂x

−I0
1

ρmδ
s2NlNm)ū0 + (−A′′′111

cosβ sinβ
R2

δ
(λm+2µm)

NlNm

−A′111
cosβ
R

δ
(λm+2µm)

∂Nl

∂x
Nm)w̄0 + (−B111

δ
(λm+2µm)

∂Nl

∂x
∂Nm

∂x

−B′′′111
sin2β
R2

δ
(λm+2µm)

NlNm −B′111
sinβ
R

δ
(λm+2µm)

∂Nl

∂x
Nm

+B′′′111
sinβ
R

δ
(λm+2µm)

Nl
∂Nm

∂x
− I1

1
ρmδ2

s2NlNm)ψ̄x

+(G11
1
γm

∂Nl

∂x
Nm)T̄0 + (G22

1
γmδ

∂Nl

∂x
Nm)T̄1

]
dx = 1

Taγm
(−N̄xx.Nl)
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l∫
0

[
(−A111

δ
(λm+2µm)

Nl
∂Nm

∂x
− A′111

cosβ sinβ
R2

δ
(λm+2µm)

NlNm)ū0

+(A′′111
sinβ
R

δ
(λm+2µm)

Nl
∂Nm

∂x
− A′′111

δ
(λm+2µm)

∂Nl

∂x
∂Nm

∂x

−A111
δ

(λm+2µm)
cos2β
R2 NlNm − I0

1
ρmδ

s2NlNm)w̄0

+(−B111
δ

(λm+2µm)
cosβ
R
Nl

∂Nm

∂x
−B′111

sinβ cosβ
R2

δ
(λm+2µm)

NlNm

−A′′111
δ

(λm+2µm)
∂Nl

∂x
Nm + A′′111

sinβ
R

δ
(λm+2µm)

NlNm)ψ̄x

+(G11
cosβ
R

1
γm
NlNm)T̄0 + (G22

cosβ
R

1
γmδ

NlNm)T̄1

]
dx = 1

Taγm
(−Q̄xx.Nl)

l∫
0

[
(−B111

1
(λm+2µm)

∂Nl

∂x
∂Nm

∂x
−B′′′111

sin2β
R2

1
(λm+2µm)

NlNm

−B′111
sinβ
R

1
(λm+2µm)

∂Nl

∂x
Nm +B′′′111

sinβ
R

1
(λm+2µm)

Nl
∂Nm

∂x

−I1
1

ρmδ
s2NlNm)ū0 + (−B′′′111

cosβ sinβ
R2

1
(λm+2µm)

NlNm

−B′111
cosβ
R

1
(λm+2µm)

∂Nl

∂x
Nm − A′′111

1
(λm+2µm)

Nl
∂Nm

∂x
)w̄0

+(−C111
1

(λm+2µm)
∂Nl

∂x
∂Nm

∂x̄
− C ′′′111

sin2β
R2

1
(λm+2µm)

NlNm

−C ′111
sinβ
R

1
(λm+2µm)

∂Nl

∂x
Nm + C ′′′111

sinβ
R

1
(λm+2µm)

Nl
∂Nm

∂x

−I2
1

ρmδ2
s2NlNm − A′′111

1
(λm+2µm)

NlNm)ψ̄x + (G22
1

γmδ
∂Nl

∂x
Nm)T̄0

+(G33
1

γmδ2
∂Nl

∂x
NmT̄1)

]
dx = 1

δ Taγm
(−M̄xx.Nl)

l∫
0

{[
H1

(
1

γmTa
(sNl

∂Nm

∂x
) + sinβ

R
1

γmTa
(sNlNm)
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(21)

where s is the Laplace variable. Here, Qin and Qout are the inner and outer non-dimension
applied heat flux. Set of Eqs. (21) are assembled for all the finite elements of the solution
domain and the final equation in the Laplace domain is given as

[K(s)]{X} = {F (s)} (22)
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Table 1 Material properties of functionally graded constituent materials.

Metal Ceramic

Em = 66.2 Gpa Ec = 117 Gpa
αm = 10.3 ×10−6(1/K) αc = 7.11× 10−6(1/K)
ρm = 4.41 ×103(kg/m3) ρc = 5.6× 103(kg/m3)
km = 18.1(W/mK) kc = 2.036(W/mK)
cm = 808.3 (J/kg.K) cc = 615.6 (J/kg.K)
ν = 0.321 ν = 0.333

where [K(s)] is the global stiffness matrix, {F (s)} is the global force matrix, and {X} is the
global unknown matrix in form of the non-dimensional displacement components defined by
Eqs. (20) in the Laplace transform domain. Note that since the time domain is transformed into
the s-domain (Laplace), the mass, capacitance, and stiffness element matrices are compressed
into one matrix, called the global stiffness matrix [K(s)]. The finite element equilibrium equa-
tion (22) is solved in the Laplace domain and the inverse Laplace transform to bering the solu-
tion into the real time domain t is handled using the numerical inversion of Laplace transform.
For the solution of Eq. (22) and transformation into the real time domain t, the method devel-
oped by Brancik [25] for fast numerical inversion of Laplace transforms is developed in Matlab
language environment.

2.6 Results and discussion

Consider a simply supported functionally graded conical shell under the inside impulsive ther-
mal shock. The ratio of thickness to small radius is assumed to be 0.1 and ratio of small radius
to length of conical shell is assumed to be 0.1. The functionally graded shell is assumed to
be made of combination of metal (Ti6Al4V) and ceramic (ZrO2), at the initial temperature
298.15K, with the material properties shown in Table 1.

The shell is ceramic-rich at the inside and metal-rich at the outside surfaces, respectively.
Temperature field across the shell thickness is assumed to be of linear type. Thermal shock is
of impulsive type and is applied to the inside surface. The equation of thermal shock is

Q̄1 = 50t̄e−10t̄ (23)

The boundary conditions at the ends of the shell are assumed to be thermally insulated. For
the FG shell, the power law index is assumed to be i = 0, 5, and i = ∞. Figure 2 shows the
lateral deflection of the shell middle length versus time for different values of the power law
index. Since the modulus of elasticity of ceramic is larger than metal, as the power law index
i increases, the normal frequency which is directly proportional to the modulus of elasticity
increases. When the power law index i increases, the displacement amplitude decreases too.
Figure 3 shows the temperature of the shell middle length versus time. This figure shows that
for pure ceramic shell (i = ∞), temperature distribution becomes higher, as the ceramic con-
ductivity is lower compared to metal. The reason is that lower thermal conductivity of ceramics
increases the temperature of the structure under applied thermal shock load. Figure 4 shows the
lateral deflection of the shell middle length versus time for different cone angles. This figure
shows that the lateral displacement increases and its frequency decreases as the cone angle in-
creases. When the cone angle is increased, the shell approaches to an annular plate and when
the cone angle is decreased it approaches to cylindrical shell. The conical shells with larger
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Figure 2 Radial displacement of middle length of the shell versus time for different power law indices.
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Figure 3 Temperature of middle length and mid-plane of the shell versus time for different power law indices.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−2

0

2

4

6

8

10
x 10

−3

Non−Dim Time

N
on

−
D

im
 r

ad
ia

l d
is

pl
ac

em
en

t

 

 

pi/4
pi/5
pi/3

Figure 4 Radial displacement of middle length of the shell versus time for different cone angles.
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Figure 5 Radial displacement of middle length of the shell versus time.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
−8

−0.014

−0.013

−0.012

−0.011

−0.01

−0.009

−0.008

non−dim Time

no
n−

di
m

 N
xx

Figure 6 Axial moment of middle length of the shell versus time.

half apex cone angle tend to have larger lateral deflection under internal applied thermal shock
loads.

Now, consider a conical shell with similar material and thermal shock load of the previous
example. The ratio of thickness to small radius is assumed to be 0.1 and ratio of small radius
to length of the conical shell is assumed to be 0.1 and 1. Figure 5 shows the lateral deflection
of the shell middle length versus time. This figure shows that, for the same ratio of h/R, when
the ratio of small radius to length of conical shell is increased, the lateral deflection is also
increased.

Figure 6 shows the axial moment of the shell middle length versus time. Figure 7 shows the
axial force of the shell middle length versus time.

Now consider the same type of applied thermal shock load, as given by Eq. (23), but with
different amplitudes. The shock amplitude is assumed to be 50, 100, and 200. The plots of
thermal shock loads are shown in Fig. 8. Figures 9 and 10 show the lateral deflection and
temperature of the shell middle length versus time. When the shock amplitude is increased, the
radial middle length deflections of shell versus time and the induced temperatures are increased.
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Figure 7 Axial force of middle length of the shell versus time.
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Figure 8 Shocks with different amplitudes
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Figure 9 Radial displacement of middle length of shell versus time with shocks.
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Figure 10 Temperature of middle length and mid-plane of the shell versus time with shocks.
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3 Conclusion

Figures 2 to 10 show the behavior of a truncated conical shell made of functionally graded mate-
rials under internal thermal shock load. The response of the shell is obtained under the coupled
thermoelastic assumption. The figures represent vibratory behavior under such a thermal shock
load and the coupled thermoelastic assumption. The question then arises that why wave fronts
(in temperature, displacement, and stress fields) are not detected in any of the given figures? Are
the wave fronts created and not seen in the figures, or the wave fronts are absent in the shells or
plates under thermal shock loads? This is an important question to be carefully addresses.

Referring to Chapters 8 and 9 of reference [21], wave fronts under coupled thermoelastic
assumption are observed in different types of structures. The structures discussed in this refer-
ence, are analyzed using the theory of thermoelasticity. Plate and shell structures are based on
the flexural theory, where the stresses are lumped across the thickness. This assumption results
into ignorance of the wave fronts across the plate or shell thickness. That is, while the wave
fronts exist across the thickness, but due to the flexural assumption they are not detected. Ap-
plying thermal shock loads to the sides of the flexural members result to vibratory behavior, as
presented in this article.
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