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Spreading of Plastic Zones in
Functionally Graded Spherical Tanks
Subjected to Internal Pressure and

Temperature Gradient Combinations
Thermo-Elasto-Plastic analyses of thick-walled spherical
tanks made of functionally graded materials (FGM) are
investigated analytically. These tanks are subjected to
positive or negative temperature gradient and internal
pressure loadings, separately or simultaneously. The power
law modeling has been used for considering the through-
thickness variation of mechanical properties. von Mises
A. Heydari* [jyield criterion and Elastic-Perfectly-Plastic assumptions
PhD Student f are used for describing the material behavior in plastic
zones. The patterns of plastic zones spreading for various
combinations of internal pressure and positive or negative
temperature gradient are investigated. Conducting
numerical exercises for similar problems in ABAQUS
software shows the excellent agreement with the analytical
solutions. FG sphere subjected to internal pressure and
negative temperature gradient yields at a lower pressure
than the FG sphere subjected to internal pressure. Internal
pressure and negative temperature gradient combination is
the most critical loading combination. Moreover, the results
show that the capacity of FG spherical tank subjected to
internal pressure is increased by applying a positive
temperature gradient.

Keywords: Analytical analyses, Thermo-Elasto-Plastic stresses, Functionally graded spherical
reservoir, Temperature gradient, Internal pressure.

1 Introduction

Functionally Graded Materials (FGMs), was created in (1984) [1]. High strength of FG
materials under high temperaturesis one of the basic properties of these materials. Publication
of papers about FGM has been increased after holding international symposiums of FG
materials at Sendai in (1990) [2] and San Francisco in (1992) [3].

Elastic analyses of thick-walled tanks subjected to internal and external pressure carried out
by Johnson and Mellor [4] and Cook and Yong[5]. Elasto-Plastic and Thermo-Elasto-Plastic
stress analyses of thick-walled spherical tanks have been also done by Whalley [6] and
Mendelson [7]. Some studies have been done by Timoshenko and Goodier [8] and Boley and
Weiner [9] for homogeneous tanks. Similar researches are aso conducted by Nowaki [10].
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Exact solution for Elastic-Perfectly-Plastic behavior of homogeneous sphere under thermal
gradient is obtained by Cowper [11].

He also investigated an approximate solution method by neglecting elastic strains which led to
conclusion that approximate solution in the case of thermal gradient isamost same as the exact
solution. Onset of yielding zones for various temperature-pressure and radius ratios of thick-
walled homogeneous spherical tanks has been investigated[12].

Effect of using non homogenous materials in strength and deformation of FG thick-walled
cylindrical tanks subjected to internal pressure with assumption of plane strain condition is
studied by Fukui and Yamanaka[13]. Fukui et al[14] continued researches with Thermo-
mechanical analyses of FG cylinders subjected to temperature gradient. A three dimensional
solution was obtained by Vel and Batra [15] for a time-dependent thermal loads imposed to a
simply supported functionally graded plate at its top and bottom. Eslami et al.[16] obtained
genera solution for the one-dimensional steady-state thermal and mechanical stresses in a
hollow thick-walled sphere made of FG material.

Shao and Wang [17] solved a steady-state thermal and a non-uniform mechanical loading
problem for a FG cylindrical panel with finite length. Thermo-Elastic analysis of a FG
cylindrical vessel was performed by Peng and Li[18].

Lack of access to experimental results is led to difficulties in the analytical investigation of
FGM'’s behavior. On the other hand, by increasing industrial demands for such materials,
investigation of FGM’s behavior is in the focus. There are a few works concentrating on
Thermo-Elasto-Plastic analyses of thick-walled FG tanks. The novelty of this paper isto present
a comprehensive Thermo-Elasto-Plastic analysis of FG spherical reservoirs by taking into
account al possible patterns of plastic zones propagations caused by positive or negative
temperature gradients and internal pressure combinations.

In current work, for first time, the analytical Elasto-Plastic and Thermo-Elasto-Plastic analyses
of FG spherical thick-walled reservoirs for all possible patterns based on establishing and
spreading plastic zones are presented.

2 Governing equations

Inner and outer radiuses of sphere are a and b respectively. Governing equations have been
simplified for axisymmetric conditions of geometry, mechanical propertiesand loading. Across
the thickness variation of FG sphere’ s mechanical propertiesis determined by power law [19].

E(r) = Eor™
a(r) = agr™

(1)
K(r) = Kyr"s

oy(r) = oy, ',

where E(r), a(r), K(r) and o,(r) are modulus of elasticity, coefficient of linear expansion,
thermal conductivity and yield stress, respectively. Also r isradius of sphere and varies between
aandb. The parametersk,, oo, Ky, oy, and n, ton, are material constants. These parameters are
defined in terms of properties and radiuses at inner and outer surfaces of FG sphere as follows:

Eo = (E(a) + E(b))/(@™ + b™)

ap = (a(a) + a(b))/(a" + b"2) 2
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Ko = (K(a) + K(b))/(a" + b™)
oy, = (0y(@) + 0y(b)) /(@™ + b™)
n, = In(E(b)/E(a))/In(b/a)

n, = In(a(b)/«(a))/In(b/a)
ns = In(K(b)/K(a))/In(b/a)

n, = In(oy(b) /0, (a))/In(b/a).

The function "In" is natura logarithm. The equilibrium and compatibility equations are
simplified for symmetrical conditions as follows:

op(r) + 2 (o:(r) — op(r))/r =0

go(™) + (go(r) — &.(1))/r = 0.

3

InEgs. (3), o.(r) and e.(r) areradial stressand radial strain; also og(r) and g4 (r) are hoop stress
and circumferential strain respectively. oy.(r) and ey(r) are first derivative of o,.(r) and gq(r)
with respect to r, respectively. Hook’ s law for FG sphereis modified in Egs. (4).

e-(r) = apr™2T(r) + (oﬁ(r) — ZVGS(r))/EOrnl
4
gg(r) = apr™2T(r) + ((1 —Vv)og(r) — vo?(r))/EOrnl,
where o¢(r) and o§(r) are elastic radial and circumferential stresses respectively and T(r) is
temperature at radius r. One dimensional differential equation of steady-state heat conduction
iswrittenin Eq. (5).
rK(m)T"(r) + (rK'(r) + 2K@)T'(r) = 0 (5)

where K'(r) isfirst derivative and T'(r) and T" (r) are first and second derivatives of K(r) and
T(r) with respect to r, respectively. Tresca and von Mises yield criteria for FG sphere under
axisymmetric conditions have been simplified as follows:

loegr()| = log(r) — o, (r)| = oy (1), (6)

in which o.¢(r) denotes the effective stress.

3 Formulation

Difference between temperatures at inner and outer radiuses of FG sphere is assumed equal to
AT. Solution of differential equation in Eq. (5) iswritten in Eq. (7).

T(r) = AT(r_(n3+1) — b—(n3+1))/(a—(n3+1) — b—(n3+1)) (7)
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In FG sphere subjected to positive temperature gradient, the temperature of inner surface is
greater than the temperature of outer surface (i.e. T(a) > T(b) or AT > 0) and vice versa
Governing differential equation of plastic zoneis obtained by combining equilibrium equation
and yield criterion.
oy (r) — 20y, ™1 = 0. (8)

Considering Eq. (6), and conducting numerical exercises for all possible thermal gradient and
internal pressure combinations, implies that the maximum absolute value of effective stressis
at inner or outer radii, therefore only two plastic zones can be established separately or
simultaneously, in general. These plastic zones are illustrated in Figure (1). Inner and outer
radiuses of elastic zones are assumed equal to r; = ¢ and r, = d, respectively. In genera r; is
equal to a or c and r, is equal to d or b. Governing differential equation of elastic zone is
obtained by combining equilibrium and compatibility equations by considering Hook’ slaw and
Eq. (7) asfollows:

r2(1 —v)o/(r) + r(4 — n)) (1 — v)or(r) — 2n;(1 — 2v)o,.(r) = 2E,r**1H(r), 9
inwhich H(r) isdefined in Eq. (10).The constant R isequal to r,/r;.
H(r) = apAT(r">""72(n; — n, + 1)1“;13+1 +n,ri2~1) /(R — 1) (10)

Solution of Eq. (8) for first and second plastic zonesis presented in Egs. (11).

op (r) = @, (r) — P
oP(r) = @, (1) (11)

where P isinternal pressure, and ¢, (r) and ¢, (r) are asfollows:

¢@,(r) = £ 20, (r" —a™)/n, 12
@2(r) = + 20, (b™ —1™)/n, . (12)
aOAT(rnz‘n3‘2(n3 —n, + 1)1‘;13+1 + nzrnz-l)/(Rnsﬂ -1)

Plastic circumferential stresses for first and second plastic zones (i.e. ogl(r) and ogz(r)) are
obtained by using equilibrium equation.

Elastic Zone

™ d Plastic Zone

Figure 1 Elastic and plastic zones
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ogl(r) =9,(r)—P

(13)
op (1) = 8, (r)
The functions 9, (r) and 9,(r) in Egs. (13), are defined in Egs. (14).
9;(r) = 2oy, (r"(2 + n,) — 2a™)/n,
(14)

9,(r) = oy, (2b™ —r"™+(2 +n,))/n,

Plus or minus sign of «,(r), @, (r), 9,(r) and 9, (r) are depended on sign of effective stress.
For the case that FG spherical reservoir subjected to internal pressure (i.e. AT isignored) plus
signisused. For the case that FG sphereis subjected to temperature gradient (i.e. P is neglected)
or the case that the tank is subjected to internal pressure and temperature gradient
simultaneously, the signs of Egs. (12) and (14) and the sign of AT are opposite. Solution of
differential equation in Eq. (9) iswritten in Eq. (15).

os(r) = &(r,ry)P + Z(r, vy, 1,)AT + ®(r, 14, 15), (15)

Where &(r,r,), Z(r,ry,1,) and ®(r,ry, r,) are defined in Egs. (16).

2 : .
(_1)1r;\3—1r7\i

E(I', I‘z) = L, B(rl,rz)
2 2 (- 1)1+1§(1~1 Iy, rz)r Az- 1 -y
Z(r,ry,13) = 4(r,11,13) — Zz e o
j=1i=1 112
2 i N
d(r,1y,1,) = (=D ' (ry, rpr

B(ry, r2)

i=1
In Egs. (16), B(rq,ry), Ur,rq,15), ¢i(ry, ) and A; are presented in Egs. (17).

B(ry,ry) = ri‘lrgz rg‘lri“z

U(r,r1,15) = h(r, 1y, Fz)( —(14n3) —(1+n3))/(a—(1+n3) _ b—(1+n3))

17
wnm—i(wwmﬁl ()
= (A=), - 3) + (-D*C)/(2(1 - v))
The function h(r, ry,r,) is presented in EqQ. (18).
4Egao(v — D(A(nz — ny + 1)1‘33+1r“1+“2‘“3‘1 + n,Bri1*nz) (18)

h(rl rll rz) =

C(RM:*1 — 1)
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The constants A, B and C are determined in Egs. (19).
A=((v-1@Cny+n, + 1+ C)_l —((v=1@ny+n, +1) - C)_l

B=((v-1)(2n,+1n,+3)+C) " —((v—1(@n, +ny +3) —C) " (19)

C= J(1 —v)((n; —3)2(1 —v) + 8ny(1 — 2v))
The elastic tangentia stress after using equilibrium equation is obtained.
0§() = (5 12) + 8 1,) ) P+ (20 1y, 15) + 20,11, 1))AT + (5,1, 15) + D11y, 1) . (20)
where &(r, r,), Z(r,rq, 1) and ®(r,ry,1,) are asfollows:
§(r, 1) = r(d/dr)(8(r,12))/2
Z(r,ry,r2) = r(d/dr)(Z(r,ry,12))/2 (21)

®(r,ry, 1) = r(d/dr)(®(r,ry,15))/2.

4 Patterns of plastic zones spreading

For all possible combinations of internal pressure and positive or negative temperature gradient,
the patterns of plastic zones propagation in FG spherical reservoirs have been investigated.

4-1 FG sphere subjected to internal pressure

For this case, sign of effective stress at any radius of elastic FG sphere is invariant. Moreover
the maximum absolute amount of effective stress is occurred at r = a. Therefore elastic FG
sphere initiates yielding from inner surface. Yield pressure after satisfying EQ. (6) at r = a has
been obtained as follows:

P, = oy,a™/&(a,b). (22

By increasing P from P, to P, first plastic zone is propagated from r=a to r; = c. The
corresponding internal pressureis calculated by satisfying Eq. (6) at r = c.

P. = (cryO c™ — P(c, b))/g(c, b) (23)

The first plastic zone is established without establishing the second plastic zone (i.e.r, = b in
Figure (1)). In limit state, by approaching r, from c to b, the capacity of FG sphere is obtained
asfollows:

Pmax = gi% PC = (P1(b) : (24)
In addition to, after approaching n, to zero, the well-known formula of homogeneous spherical
tank’ s capacity is obtained and the validity of Eq. (24) is observed.
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Phax = nLimO ¢,(b) = choln(b/a) (25)

4-2 FG sphere subjected to temperature gradient

For this case, signs of effective stresses in elastic FG sphere at r = a and r = b are opposite to
each other. Maximum absolute amount of effective stress for positive or negative temperature
gradient has been occurred at r = a. Hence, elastic FG sphere initiates yielding from inner
surface. Yield temperature gradient after satisfying Eq. (6) at r = a is obtained as follows (for
negative temperature gradient i.e. AT < 0, the positive sign is used and vice versa):

Ty = +0y,a"/Z(a,a,b). (26)

By increasing AT from T, for positive temperature gradient or decreasing AT from T, for
negative temperature gradient, first plastic zoneis propagated fromr = ator, = c. When AT is
equal to Ty}, the second plastic zone is established. The corresponding first plastic zone's outer
radius (i.e. r; = ¢o) and Ty, for positive or negative temperature gradients are obtained by
satisfying EQ. (6) at r = ¢, and r = b. Theradius ¢, is obtained by solving Eq. (27) with respect
f0 cq.

P(co) +Y(b) =0 (27)

where §i(r) isasfollows:
Y(r) = (GYOr“4 + kd(r, co,b))/Z(r, Co,b) (28)

The parameter k for r = ¢, isequal to -1 and for r = b is equa to +1 when AT is negative and
vice versa. After obtaining ¢, from Eq. (27), Ty, is obtained as follows (positive sign is for
AT < 0 and vice versa):

(29)

Ty,b = yi(co).

By increasing AT from Ty, for positive temperature gradient or decreasing AT from Ty, for
negative temperature gradient, the effective stress at a radius between c and d in Figure (1) is
vanished and the capacity of FG sphere is approached to infinity. Therefore, using yield
criterion based on maximum shear energy shows unreal capacity for reservoirs subjected to
temperature gradient.

4-3 FG sphere subjected to internal pressure and temperature gradient

In elastic or Elasto-Plastic FG sphere, the signs of effective stresses for positive and negative
temperature gradients (P = 0) are opposite to each other. Also, temperature gradient produces
effective stresses with different signsat r = a and r = b, as mentioned before. Because of these
differences, FG sphere must be studied for positive and negative temperature gradients
separately. Elastic stress field for each case can be obtained by substituting r; and r, by
corresponding radii of first and second plastic zonesin Egs. (15) to (18) and Egs. (20) and (21).
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4-3-1 Internal pressure and positive temperature gradient

Elastic FG sphere subjected to internal pressure (AT = 0) or subjected to positive temperature
gradient (P = 0) yieldsat r = a. Sign of effective stress caused by positive temperature gradient
is opposite to the sign of effective stress caused by internal pressure at r = a. Thus, this load
combination increases the capacity of elastic FG sphere. For describing possible patterns of
plastic zones spreading, the specific amounts of internal pressure (i.e. PPT¢(ry,r,)) and positive
temperature gradient (i.e. TPT¢(r, r,)) areintroduced in Egs. (30). These parameters have been
obtained by satisfying Eq. (6) atr = r; andr = r,.

PPTG(ry, 1) = (HZ(FL r) + Gyon%(rp rz))/Y(rL ry)

(30)
TPTC(ry, 1) = (Hz(rb ry) — Gyon%— (ry, rz))/\’(rp ry)
where y(ry, r2), pz(ry, r2), ng (ry, 12), ug(ry, r2) and n{(rl, r,) are as follows:
y(ry,rp) = E(rz, rZ)Z(rl, ry,Tp) — E(rl: rZ)Z(rz, r1,T2)
pz(ry, rp) = ‘5(1'1: Iy, rz)z(rzl ry,Iry) — CT)(rz: Iy, I‘Z)Z(I‘l, ry,Ty)
n%(rl,rz) = z(rz,rbrz)rild' + Z(rl,rl,rz)r;“ (31)

Hz(rp r;) = E(rl, rz)CTD(rz, ry,Tp) — E(rz' rz)CTD(rl, r1,T;)

T]%r(rp ry) = &(ry, rz)r?"’ +&(ry, rz)r§4-

4-3-1-1 Onset of yielding from inner surface

For this case, elastic FG sphere is subjected to internal pressure and positive temperature
gradient lessthan PPT¢(a, b) and TPTC(a, b) respectively. By increasing AT and decreasing P first
plastic zone has been established. Elasto-Plastic FG sphereis subjected to internal pressure and
positive temperature gradient less than PP (¢, b) and TPT¢(c, b), respectively. By increasing r,
from radius a to specific radius equal to c, internal pressure has been vanished. This specific
radius is obtained by solving Eq. (32) with respect to c. Thisradiusis equal to c, in Eq. (27).

PPTG(c,b) =0 (32)

In this pattern FG sphere after vanishing P, is subjected to positive temperature gradient equal
to Eq. (33) and second plastic zone is established.

TPTG(Co'b) = —(co) (33)
4-3-1-2 Onset of yielding from outer surface
The elastic FG sphere is subjected to internal pressure less than PPT¢(a,b) and positive
temperature gradient greater than TPT6(a,b). In this pattern, radius r, isinvariant (r; = a) and

radius r, is equal to d. The radius r, varies from b toward a. Therefore second plastic zone
spreads without establishing first plastic zone.
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The Elasto-Plastic FG sphere is subjected to internal pressure less than PPT6(a, d) and positive
temperature gradient greater than T™¢(a, d). By approaching radius d to radius a, the specific
internal pressure PTG (a, a) and specific positive temperature gradient TPT6 (a, a) are approached
toinfinity.

4-3-1-3 Onset of yielding from inner and outer surfaces

Elastic FG sphere is subjected to internal pressure and positive temperature gradient equal to
PPTG(a,b) and TPTG(a,b) respectively. First and second plastic zones are established
simultaneously. In addition to, Elasto-Plastic FG sphere is subjected to internal pressure and
positive temperature gradient equal to PPT4(c, d) and TPTC(c, d) respectively.

4-3-2 Internal pressure and negative temperature gradient

Elastic FG sphere subjected to internal pressure (AT = 0) or subjected to negative temperature
gradient (P = 0) yields at r = a. The sign of effective stress caused by negative temperature
gradient issimilar to the sign of effective stress caused by internal pressure at r = a. Therefore
this combination decreases the capacity of elastic FG sphere and is the critica load
combination. In this case, internal pressure for yielding of elastic FG sphere islessthan P, in
Eq. (22). After satisfying Eq. (6), the reduction of capacity is obtained as follows:

P, — P = ATZ(a,a,b)/&(a, b). (34)
For describing possible patterns of plastic zones spreading, the specific amounts of internal

pressure (i.e. PNTG(r,)) and negative temperature gradient (i.e. TNTG(r,)) are introduced in Egs.
(35). These parameters are obtainde by satisfying Eq. (6) at r = r; and the equation o¢(b) = 0.

PNTG(ry) = (1iz(ry,b) = 03,17 (1) ) /y(ry, b)

(35)
TN (ry) = (g, b) + 0, (1) ) /¥, b)
inwhichnz (r;) and ng (ry) are asfollows:
n% (rl) = Z(b, ry, b)rilz}
(36)

ng (ry) = §(b,b)r}".

4-3-2-1 Establishing of first plastic zone

For this case, elastic FG sphere is subjected to interna pressure less than PNTG(a) and |AT| >
|TNTG(a)]. In this pattern the radius r, is invariant and radius r; is equal to c. Meanwhile, the
radius r; varies from radius a to radius b (see Figure (1)). First plastic zone spreads without
establishing second plastic zone. Also the Elasto-Plastic FG sphere is subjected to internal
pressure and negative temperature gradient less than PNTC(c) and TNTC(¢), respectively.

By approaching radius c to radius b the specific internal pressure PNT¢(b) and specific negative
temperature gradient TNTG(b) are approached to positive and negative infinity respectively.
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4-3-2-2 Establishing of first and second plastic zones

Order of establishing plastic zones are similar to the pattern that mentioned in subsection 4-3-
1-1; but combination of internal pressure and temperature gradient in this pattern has been
occurred in a vice versa manner. In this pattern, first plastic zone is established by applying
negative temperature gradient equal to Eq. (26) without internal pressure. On threshold of
establishing second plastic zone, negative temperature gradient is equal to Eq. (29), where ¢,
is obtained from Eq. (27). After forming second plastic zone, the FG sphere bears both the
internal pressure and the negative temperature gradient simultaneously.

5 Results and discussion

Elasto-Plastic and Thermo-Elasto-Plastic analyses of thick-walled spherical tanks made of
functionally graded materials are conducted analytically. For perusing result validation, a
section of FG sphere composed of homogeneous layers having different mechanical properties
from each other's is modeled in ABAQUS software. The modulus of elasticity, coefficient of
linear expansion and yield stress of homogeneous layers are calculated from Egs. (1) at centroid
of each layer. The supports are defined in local spherical coordinate system. Pressureis applied
to the internal face of the model as a pressure mechanical load with a uniform distribution.
Temperature gradient is defined as a boundary condition with radial distribution through the
model’ sthickness. Variationsof Y oung modulusandyield stressinradial direction for acertain
specimen of FG material made of Al/SiCp is obtained by Rodri"guez-Castro et al.[20]. Parvizi
and Naghdabadi [21] calibrated these experimental data for FG sphere with inner and outer
radiuses equal to 0.4 mand 0.8 m. They also obtained thermal expansion coefficient and thermal
conductivity by using volume fraction law. The constants of Egs. (1) for special case, the FG
spherical reservoir made of Al/SiCp with 0.3 volume fraction of SIC at inner surface and 0.2
volume fraction of SiC at outer surface, are presented in Table (1).

We used these constants for Elasto-Plastic analyses of FG spherical reservoirs and cylindrical
vessels subjected to internal pressure [22] and Thermo-Elastio-Plastic analysis of spherical
tanks subjected to temperature gradient [23] in previous studies. Moreover, some researches
are conducted for stability analyses of FG beam and plates [24-27].

In Figure (2) homogeneous and FG spheres are subjected to yield pressure (T = 0). Theyield
stress of metallic tank is equal to 80 MPa. This figure indicates that capacity of FG sphere is
higher than capacity of homogeneous metallic sphere. Figure (3) illustrates the Elasto-Plastic
stress field of FG sphere (T = 0). In Figure (3), dimensionless parameter R, is(c —a)/(b — a),
wherea < c<b.

The subscript 1 in R, denotesfirst plastic zone. In Figure (4) FG sphere is subjected to positive
yield temperature gradient (P = 0). In Figure (5) Elasto-Plastic stress field of FG sphere
subjected to positive temperature gradient is presented. In this figure parameter R, is equal to
(c—a)/(cg—a)fora<c<c, InFigure(6) FG sphereis subjected to specific internal pressure
and positive temperature gradient for r, = a andr, = b. In Figure (7) Elasto-Plastic stressfield
of FG sphere subjected to specific internal pressure and positive temperature gradient is
presented. The dimensionless parameters A and B are equal to AT/TPTC(c,b) and P/PPT6(c, b)
respectively. Theradius ¢, is equal to 466.483 mm.

In this figure parameter R, isequal to (c —a)/(c, —a), inwhich a < ¢ < ¢,. In Figure (8), FG
sphere is subjected to specific positive temperature gradient and constant specific interna
pressure. Figures (7) and (8) are presented for pattern that mentioned in subsection 4-3-1-1.
Also the Figure (9) is presented for pattern that mentioned in subsection 4-3-1-3. In this figure
dimensionless parameters A and B are equal to AT/TPT¢(c,d) and P/PPTG(c, d), respectively.
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Table 1 Material constants of FG sphere made of Al/SiCp [21]
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Figure 2 Homogeneous and FG Sphere subjected to internal yield pressure
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Figure 4 FG Sphere subjected to positive yield temperature gradient
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Figure 5 Elasto-Plastic stress field of FG sphere subjected to positive temperature gradient
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Figure 18 Elasto-Plastic stressfield for second pattern of internal pressure and
negative temperature gradient combination

In Figures (10) to (15), specific internal pressure and specific positive temperature gradient for
first, second and third patterns are presented.
In Figure (16) dimensionless diagrams for second pattern of internal pressure and positive
temperature gradient combination is presented. In this figure parameters A and B are equal to
AT/TPTC(a,d) and P/PPTC(a, d) respectively.
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The dimensionless parameter R, isequal to (b —d)/(b — a), wherea < d < b. The subscript 2
in the symbol R, denotes second plastic zone. Elasto-Plastic stress field of FG sphere for the
first pattern of internal pressure and negative temperature gradient combination isillustrated in
Figure (17), where the dimensionless parameters A and B are equal to AT/TNTG(¢) and
P/PNTG(c) respectively. In this figure parameter R, isequal to (c—a)/(b—a) anda<c<bh.
Elasto-Plastic stress field of FG sphere for second pattern of internal pressure and negative
temperature gradient combination isillustrated in Figure (18).

6 Conclusion

In current work a comprehensive Elasto-Plastic and Thermo-Elasto-Plastic analyses of FG
spherical reservoirs by taking into account all possible patterns of plastic zones spreading due
to positive or negative temperature gradients and internal pressure combinations, is presented.
The behavior of material in plastic zones is described by Elastic-Perfectly-Plastic model and
von Misses yield criterion. The analytical solutions are verified by conducting numerical
exercises in ABAQUS software. These results show that:

e Plastic zone in homogeneous and FG spherical tanks subjected to internal pressure
initiates from inner radius and spreads to outer radius uniformly.

e InFG spherical tank subjected to positive or negative temperature gradient, first plastic
zone initiates from inner radius and spreads to aradius |less than outer radius uniformly;
then the tank yields from outer radius and second plastic zone is established.

e In FG spherical tank subjected to internal pressure and positive temperature gradient,
the first or second plastic zones can be formed simultaneously or separately. Therefore
for this case three possible patterns of plastic zone propagation can be formed.

e In FG spherica reservoir subjected to internal pressure and negative temperature
gradient, first plastic zone propagates toward outer radius uniformly or second plastic
zone initiates at the outer radius. In this case, two possible patterns of spreading plastic
zones have been observed.

e G sphere subjected to internal pressure and positive temperature gradient yields at a
higher pressure than FG sphere subjected to internal pressure. FG sphere subjected to
internal pressure and negative temperature gradient yields at a lower pressure than the
FG sphere subjected to internal pressure. Therefore internal pressure and negative
temperature gradient combination is the most critical combination. Also the positive
temperature gradient increases the capacity of FG sphere subjected to internal pressure.

e Using a section of laminated sphere for finite element modeling of axisymmetric FG
sphere, yields to an accurate Thermo-Elasto-plastic analysis.

e Considering amodel with the more layers, results the more accuracy. However, for FG
spherical tank with the properties that presented in Table (1), using eight homogeneous
layers and assigning to each layer the properties of FG material at midpoint, leads to an
accurate result.
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Nomenclature

a=inner radius

b = outer radius

E(r) = modulus of elasticity at radiusr

E, = materia constant for modulus of elasticity
K(r) = thermal conductivity at radiusr

K, = material constant for thermal conductivity
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n, = material constant for modulus of elasticity in power law distribution

n, = material constant for linear expansion coefficient in power law distribution
n; = materia constant for thermal conductivity in power law distribution

n, = material constant for yield stress in power law distribution

P =internal pressure

P, = pressure corresponding to first plastic zone propagation

P, =yield pressurein reservoir subjected to internal pressure

PNTG(r,) = specific pressure corresponding to negative temperature gradient
PPTG(r,, 1,) = specific pressure corresponding to positive temperature gradient
r,= boundary radius between elastic and first plastic zones

r,= boundary radius between elastic and second plastic zones

R, =theratio of first plastic zone propagation

R, =theratio of second plastic zone propagation

T(r) = temperature at radiusr

Ty = yield temperature in reservoir subjected to temperature gradient

Ty, = yield temperature corresponding to onset of yielding at outer surface
TNTG(r,;) = specific negative temperature gradient

TPTG(r,, r,) = specific positive temperature gradient

Greek symbols

a(r) = coefficient of linear expansion at radius r

a, = materia constant for coefficient of linear expansion
AT = difference between inner and outer temperatures
e.(r) =radial strain

€g(r) = circumferential strain

o.sr(r) = effective stress

o.(r) =radial stress

o¢(r) = elastic radial stress

oP'(r) =radial stressof first plastic zone

oP?(r) = radial stress of second plastic zone

og(r) = circumferential stress

og(r) = elastic circumferential stress

o—gl(r) = circumferential stress of first plastic zone
o—gz(r) = circumferential stress of second plastic zone
oy(r) =yield stress at radiusr

oy, = material constant for yield stress
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