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1 Introduction  
 
Functionally Graded Materials (FGMs), was created in (1984) [1]. High strength of FG 
materials under high temperatures is one of the basic properties of these materials. Publication 
of papers about FGM has been increased after holding international symposiums of FG 
materials at Sendai in (1990) [2] and San Francisco in (1992) [3].  

Elastic analyses of thick-walled tanks subjected to internal and external pressure carried out 
by Johnson and Mellor [4] and Cook and Yong[5]. Elasto-Plastic and Thermo-Elasto-Plastic 
stress analyses of thick-walled spherical tanks have been also done by Whalley [6] and 
Mendelson [7]. Some studies have been done by Timoshenko and Goodier [8] and Boley and 
Weiner [9] for homogeneous tanks. Similar researches are also conducted by Nowaki [10]. 
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Spreading of Plastic Zones in 
Functionally Graded Spherical Tanks 
Subjected to Internal  Pressure and 
Temperature Gradient Combinations 
Thermo-Elasto-Plastic analyses of thick-walled spherical 
tanks made of functionally graded materials (FGM) are 
investigated analytically. These tanks are subjected to 
positive or negative temperature gradient and internal 
pressure loadings, separately or simultaneously. The power 
law modeling has been used for considering the through-
thickness variation of mechanical properties. von Mises 
yield criterion and Elastic-Perfectly-Plastic assumptions 
are used for describing the material behavior in plastic 
zones. The patterns of plastic zones spreading for various 
combinations of internal pressure and positive or negative 
temperature gradient are investigated. Conducting 
numerical exercises for similar problems in ABAQUS 
software shows the excellent agreement with the analytical 
solutions. FG sphere subjected to internal pressure and 
negative temperature gradient yields at a lower pressure 
than the FG sphere subjected to internal pressure. Internal 
pressure and negative temperature gradient combination is 
the most critical loading combination. Moreover, the results 
show that the capacity of FG spherical tank subjected to 
internal pressure is increased by applying a positive 
temperature gradient. 
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Exact solution for Elastic-Perfectly-Plastic behavior of homogeneous sphere under thermal 
gradient is obtained by Cowper [11].  
He also investigated an approximate solution method by neglecting elastic strains which led to 
conclusion that approximate solution in the case of thermal gradient is almost same as the exact 
solution. Onset of yielding zones for various temperature-pressure and radius ratios of thick-
walled homogeneous spherical tanks has been investigated[12]. 
Effect of using non homogenous materials in strength and deformation of FG thick-walled 
cylindrical tanks subjected to internal pressure with assumption of plane strain condition is 
studied by Fukui and Yamanaka[13]. Fukui et al[14] continued researches with Thermo-
mechanical analyses of FG cylinders subjected to temperature gradient. A three dimensional 
solution was obtained by Vel and Batra [15] for a time-dependent thermal loads imposed to a 
simply supported functionally graded plate at its top and bottom. Eslami et al.[16] obtained 
general solution for the one-dimensional steady-state thermal and mechanical stresses in a 
hollow thick-walled sphere made of FG material.  
Shao and Wang [17] solved a steady-state thermal and a non-uniform mechanical loading 
problem for a FG cylindrical panel with finite length. Thermo-Elastic analysis of a FG 
cylindrical vessel was performed by Peng and Li[18]. 
Lack of access to experimental results is led to difficulties in the analytical investigation of 
FGM’s behavior. On the other hand, by increasing industrial demands for such materials, 
investigation of FGM’s behavior is in the focus. There are a few works concentrating on 
Thermo-Elasto-Plastic analyses of thick-walled FG tanks. The novelty of this paper is to present 
a comprehensive Thermo-Elasto-Plastic analysis of FG spherical reservoirs by taking into 
account all possible patterns of plastic zones propagations caused by positive or negative 
temperature gradients and internal pressure combinations.  
In current work, for first time, the analytical Elasto-Plastic and Thermo-Elasto-Plastic analyses 
of FG spherical thick-walled reservoirs for all possible patterns based on establishing and 
spreading plastic zones are presented.  
 
2  Governing equations 
 
Inner and outer radiuses of sphere are a and b respectively. Governing equations have been 
simplified for axisymmetric conditions of geometry, mechanical properties and loading. Across 
the thickness variation of FG sphere’s mechanical properties is determined by power law [19]. 
 

E r E r  

α r α r  

Κ r Κ r  

σ r σ r , 

(1)

 
where E r , α r , Κ r  and σ r  are modulus of elasticity, coefficient of linear expansion, 
thermal conductivity and yield stress, respectively. Also r is radius of sphere and varies between 
a and b. The parameters E , α , Κ , σ and n  to n  are material constants. These parameters are 
defined in terms of properties and radiuses at inner and outer surfaces of FG sphere as follows: 
 

E E a E b a b⁄  

α α a α b a b⁄  
(2)
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Κ Κ a Κ b a b⁄  

σ σ a σ b a b  

n ln E b E a⁄ ln b a⁄⁄  

n ln α b α a⁄ ln b a⁄⁄  

n ln Κ b Κ a⁄ ln b a⁄⁄  

n ln σ b σ a⁄ ln b a⁄⁄ . 
 
The function "ln" is natural logarithm. The equilibrium and compatibility equations are 
simplified for symmetrical conditions as follows: 
 

σ r 2 σ r σ r r⁄ 0 

ε r ε r ε r r⁄ 0. 
(3)

 
In Eqs. (3), σ r  and ε r  are radial stress and radial strain; also σ r  and ε r  are hoop stress 
and circumferential strain respectively. σ r  and 	ε r  are first derivative of σ r  and ε r  
with respect to r, respectively. Hook’s law for FG sphere is modified in Eqs. (4). 
 

ε r α r T r σ r 2νσ r E r⁄  

ε r α r T r 1 ν σ r νσ r E r⁄ , 
(4)

 
where σ r  and σ r  are elastic radial and circumferential stresses respectively and T r  is 
temperature at radius r. One dimensional differential equation of steady-state heat conduction 
is written in Eq. (5). 
           

rΚ r T r rΚ r 2Κ r T r 0 (5)

 
where Κ r  is first derivative and T r  and T r  are first and second derivatives of Κ r  and 
T r  with respect to r, respectively. Tresca and von Mises yield criteria for FG sphere under 
axisymmetric conditions have been simplified as follows: 
 

|σ r | |σ r σ r | σ r , (6)
 
in which σ r  denotes the effective stress. 

 

 
3  Formulation 
 
Difference between temperatures at inner and outer radiuses of FG sphere is assumed equal to 
ΔT. Solution of differential equation in Eq. (5) is written in Eq. (7). 
 

T r ΔT r b a b  (7)
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In FG sphere subjected to positive temperature gradient, the temperature of inner surface is 
greater than the temperature of outer surface (i.e. T a T b  or ΔT 0) and vice versa. 
Governing differential equation of plastic zone is obtained by combining equilibrium equation 
and yield criterion.  

σ r 2σ r 0. (8)
Considering Eq. (6), and conducting numerical exercises for all possible thermal gradient and 
internal pressure combinations, implies that the maximum absolute value of effective stress is 
at inner or outer radii, therefore only two plastic zones can be established separately or 
simultaneously, in general. These plastic zones are illustrated in Figure (1). Inner and outer 
radiuses of elastic zones are assumed equal to r c and r d, respectively. In general r  is 
equal to a or c and r  is equal to d or b. Governing differential equation of elastic zone is 
obtained by combining equilibrium and compatibility equations by considering Hook’s law and 
Eq. (7) as follows: 
 

r 1 ν σ r r 4 n 1 ν σ r 2n 1 2ν σ r 2E r H r , (9)
 
in which H r  is defined in Eq. (10).The constant R is equal to r r⁄ .  
 

H r α ΔT r n n 1 r n r R 1 																							(10) 
 
Solution of Eq. (8) for first and second plastic zones is presented in Eqs. (11). 

σ r φ r P 

σ r φ r  (11)  

where P is internal pressure, and φ r  and φ r  are as follows: 
 

φ r 2σ r a n⁄  
φ r 2σ b r n⁄  . (12)

 
α ΔT r n n 1 r n r R 1  

 

Plastic circumferential stresses for first and second plastic zones (i.e. σ r  and σ r ) are 
obtained by using equilibrium equation. 
 

 

Figure 1 Elastic and plastic zones 
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σ r ϑ r P 

σ r ϑ r  
(13)

 
The functions ϑ r  and ϑ r  in Eqs. (13), are defined in Eqs. (14). 
 

ϑ r σ r 2 n 2a n⁄  

ϑ r σ 2b r 2 n n⁄  
(14)

 
Plus or minus sign of  φ r , φ r , ϑ r  and ϑ r  are depended on sign of effective stress.  
For the case that FG spherical reservoir subjected to internal pressure (i.e. ΔT is ignored) plus 
sign is used. For the case that FG sphere is subjected to temperature gradient (i.e. P is neglected) 
or the case that the tank is subjected to internal pressure and temperature gradient 
simultaneously, the signs of Eqs. (12) and (14) and the sign of ΔT are opposite. Solution of 
differential equation in Eq. (9) is written in Eq. (15). 
 

σ r ξ r, r P Ζ r, r , r ΔT Φ r, r , r , (15)
 
Where  ξ r, r , Ζ r, r , r  and Φ r, r , r  are defined in Eqs. (16). 
 

ξ r, r
1 r r
β r , r

 

Ζ r, r , r ζ r, r , r
1 ζ r , r , r r r

β r , r
 

Φ r, r , r
1 ϕ r , r r
β r , r

 

(16)

   
In Eqs. (16), β r , r , ζ r, r , r , ϕ r , r  and λ   are presented in Eqs. (17). 
 

β r , r r r r r  

ζ r, r , r h r, r , r r r a b  

ϕ r , r 1 φ r r  

λ 1 ν n 3 1 C 2 1 ν  

(17)

   
The function h r, r , r  is presented in Eq. (18). 
 

h r, r , r
4E α ν 1 A n n 1 r r n Br

C R 1
	. 

(18)
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The constants A, B and C are determined in Eqs. (19). 
 

A ν 1 2n n 1 C ν 1 2n n 1 C  

B ν 1 2n n 3 C ν 1 2n n 3 C  

C 1 ν n 3 1 ν 8n 1 2ν  

(19)

 
The elastic tangential stress after using equilibrium equation is obtained. 
 
σ r ξ r, r ξ̅ r, r P Ζ r, r , r Ζ r, r , r ΔT Φ r, r , r Φ r, r , r  . (20)

 
where ξ̅ r, r , Ζ r, r , r  and Φ r, r , r  are as follows: 
 

ξ̅ r, r r d dr⁄ ξ r, r 2⁄  

Ζ r, r , r r d dr⁄ Ζ r, r , r 2⁄  

Φ r, r , r r d dr⁄ Φ r, r , r 2⁄ . 

(21)

 
 
4  Patterns of plastic zones spreading 
 
For all possible combinations of internal pressure and positive or negative temperature gradient, 
the patterns of plastic zones propagation in FG spherical reservoirs have been investigated. 
  
4-1  FG sphere subjected to internal pressure 
 
For this case, sign of effective stress at any radius of elastic FG sphere is invariant. Moreover 
the maximum absolute amount of effective stress is occurred at r a. Therefore elastic FG 
sphere initiates yielding from inner surface. Yield pressure after satisfying Eq. (6) at r a has 
been obtained as follows: 
 

P σ a ξ̅ a, b⁄ . (22)
 
By increasing P from P  to P , first plastic zone is propagated from r a to r c. The 
corresponding internal pressure is calculated by satisfying Eq. (6) at r c. 
 

P σ c Φ c, c, b ξ̅ c, b  (23)

 
The first plastic zone is established without establishing the second plastic zone (i.e. r b in 
Figure (1)). In limit state, by approaching r  from c to b, the capacity of FG sphere is obtained 
as follows: 

P lim
⟶

P φ b  . (24)

In addition to, after approaching n  to zero, the well-known formula of homogeneous spherical 
tank’s capacity is obtained and the validity of Eq. (24) is observed. 
 



Spreading of Plastic Zones in Functionally Graded Spherical … 

 
 

11

P lim
⟶

φ b 2σ ln b a⁄ (25)

 
4-2  FG sphere subjected to temperature gradient 
 
For this case, signs of effective stresses in elastic FG sphere at r a and r b are opposite to 
each other. Maximum absolute amount of effective stress for positive or negative temperature 
gradient has been occurred at r a. Hence, elastic FG sphere initiates yielding from inner 
surface. Yield temperature gradient after satisfying Eq. (6) at r a is obtained as follows (for 
negative temperature gradient i.e. ΔT 0, the positive sign is used and vice versa): 
 

T σ a Ζ a, a, b⁄ . (26)

 
By increasing ΔT from T  for positive temperature gradient or decreasing ΔT from T  for 
negative temperature gradient, first plastic zone is propagated from r a to r c. When ΔT is 
equal to T ,  the second plastic zone is established. The corresponding first plastic zone’s outer 
radius (i.e. r c ) and T ,  for positive or negative temperature gradients are obtained by 
satisfying Eq. (6) at r c  and r b. The radius c  is obtained by solving Eq. (27) with respect 
to c . 
  

ψ c ψ b 0 (27)
 
where ψ r  is as follows: 
 

ψ r σ r kΦ r, c , b Ζ r, c , b  (28)

 
The parameter k for r c  is equal to -1 and for r b is equal to +1 when ΔT is negative and 
vice versa. After obtaining c  from Eq. (27),	Ty,b is obtained as follows (positive sign is for 
ΔT 0 and vice versa): 
 

T , ψ c . (29)

 
By increasing ΔT from T ,  for positive temperature gradient or decreasing ΔT from T ,  for 
negative temperature gradient, the effective stress at a radius between c and d in Figure (1) is 
vanished and the capacity of FG sphere is approached to infinity. Therefore, using yield 
criterion based on maximum shear energy shows unreal capacity for reservoirs subjected to 
temperature gradient. 
 
4-3  FG sphere subjected to internal pressure and temperature gradient 
 
In elastic or Elasto-Plastic FG sphere, the signs of effective stresses for positive and negative 
temperature gradients (P 0) are opposite to each other. Also, temperature gradient produces 
effective stresses with different signs at r a and r b, as mentioned before. Because of these 
differences, FG sphere must be studied for positive and negative temperature gradients 
separately. Elastic stress field for each case can be obtained by substituting r  and r  by 
corresponding radii of first and second plastic zones in Eqs. (15) to (18) and Eqs. (20) and (21). 
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4-3-1  Internal pressure and positive temperature gradient 
 
Elastic FG sphere subjected to internal pressure (ΔT 0) or subjected to positive temperature 
gradient (P 0) yields at r a. Sign of effective stress caused by positive temperature gradient 
is opposite to the sign of effective stress caused by internal pressure at r a. Thus, this load 
combination increases the capacity of elastic FG sphere. For describing possible patterns of 
plastic zones spreading, the specific amounts of internal pressure (i.e. P r , r ) and positive 
temperature gradient (i.e. T r , r ) are introduced in Eqs. (30). These parameters have been 
obtained by satisfying Eq. (6) at r r  and r r . 
 

P r , r μ r , r σ η r , r γ r , r  

T r , r μ r , r σ η r , r γ r , r  

(30)

 
where γ r , r , μ r , r , η r , r , μ r , r  and η r , r  are as follows: 

 
γ r , r ξ̅ r , r Ζ r , r , r ξ̅ r , r Ζ r , r , r  

μ r , r Φ r , r , r Ζ r , r , r Φ r , r , r Ζ r , r , r  

η r , r Ζ r , r , r r Ζ r , r , r r  

μ r , r ξ̅ r , r Φ r , r , r ξ̅ r , r Φ r , r , r  

η r , r ξ̅ r , r r ξ̅ r , r r . 

(31)

 

4-3-1-1  Onset of yielding from inner surface 
 
For this case, elastic FG sphere is subjected to internal pressure and positive temperature 
gradient less than P a, b  and T a, b  respectively. By increasing ΔT and decreasing P first 
plastic zone has been established. Elasto-Plastic FG sphere is subjected to internal pressure and 
positive temperature gradient less than P c, b  and T c, b , respectively. By increasing r  
from radius a to specific radius equal to c, internal pressure has been vanished. This specific 
radius is obtained by solving Eq. (32) with respect to c. This radius is equal to c  in Eq. (27). 
 

P c, b 0 (32)
 
In this pattern FG sphere after vanishing P, is subjected to positive temperature gradient equal 
to Eq. (33) and second plastic zone is established. 
 

T c , b ψ c  (33)
 
4-3-1-2  Onset of yielding from outer surface 
 
The elastic FG sphere is subjected to internal pressure less than P a, b  and positive 
temperature gradient greater than T a, b . In this pattern, radius r  is invariant (r a) and 
radius r  is equal to d. The radius r  varies from b toward a. Therefore second plastic zone 
spreads without establishing first plastic zone.  
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The Elasto-Plastic FG sphere is subjected to internal pressure less than P a, d  and positive 
temperature gradient greater than T a, d . By approaching radius d to radius a, the specific 
internal pressure P a, a  and specific positive temperature gradient T a, a  are approached 
to infinity.  
 
4-3-1-3  Onset of yielding from inner and outer surfaces 
 
Elastic FG sphere is subjected to internal pressure and positive temperature gradient equal to 
P a, b  and T a, b  respectively. First and second plastic zones are established 
simultaneously. In addition to, Elasto-Plastic FG sphere is subjected to internal pressure and 
positive temperature gradient equal to P c, d  and T c, d  respectively. 
 
4-3-2  Internal pressure and negative temperature gradient 
 
Elastic FG sphere subjected to internal pressure (ΔT 0) or subjected to negative temperature 
gradient (P 0) yields at r a. The sign of effective stress caused by negative temperature 
gradient is similar to the sign of effective stress caused by internal pressure at r a. Therefore 
this combination decreases the capacity of elastic FG sphere and is the critical load 
combination. In this case, internal pressure for yielding of elastic FG sphere is less than P  in 
Eq. (22). After satisfying Eq. (6), the reduction of capacity is obtained as follows: 
 

P P ∆TΖ a, a, b ξ̅ a, b⁄ . (34)
               
For describing possible patterns of plastic zones spreading, the specific amounts of internal 
pressure (i.e. P r ) and negative temperature gradient (i.e. T r ) are introduced in Eqs. 
(35). These parameters are obtainde by satisfying Eq. (6) at r r  and the equation σ b 0. 
  

P r μ r , b σ η r γ r , b  

T r μ r , b σ η r γ r , b  

(35)

 
in which η r  and η r  are as follows: 

 
η r Ζ b, r , b r  

η r ξ̅ b, b r . 
(36)

 
 
4-3-2-1  Establishing of first plastic zone 
 
For this case, elastic FG sphere is subjected to internal pressure less than P a  and |∆T|
|TNTG a |. In this pattern the radius r  is invariant and radius r  is equal to c. Meanwhile, the 
radius r  varies from radius a to radius b (see Figure (1)). First plastic zone spreads without 
establishing second plastic zone. Also the Elasto-Plastic FG sphere is subjected to internal 
pressure and negative temperature gradient less than P c  and T c , respectively.  
By approaching radius c to radius b the specific internal pressure P b  and specific negative 
temperature gradient T b   are approached to positive and negative infinity respectively.  
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4-3-2-2  Establishing of first and second plastic zones 
 
Order of establishing plastic zones are similar to the pattern that mentioned in subsection 4-3-
1-1; but combination of internal pressure and temperature gradient in this pattern has been 
occurred in a vice versa manner. In this pattern, first plastic zone is established by applying 
negative temperature gradient equal to Eq. (26) without internal pressure. On threshold of 
establishing second plastic zone, negative temperature gradient is equal to Eq. (29), where c  
is obtained from Eq. (27). After forming second plastic zone, the FG sphere bears both the 
internal pressure and the negative temperature gradient simultaneously. 
 
5  Results and discussion 
 
Elasto-Plastic and Thermo-Elasto-Plastic analyses of thick-walled spherical tanks made of 
functionally graded materials are conducted analytically. For perusing result validation, a 
section of FG sphere composed of homogeneous layers having different mechanical properties 
from each other's is modeled in ABAQUS software. The modulus of elasticity, coefficient of 
linear expansion and yield stress of homogeneous layers are calculated from Eqs. (1) at centroid 
of each layer. The supports are defined in local spherical coordinate system. Pressure is applied 
to the internal face of the model as a pressure mechanical load with a uniform distribution. 
Temperature gradient is defined as a boundary condition with radial distribution through the 
model’s thickness.  Variations of Young modulus and yield stress in radial direction for a certain 
specimen of FG material made of Al/SiCp is obtained by Rodrı´guez-Castro et al.[20]. Parvizi 
and Naghdabadi [21] calibrated these experimental data for FG sphere with inner and outer 
radiuses equal to 0.4 m and 0.8 m. They also obtained thermal expansion coefficient and thermal 
conductivity by using volume fraction law. The constants of Eqs. (1) for special case, the FG 
spherical reservoir made of Al/SiCp with 0.3 volume fraction of SiC at inner surface and 0.2 
volume fraction of SiC at outer surface, are presented in Table (1).  
We used these constants for Elasto-Plastic analyses of FG spherical reservoirs and cylindrical 
vessels subjected to internal pressure [22] and Thermo-Elastio-Plastic analysis of spherical 
tanks subjected to temperature gradient [23] in previous studies. Moreover, some researches 
are conducted for stability analyses of FG beam and plates [24-27]. 
In Figure (2) homogeneous and FG spheres are subjected to yield pressure (T 0). The yield 
stress of metallic tank is equal to 80 MPa. This figure indicates that capacity of FG sphere is 
higher than capacity of homogeneous metallic sphere. Figure (3) illustrates the Elasto-Plastic 
stress field of FG sphere (T 0). In Figure (3), dimensionless parameter R  is c a b a⁄ , 
where a c b.  
The subscript 1 in R denotes first plastic zone. In Figure (4) FG sphere is subjected to positive 
yield temperature gradient (P 0). In Figure (5) Elasto-Plastic stress field of FG sphere 
subjected to positive temperature gradient is presented. In this figure parameter R  is equal to 
c a c a⁄  for a c c . In Figure (6) FG sphere is subjected to specific internal pressure 

and positive temperature gradient for r a and r b. In Figure (7) Elasto-Plastic stress field 
of FG sphere subjected to specific internal pressure and positive temperature gradient is 
presented. The dimensionless parameters A and B are equal to ∆T T c, b⁄  and P P c, b⁄  
respectively. The radius c  is equal to 466.483 mm.  
In this figure parameter R  is equal to c a c a⁄ , in which a c c . In Figure (8), FG 
sphere is subjected to specific positive temperature gradient and constant specific internal 
pressure. Figures (7) and (8) are presented for pattern that mentioned in subsection 4-3-1-1. 
Also the Figure (9) is presented for pattern that mentioned in subsection 4-3-1-3. In this figure 
dimensionless parameters A and B are equal to ∆T T c, d⁄  and P P c, d⁄ , respectively. 
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      Table 1 Material constants of FG sphere made of Al/SiCp [21] 

          

85.834.4 18.03 10-6-0.410.1240.133-0.43 0.30.8 0.4 
 

 
 
 
 

 

Figure 2 Homogeneous and FG Sphere subjected to internal yield pressure 

 

 

 

 

Figure 3 Elasto-Plastic FG Sphere subjected to internal pressure 
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Figure 4 FG Sphere subjected to positive yield temperature gradient 
 
 
 

 

 

Figure 5 Elasto-Plastic stress field of FG sphere subjected to positive temperature gradient 
 
 
 
 

 

Figure 6 FG Sphere subjected to specific internal pressure and positive temperature gradient 
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Figure 7 Elasto-Plastic stress field of FG tank subjected to specific internal pressure 
 and positive temperature gradient 

 
 
 

 
 

Figure 8 Elasto-Plastic stress field of FG sphere subjected to specific positive 
 temperature gradient and constant internal pressure 

 
 

 

 
 

Figure 9 Elasto-Plastic stress field after vanishing P in first pattern 



                                Iranian Journal of Mechanical Engineering                                   Vol. 16, No. 2, Sep. 2015  
 

18

 
 

 
 

Figure 10 Specific internal pressure for first pattern 
 
 

 
 

Figure 11 Specific positive temperature gradient for first pattern 
 
 

 
 

Figure 12 Specific internal pressure for second pattern 
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Figure 13 Specific positive temperature gradient for second pattern 
 
 
 

 

Figure 14 Specific internal pressure for third pattern 
 
 

 
 

Figure 15 Specific positive temperature gradient for third pattern 
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Figure 16 Dimensionless diagram for second pattern of internal pressure and 
 positive temperature gradient 

 

 
 

Figure 17 Elasto-Plastic stress field of FG sphere subjected to specific negative 
 temperature gradient and internal pressure 

 

 
 

Figure 18 Elasto-Plastic stress field for second pattern of internal pressure and 
 negative temperature gradient combination 

 
In Figures (10) to (15), specific internal pressure and specific positive temperature gradient for 
first, second and third patterns are presented. 
In Figure (16) dimensionless diagrams for second pattern of internal pressure and positive 
temperature gradient combination is presented. In this figure parameters A and B are equal to 
∆T T a, d⁄  and P P a, d⁄  respectively.  
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The dimensionless parameter R  is equal to b d b a⁄ , where a d b. The subscript 2 
in the symbol R  denotes second plastic zone. Elasto-Plastic stress field of FG sphere for the 
first pattern of internal pressure and negative temperature gradient combination is illustrated in 
Figure (17), where the dimensionless parameters A and B are equal to ∆T T c⁄  and 
P P c⁄  respectively. In this figure parameter R  is equal to c a b a⁄  and a c b. 
Elasto-Plastic stress field of FG sphere for second pattern of internal pressure and negative 
temperature gradient combination is illustrated in Figure (18). 
 
6  Conclusion 
 
In current work a comprehensive Elasto-Plastic and Thermo-Elasto-Plastic analyses of FG 
spherical reservoirs by taking into account all possible patterns of plastic zones spreading due 
to positive or negative temperature gradients and internal pressure combinations, is presented. 
The behavior of material in plastic zones is described by Elastic-Perfectly-Plastic model and 
von Misses yield criterion. The analytical solutions are verified by conducting numerical 
exercises in ABAQUS software. These results show that: 
 

 Plastic zone in homogeneous and FG spherical tanks subjected to internal pressure 
initiates from inner radius and spreads to outer radius uniformly.  

 In FG spherical tank subjected to positive or negative temperature gradient, first plastic 
zone initiates from inner radius and spreads to a radius less than outer radius uniformly; 
then the tank yields from outer radius and second plastic zone is established. 

 In FG spherical tank subjected to internal pressure and positive temperature gradient, 
the first or second plastic zones can be formed simultaneously or separately. Therefore 
for this case three possible patterns of plastic zone propagation can be formed. 

 In FG spherical reservoir subjected to internal pressure and negative temperature 
gradient, first plastic zone propagates toward outer radius uniformly or second plastic 
zone initiates at the outer radius. In this case, two possible patterns of spreading plastic 
zones have been observed. 

 FG sphere subjected to internal pressure and positive temperature gradient yields at a 
higher pressure than FG sphere subjected to internal pressure. FG sphere subjected to 
internal pressure and negative temperature gradient yields at a lower pressure than the 
FG sphere subjected to internal pressure. Therefore internal pressure and negative 
temperature gradient combination is the most critical combination. Also the positive 
temperature gradient increases the capacity of FG sphere subjected to internal pressure. 

 Using a section of laminated sphere for finite element modeling of axisymmetric FG 
sphere, yields to an accurate Thermo-Elasto-plastic analysis. 

 Considering a model with the more layers, results the more accuracy. However, for FG 
spherical tank with the properties that presented in Table (1), using eight homogeneous 
layers and assigning to each layer the properties of FG material at midpoint, leads to an 
accurate result. 
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Nomenclature  
 
a = inner radius  
b = outer radius 
E r  = modulus of elasticity at radius r 
E  = material constant for modulus of elasticity 
Κ r  = thermal conductivity at radius r 
Κ  = material constant for thermal conductivity  
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n  = material constant for modulus of elasticity in power law distribution 
n  = material constant for linear expansion coefficient in power law distribution 
n  = material constant for thermal conductivity in power law distribution 
n  = material constant for yield stress in power law distribution 
P = internal pressure 
P  = pressure corresponding to first plastic zone propagation 
P  = yield pressure in reservoir subjected to internal pressure 
P r  = specific pressure corresponding to negative temperature gradient 
P r , r  = specific pressure corresponding to positive temperature gradient 
r = boundary radius between elastic and first plastic zones 
r = boundary radius between elastic and second plastic zones 
R  = the ratio of first plastic zone propagation   
R  = the ratio of second plastic zone propagation   
T r  = temperature at radius r 
T  = yield temperature in reservoir subjected to temperature gradient 
T ,  = yield temperature corresponding to onset of yielding at outer surface 
T r  = specific negative temperature gradient 
T r , r  = specific positive temperature gradient 
 
Greek symbols 
 
α r  = coefficient of linear expansion at radius r 
α  = material constant for coefficient of linear expansion  
ΔT = difference between inner and outer temperatures 
ε r 	= radial strain 
ε r  = circumferential strain 
σ r  = effective stress 
σ r  = radial stress 
σ r  = elastic radial stress 
σ r   = radial stress of first plastic zone 
σ r   = radial stress of second plastic zone 
σ r  = circumferential stress 
σ r  = elastic circumferential stress 
σ r  = circumferential stress of first plastic zone 

σ r  = circumferential stress of second plastic zone 
σ r  = yield stress at radius r 
σ = material constant for yield stress 
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 چكيده
 

به صورت تحليلي انجام شده است. مخازن مزبور ) FGM( هدفمند تحليل ترموالاستوپلاستيك مخازن كروي
 اند. مدل تواني براي درتحت گراديان دمايي مثبت يا منفي و فشار داخلي به صورت مجزا و همزمان قرار گرفته

نظر گرفتن تغييرات خواص مكانيكي در امتداد ضخامت به كار برده شده است. معيار تسليم فون ميزز و فرضيات 
  پلاستيك كامل براي بيان رفتار مصالح در ناحيه پلاستيك استفاده شده است. –ل الاستيكمد

گراديان دمايي مثبت يا منفي  هاي مختلف فشار داخلي والگوهاي گسترش نواحي پلاستيك براي تركيب 
دهد. شان مينافزار آباكوس انطباق خوبي با نتايج تحليلي بررسي شده است. تحليل عددي مسائل مشابه در نرم

ي هدفمند تحت فشار داخلي و گراديان دمايي منفي در فشار كمتري نسبت به حالتي كه تنها تحت فشار كره
لاوه ترين تركيب است. به عگراديان دمايي منفي، بحراني شود. تركيب فشار داخلي وداخلي باشد، تسليم مي

 تواند ظرفيت مخزن تحت فشار را افزايش دهد. دهند كه اعمال يك گراديان دمايي مثبت مينتايج نشان مي
 


