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1 Introduction 
 
Functionally graded material (FGM) is heterogeneous material in which the elastic and 
thermal properties change from one surface to the other, gradually and continuously. Since 
ceramic has good heat resistance to corrosion and erosion and metal has high fracture 
toughness, ceramic-Metal FGM may work at super high-temperatures or under high-
temperatures difference and also corrosive fields. In effect, the governing equation of 
temperature and stress distributions coordinate dependent as the material properties are 
functions of position. 
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Mechanical and Thermal Stresses in a 
Linear Plastic FGM Hollow Cylinder Due to 
Axisymmetric Loads 
In this paper, an analytical solution for computing the linear plastic 
stresses, critical temperature and pressure in an FGM hollow 
cylinder under the internal pressure and temperature is developed. It 
has been assumed that the modulus of elasticity and thermal 
coefficient of expansion were varying through thickness of the FGM 
material according to a power law relationship. The Poisson's ratio 
was considered constant throughout the thickness. The general forms 
of thermal and mechanical boundary conditions were considered on 
the inner surface. In the analysis section, the effect of non-
homogeneity in FGM cylinder was implemented by choosing a 
dimensionless parameter, named m, which could be assigned an 
arbitrary value affecting the stresses in the cylinder. Distribution of 
stresses in radial and circumferential direction for FGM cylinders 
under the influence of internal pressure and temperature gradient 
were obtained. Graphs of critical temperature and pressure versus 
radius of the cylinder were plotted. Cases of pressure and 
temperature loadings were considered separately. The direct method 
has been considered to solve the heat conduction and Navier 
equations. The outer pressure for all over the cylinder goes to the 
plastic region when ௜ܶ= ௢ܶ= ௜ܲ=0 and by increasing the modules of 
elasticity the pressure will increase. By substituting M=0 in radial 
linear plastic stress formula, the perfect plastic equation will yield. 

By putting , 0p p
rr rr rє є  in radial linear plastic stress formula, it 

turns to the radial elastic stress. 
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There are some analytical thermal and stress calculations for functionally graded material in 
the on-dimensional case for thick cylinders and spheres [1, 2]. The authors have considered 
the non-homogeneous material properties as liner function of radius.  
M. Jabbari et al. [3] studied a general solution for mechanical and thermal stresses in a 
functionally graded hollow cylinder due to non-axisymmetric steady-state load. They applied 
separation of variables and complex Fourier's series to solve the heat conduction and Navier 
equation. Poultangari et al. [4] presented functionally graded hollow spheres under non-
axisymmetric thermo-mechanical loads. Lu yunbing et al. [5] found ceramic/metal 
functionally gradient material (FGM) has gradient ingredient distribution, so its properties of 
the heat transfer and thermo elastic mechanics are much better than that of the homogenous 
materials. In that paper, a model is adopted in which the material ingredients and the material 
properties in the middle layer change continuously.  Shariyat et al. [6] presented nonlinear 
transient thermal stress and elastic wave propagation analyses of thick temperature-dependent 
FGM cylinders, using a second-order point-collocation method. In another work [7], he found 
an algorithm for nonlinear transient behavior analysis of thick functionally graded cylindrical 
vessels or pipes with temperature-dependent material properties under thermo-mechanical 
load.  Chen and Lim [8] presented elastic mechanical behavior of nano-scaled FGM films 
incorporating surface energies. X.Y. Li, H.J. Ding, W.Q. Chen[9] considers the bending of 
transversely isotropic circular plates with elastic compliance coefficients being arbitrary 
functions of the thickness, subject to a transverse load in the form of the ark (k is zero or a 
finite even number). Afsar and Sekine [10] presented inverse problems of material 
distributions for prescribed apparent fracture toughness in FGM coatings around a circular 
hole in infinite elastic media. Vahid Tajeddini et al. [11] described a study of three-
dimensional free vibration analysis of thick circular and annular isotropic and functionally 
graded (FG) plates with a variable thickness along the radial direction. Asghar Nosier, 
FamidaFallah [12] based on the first-order shear deformation plate theory with von Karman 
non-linearity, the non-linear axisymmetric and asymmetric behavior of functionally graded 
circular plates under transverse mechanical loading are investigated. Zhang and Zhou [13] 
presented a theoretical analysis of FGM thin plates based on the physical neutral surface. 
Fazelzadeh and Hosseini [14] presented aero-thermoelastic behavior of supersonic rotating 
thin-walled beams made of functionally graded materials. Ootao and Tanigawa [15] analysed 
the transient thermo elastic problem of the functionally graded thick strip due to non-uniform 
heat supply. They obtained the exact solution for the two-dimensional temperature change in 
a transient state, and thermal stresses of a simple supported strip under the state of plane 
strain. Jabbari et al. [16] studied the mechanical and thermal stresses in the functionally 
graded hollow cylinder due to radial symmetric loads. They assumed the temperature 
distribution to be a function of radial direction. They applied a direct method to solve the heat 
conduction and Navier equations. Farid et al. [17] presented three-dimensional temperature-
dependent free vibration analysis of functionally graded material curved panels resting on 
two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method. 
Bagri and Eslami [18] presented generalized coupled thermo elasticity of functionally graded 
annular disk considering the Lord–Shulman theory. Samsam et al. [19] presented buckling of 
thick functionally graded plates under mechanical and thermal loads. Jabbari et al [20] studied 
an axisymmetric, mechanical and thermal stresses in a thick short length functionally graded 
material cylinder.  They applied separation of variables and complex Fourier's series to solve 
the heat conduction and Navier equation.  
M. Zamani nejad and G.H. Rahimi  [21]  Using the infinitesimal theory of elasticity, closed-
form solutions for one-dimensional steady-state thermal stresses in a rotating functionally 
graded (FGM) pressurized thick-walled hollow circular cylinders are obtained under 
generalized plane strain, and plane stresses assumptions, respectively.  
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R.C. Batra G.L. Iaccarino [22] found closed-form solutions for axisymmetric plane strain 
deformations of a functionally graded circular cylinder comprised of an isotropic and 
incompressible second-order elastic material with module varying only in the radial direction. 
Cylinder’s inner and outer surfaces are loaded by hydrostatic pressures. Three-dimensional 
thermo-elastic analysis of a functionally graded cylindrical panel with finite length and 
subjected to non-uniform mechanical and steady-state thermal loads are carried out by Z.S. 
Shao, T.J. Wang [23]. The adjective “plastic” comes from the classical Greek verb πλάσσειν 
Meaning “to shape”; it thus describes materials, such as ductile metals, clay, or putty, which 
have the property that bodies made from them can have their shape easily changed by the 
application of appropriately directed forces, and retain their new shape upon removal of such 
forces. The shaping forces must, of course, be of sufficient intensity otherwise. A mere breath 
could deform the object but often. Such intensity is quite easy to attain, and for the object to 
have a useful value, it may need to be hardened, for example, through exposure to air or the 
application of heat, as is done with ceramics and thermosetting polymers. Other materials 
above all metals are quite hard at ordinary temperatures and may need to be softened by 
heating in order to be worked. It is generally observed that the considerable deformations 
which occur in the plastic shaping process are often accompanied by very slight, if any 
volume changes. Consequently, plastic deformation is primarily a distortion, and of the 
stresses produced in the interior of the object by the shaping forces applied to the surface, it is 
their deviators that do most of the work. A direct test of the plasticity of the material could 
thus be provided by producing a state of simple shearing deformation in a specimen through 
the application of forces that result in a state of shear stress.  
In a soft, semi-fluid material such as clay, or soil in general, this may be accomplished by a 
direct shear test such as the shear-box test. In hard solids such as metals, the only experiment 
in which uniform simple shear is produced is the twisting of a thin-walled tube, and this is not 
always a simple experiment to perform. A much simpler test is the tension test [24]. 
There are new works of plasticity for FGMs materials. Y.M. Shabana, N. Noda presented 
thermo-elasto-plastic stresses in functionally graded materials subjected to be thermal loading 
taking residual stresses of the fabrication process into consideration [25]. A. N. Eraslan & T. 
Akis presented plane strain analytical solutions for a functionally graded elastic–plastic 
pressurized tube [26]. A. N. Eraslan and E. Arslan  prisented plane strain analytical solutions 
to rotating partially plastic graded hollow shafts [27].  A. N. Eraslan, T. Akis presented an 
elastoplastic response of a long functionally graded tube subjected to internal pressure [28]. 
M. N. Alla, K., I.E. Ahmed, I. H. Allah presented elastic–plastic analysis of two-dimensional 
functionally graded materials under transient thermal loading [29]. H. Ç. Lu presented stress 
analysis in a functionally graded disc under mechanical loads and a steady-state temperature 
distribution [30]. B. H. Jahromi presented elasto-plastic stresses in a functionally graded 
rotating disk [31]. M. Sadeghian and H. E. Toussi presented elasto-plastic axisymmetric 
thermal stress analysis of the functionally graded cylindrical vessel [32]. 
Classical method of analysis is to combine the equilibrium equations with the stress-strain and 
strain- equilibrium equation's relations to arrive at the governing equation in terms of the 
stress components called the Navier equation. Navier equations are solved in elastic and 
plastic hollow FGM, analytically. The analysis is presented for two types of applicable 
boundary conditions.  In this work, an analytical method is presented for linear plastic 
mechanical and thermal stress analysis for a hollow cylinder made of functionally graded 
materials. Temperature distribution is considered in steady-state axisymmetric case, and 
mechanical and thermal boundary conditions are considered in general forms. It has been 
assumed that the modulus of elasticity and thermal coefficient of expansion were varying 
through thickness of the FGM material according to a power law relationship. The Poisson's 
ratio was considered constant throughout the thickness.  
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The Navier equation is solved analytically by the direct method. Many engineering 
components are vulnerable to abrupt changes in the mechanical and thermal loads. Cylinders 
of the internal-combustion engines that are fabricated from functionally graded materials are 
an example of FGM cylinders, which are subjected to both internal pressure and thermal 
shocks. Depending on the rate of variations of applied loads and distribution of the material 
properties, these changes in the exerted loads may lead to the linear and perfect plastic. There 
are no content and sources for predicting of the linear and perfect plastic stresses in FGM 
cylinders until now. So, this paper is provided to predict these phenomena and let the 
engineers to deal with it. 
 
2 Heat conduction problems 
 
Consider a hollow circular cylinder of inner radius a, outer radius b made of FGM 
(Functionally Graded Material) respectively. The cylinder’s material graded through the r-
direction, thus the material properties are functions of r. Then the equation of heat conduction 
in steady-state condition for one-dimensional problem in polar coordinates and thermal 
boundary conditions for an FGM hollow cylinder yield as [3] 

   31
2

3

mA
T r r A

m
    (1)

    11 12 , 1rc T a c T a f   

   21 22 , 2rc T a c T a f   
(2)

The coefficients of ܣଵ & ܣଶ are presented at Appendix part (A)                                                                         
 
3 Stress analyses 
  
3. 1 linear plastic thermal stresses 
 
The linear plastic stress–strain relations for plane-strain conditions are 

  rr 0

1
σ υσ p

rr rrє T є
E       

  0

1
σ υσ p

rrє T є
E       

0p p
rrє є   

rr
,

є є
0p

rє
r




 
 
 

   

(3)

Where (,r) denotes differentiation with respect to r. where σij and єij (i, j = r, ѳ ) are the stress 
and strain tensors, ܶ	is the temperature distribution determined from the heat conduction 
equation, α is the coefficient of thermal expansion, and λ and μ are Lame´ coefficients related  
to the modulus of elasticity E and Poisson’s ratio υ as                                                                                    

  
υE

1 υ 1 2υ
 

 
 

 2 1 υ

E 


                                                            (4)  
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The equilibrium equation in the radial direction, disregarding the body force and the inertia 
term, is 

,

σ σ
σ 0rr

rr r r
   

 
                                                           (5) 

,σ σ σrr r rrr    

 
To obtain the equation of stresses in terms of plastic strain for the FGM cylinder the 
functional relationship of the material properties must be known. Since the cylinder’s material 
is assumed to be graded along the r direction, the modulus of elasticity and the coefficient of 
thermal expansion and yield strength are assumed to be described as a power law as. 

1

1
0 0 

m
mR

r
l

      
 

 

1

1
0 0 

m
mR

r
l

      
 

 

4 4
0 0 0( )m mR

r
l

                                                       (6) 

 
Where E0 and α0  and σ଴௥ are the material constants and ݉ଵ, ݉ଶ, ݉ଷ and ݉ସ are the power 
law indices of the material. We may further assume that Poisson’s ratio is constant. 
Using relations (3)–(6), the Navier equation in terms of the stresses is. 
 

1 2 1 2 1 12 1 1 2
, , 2 0 0 0 0 , 0 , 01 1 2

σ
1 1

( 3 ) ( )σ υ 1 σ 2m m m m m mp p
rr rr rr r rr r rr r rrm E r T E rm m

r r
T E r є E r є                                         

(7) 

Substituting Eq. (1) into Eq. (7) yields 

1 2 1 2 1 1
1 2

2 1 1 2
, 3 4 ,5, 6,2

1 1
σ σ σ m m m m m mp p

rr rr rr r rr r rr r rrg g g g g g
r

r T r r є r
r

T є                   

               (8) 

The coefficients of Eq (8) are presented at Appendix part (A). Eq (8) is the differential 
equation with general and particular solutions. The general solution is assumed to have the 
form. 

 g z
rr r Ir   

                                                                                                                                                (9) 
Substituting Eq. (9) into Eq. (8) yields 
 

2
1 2( 1 ) 0z z g g     

                                                                                                                                (10) 
Eq. (10) has two real roots 1z  and 2z  : 
 

2
0.51 2

1 2

( 1 ) ( 1 )
( )

2 2

g g
z g

  
    

                                                                                                (11) 
2

0.51 2
2 2

( 1 ) ( 1 )
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2 2

g g
z g

  
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Thus the general solution is as written below: 
 

  1 2
1 2

z zg
rr r I r I r    

                                                                                                                                 (12) 
The particular solution  g

rr r  is assumed to be of the form as below: 

  1 2 3 1 2 1 11
1 2 3 , 4

m m m m m m mp p p
rr rr r rrr H r H r H є r H є r         

                                                           (13) 
                                                                                   
By substituting Eq. (13) into Eq. (8) equating the coefficients of the identical power yields 
and they are presented at Appendix part (A). The complete solution for rr  is the sum of the 

general and particular solutions as 
 

1 2 31 2 1 2 1 11
1 2 1 2 3 , 4σ m m mz z m m m mp p

rr rr r rrI r I r H r H r H є r H є r         

                                           (14) 
And the hoop stress become as 
 

   1 2 31 2 1 2
1 1 2 2 1 2 3 1 1 1 2 21 2 2σ )r )r( ( m m mz z m mI I I I m m mz H H r m m H H rz
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  1 1 11 2
1 3 , 3 , 4 , 3 , 1 4 41 m m mp p p p p p

rr r rr r rr r rr rr rr rrm H є H є H є r H є r m H є H є r                                   (15) 

 

To determine the constants 1I  and 2I ; consider the boundary conditions for stresses given by  

σ ( ) 0rr a   
σ ( ) 0rr b   

                                                                                                                                     (16) 
Substituting the boundary conditions (16) into Eq. (14), the constants of integration for 
thermal stress yield, and they are presented at Appendix part (A). 
The elastic stresses are [3] 
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(17) 

 
In terms of a graph of (є௥௥

௣ 	,  ሻ the gradient (M*E) of a graph is obtained. Then the equation ofݏ
linear plastic strain for thermal stresses yields as [33] 
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(18) 

By substituting Eq. (17) into Eq. (18) the p
rrє  yields as 
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From equation (18) the ,
p
rr rє  yields as 
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                                                                                                                                   (20) 
From equation (5) S yields as 

,rr rS rS                                                                                                              

, , ,r rr r rr rrS S S    
(21) 

By substituting equation (21) into the equation (20) the ,
p
rr rє  yields as 
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(22)

 3.2 Linear plastic mechanical stresses 
 
Substituting Eq. (3) into Eq. (6) without considering the thermal boundary conditions the 
equation of elastic stress yields 

1 11 2
, 1 , 2 52 , 6

1 1 m m
rr rr rr r rr

p p
rr r rrg g g r g r

r
є

r
є         

                                                                    (23) 
After solving Eq. (23) such as solving equation of thermal stresses, mechanical stresses yield 
as 
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                                                                                                                               (24) 
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To determine the constants ܭଵ and  ܭଶ; consider the boundary conditions for stresses given by 

 rr iσ a p   

 rrσ b 0                                                            (25) 

Substituting the boundary conditions (25) into Eq. (24), the constants of integration for 
mechanical stress yield, and they are presented at Appendix part (B).  
The elastic mechanical stresses are [3] 

        1 1 1 11 10
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E
σ [ 1 1

1 υ 1 2υ
m m
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        (26) 
                                    

In terms of a graph of (є௥௥
௣ 	,  ሻ the gradient (M*E) of a graph is obtained. Then the equation ofݏ

linear plastic strain for mechanical stresses yields as [33] 
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                                                                                                                 (27)                       
From equation (27) the є௥௥,௥

௣  yields as 
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M
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  

                                                                                                                        (28) 
3-3 Critical temperature 
  
The critical temperature is a temperature that causes the stresses to go beyond the elastic 
region and come to plastic criteria. So this is one of the more important factors in designing. 
The constants of integration for elastic stresses are presented at Appendix part (c) [3]. 
For obtaining the critical temperature the Tresca’s criterion is shown as [33] 

4
0σ σrr

mr    

                                                                                                                        (29) 
By substituting the equation (17) into equation (29), equation (30) yields as 
 

  
1 1 1 2

1 2 32

4

1

1 10
1 1 2 2

1 2 2 3 2 2

0

E
[(1 )(1 2 ) (1 )(1 2 )

1 υ 1 2υ

( ( 2 1) (m m )( 2v )) ]

m m

m mm m

m

m

v B r v B
r

r

D m v r D D r

 


    

 

     



 

  

 

                   (30) 
By substituting the equations that are presented at Appendix part (C) & (D) into Eq. (30), the 
Tresca’s criterion become as 
 

1 2 3 1 2 431 1 1 2 1 21 1
22 26 23 20 24 8 25 10 2 22 27 23 21 22 10 1 0( ) f ( ) fm m m m m mm m m mmd d r d d r d A r d A r d d d d d A r r                

 

                                                                                                                                                                     (31) 
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The coefficients of 1f  and 2f  are as inner & outer critical temperatures.  

    
3-4 Critical Pressures    
 
The critical pressure is a pressure that causes the stresses to go beyond the elastic region and 
come to plastic criteria. By substituting equation (26) into the equation (29) the critical 
pressure yields as 

1 11 2 1 1
1 1 1 2

1 1 1 11 1 1 2 1 2 1 1

1 11 2 1 1
1 1 1 2

1 11 1 1 2

1 11 2

1 2

1 11 2

1 2

0

1 1
(1 ) 1

(1 ) (1 )
)

1 1
( 1 ) 1

(1

(

(
) (1 )

m m

m m m m

m m

m mi

m m

m m

v v v v
r a r a

v v v v

a b a b
v v v v

r b r a
v v v v

a b

P

P

 

   

 

 

 

 

 
 

 
 

   

       

   

   

   

   

   
  

   



   

   
   

 

1 11 2 1 1

2 1 1 1

1 1 2

4

1 112 1

η m 1 η m 1 2

2

η m 1 η m 1 η η 0m1 1

υη 1 υ
r b 1

1 υ η υ
)

a b a b

m m

m
m

r

a b
 



   

   

     




  
    


 

                              (32)    

We obtain, iP  and 0P  as inner & outer critical pressure.    

The limitations of analytical method for this paper are assumed as below: 
The Poisson’s ratio is considered constant. To determine the constants 1I  and 2I ; the 

boundary conditions for stresses is assumed σ ( ) 0rr a   and  σ ( ) 0rr b   . The modulus of 

elasticity and the coefficient of thermal expansion and yield strength are assumed to be 
described as a power law.  
                                                                                                                                            
4  Result and discussion 

As an example1, consider a thick hollow cylinder of inner radius a = 1 m, and outer radius b 
= 1.2 m, Poisson’s ratio is taken to be 0.3, and the modulus of elasticity and the thermal 
coefficients of expansion at the inner radius are 200iE   Gpa, and 61.2* 10 / ci

  , 

respectively. For simplicity of analysis, the power law coefficients for k, E and α coefficient 
are considered to be the same, i.e. 1 2 3 4m m m m m    . The boundary conditions for 

temperature are taken as ( ) ciT a T   and ( ) coT b T  .  

 
Figure (1-a) Outer critical temperature distribution of 

radial when ௜ܶ= ௜ܲ= ௢ܲ=0 
Figure (1-b) Inner critical temperature distribution of 

radial when ௢ܶ= ௜ܲ= ௢ܲ=0 
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The hollow cylinder has pressure on its inner surface so the boundary conditions for thermal 
stresses are assumed as  rrσ a 0 and  rrσ b 0 and for the second example, mechanical 

stresses are assumed as  rrσ a 50  Mpa, and  rrσ b 0 for earning the critical pressure we 

considered ( ) iP a P   Mpa, and ( ) oP b P  Mpa. As an example 3, consider a thick hollow 

cylinder of inner radius 0.7a  m and outer radius 1b  m, 0.33i

o

p

p
 , the power law 

coefficient for 0.6m  and the other coefficients are same as the previous example. Figure (1-
a) shows the outer critical temperature distribution of radial, when 0i i oT P P   . The effect 

of the power-law index to the distribution of the outer critical temperature radial is shown in 
this figure. Figure (1-b) shows the inner critical temperature distribution of radial, when

0o i oT P P   . These figures show increasing the power-law index cause to increase the 

inner critical temperature and decrease the outer critical temperature. Figure (2-a) shows the 
outer critical pressure distribution of radial, when 0o i iT T P   . Also you can see the effect 

of power-law index to the distribution of the outer critical pressure is shown in this figure. 
Figure (2-b) shows the inner critical pressure distribution of radial when 0o i oT T P   and 

effect of power-law index to the distribution of the outer critical pressure. Figure (3-a) shows 
the outer pressure for all over the cylinder goes to plastic region, when 0o i oT T P   . Figure 

(3-b) shows the radial inner pressure for all over the cylinder goes to the plastic region when
0o i oT T P   . Figure (4-a) shows the radial thermal stress of linear plastic for m=1 when 

0o i oT P P   & ௜ܶ=200௖°  and the effect of any gradients on it.  

Figure (4-b) shows the linear plastic’ radial thermal stress for m=-1 when 0o i oT P P   &

200iT c  	and the effect of the gradient on linear plastic’ radial thermal stress. Figure (5-a) 

shows the Circumferential thermal stress of linear plastic for m=1 when 0o i oT P P   & 

200iT c   and the effect of the gradient on linear plastic’ circumferential thermal stress. 

Figure (5-b) shows the Circumferential thermal stress of linear plastic for m=-1 when 
0o i oT P P   	, 200iT c  and the effect of the gradient on linear plastic’ circumferential 

thermal stress. Figure (6-a) shows the effective thermal stress of linear plastic for m=1 when 
0o i oT P P   & 200iT c  	and the effect of M index on it.  

Figure (6-b) shows the effective thermal stress of linear plastic for m=-1 when 
0o i oT P P   & 200iT c   and the effect of M index on it. Figure (7-a) indicates the 

comparing of radial elastic stress [3] (shows with square) with linear plastic stress by 
substituting , 0p p

rr rr rє є  in stress formula that they should be the same because by putting 

, 0p p
rr rr rє є  in radial linear plastic stress it turns to radial elastic stress.  

Figure (7-b) shows the radial mechanical stress of linear plastic for m=1 when 
0o i iT T P    & 50iP    Mpa and the effect of M on radial mechanical stress of linear 

plastic. Figure (8-a) indicates the radial mechanical stress of linear plastic for m=-1 when 
0o i oT T P   & 50iP   Mpa and the effect of M on radial mechanical stress of linear 

plastic. Figure (8-b) shows the comparing of radial plastic stress [28] (shows with square) 
with radial linear plastic by substituting M=0. By substituting M=0 in radial linear plastic 

stress formula it turns to perfect plastic when oT T  & 0.33i

o

p

p
 Mpa.  
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The thing that justifies the difference of two graphs is that in that article, they considered 
yield strength as constant but in this article, yield strength is depended on radius and power 
law’s coefficient. Figure (9-a) shows the circumferential mechanical stress of linear plastic 
for m=-1 when 0o i oT P P   & 50iP   Mpa and the effect of M on circumferential 

mechanical stress of linear plastic. Figure (9-b) shows the effective mechanical stress of 
linear plastic for m=-1 when 0o i iT T P   & 50iP   Mpa and the effect of M on 

circumferential mechanical stress of linear plastic. Figure (10-a) shows the radial mechanical 
stress for the whole of the cylinder goes to the plastic region causes by iP  for m=1 when

0o i oT P P   . Figure (10-b) indicates the circumferential mechanical stress for the whole 

of the cylinder goes to the plastic region causes by iP  for m=1 when 0o i oT P P   . Figure 

(11-a) indicates the effective mechanical stress for the whole of the cylinder goes to the 
plastic region causes by iP  for m=1 when 0o i oT P P   .  

Figure (11-b) shows the radial mechanical stress for the whole of the cylinder goes to the 
plastic region causes by iP  for m=-1 when 0o i oT P P   . Figure (12-a) shows the 

circumferential mechanical stress for the whole of the cylinder goes to the plastic region 
causes by iP  for m=-1 when 0o i oT P P   . Figure (12-b) indicates the effective mechanical 

stress for the whole of the cylinder goes to the plastic region causes by iP  for m=-1 when

0o i oT P P   . Figure (13-a) shows the radial mechanical stress for half of a cylinder goes 

to plastic region causes by ݌௜  for m=1 when 0o i oT P P   . Figure (13-b) shows the radial 

mechanical stress for half of a cylinder goes to plastic region causes by iP   for m=-1 when

0o i oT P P   .  Figure (14-a) shows the circumferential mechanical stress for half of a 

cylinder goes to plastic region causes by iP   for m=-1 when 0o i oT P P   . What can infer 

about this graph is that in terms of each M, the stress has a new yield point. Figure (14-b) 
indicates the effective mechanical stress for a half of cylinder goes to plastic region causes by 

iP for m=-1 when 0o i oT P P   . Figure (15-a) indicates the radial mechanical stress for the 

whole of a cylinder goes to the plastic region causes by oP   for m=1 when 0o i iT T P   . 

Figure (15-b) indicates the circumferential mechanical stress for the whole of a cylinder goes 
to the plastic region causes by ݌௢  for m=1 when 0o i iT T P   . Figure (16-a) indicates the 

effective mechanical stress for the whole of a cylinder goes to the plastic region causes by oP   

for m=1 when 0o i iT T P   . Figure (16-b) indicates the radial mechanical stress for the 

whole of a cylinder goes to the plastic region causes by oP   for m=-1 when 0o i iT T P   . 

Figure (17-a) indicates the circumferential mechanical stress for the whole of a cylinder goes 
to plastic region causes by oP   for m=-1 when 0o i iT T P   . Figure (17-b) indicates the 

effective mechanical stress for the whole of a cylinder goes to the plastic region causes by ݌௢  
for m=-1 when 0o i iT T P   . Figure (18-a) indicates the radial mechanical stress for the 

half of a cylinder goes to the plastic region causes by ݌௢  for m=1 when 0o i iT T P   . 

Figure (18-b) indicates the radial mechanical stress for half of cylinder goes to plastic region 
causes by oP   for m=-1 when 0o i iT T P   . Figure (19-a) indicates the circumferential 

mechanical stress for half of cylinder goes to plastic region causes by ݌௢  for m=-1 when
0o i iT T P   . Figure (19-b) indicates the effective mechanical stress for the half of a 

cylinder goes to the plastic region causes by oP   for m=-1 wen 0o i iT T P   . 
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Figure (2-a) Outer critical pressure distribution of 
radial when ௜ܶ= ௢ܶ= ௢ܲ=0 

 
 

Figure (2-b) Inner critical pressure distribution of 
radial when ௜ܶ= ௢ܶ= ௢ܲ=0    

 

 

Figure (3-a) Outer pressure for all over the cylinder 
goes to plastic region when ௜ܶ= ௢ܶ= ௜ܲ=0 

 
 

Figure (3-b) Inner pressure for all over the cylinder 
goes to plastic region when ௜ܶ= ௢ܶ= ௢ܲ=0 

 

 
 

Figure (4-a) Radial thermal stress of linear plastic for 
m=1 when ௢ܶ= ௜ܲ= ௢ܲ=0 & ௜ܶ=200௖°  

Figure (4-b) Radial thermal stress of linear plastic for 
m=-1 when ௢ܶ= ௜ܲ= ௢ܲ=0 & ௜ܶ=200௖°  
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Figure (5-a) Circumferential thermal stress of linear 
plastic for m=1 when when ௢ܶ= ௜ܲ= ௢ܲ=0 & ௜ܶ=200௖°  

 

Figure (5-b) Circumferential thermal stress of linear 
plastic for m=-1 when when ௢ܶ= ௜ܲ= ௢ܲ=0 & ௜ܶ=200௖°  

 
 
 
 
 

Figure (6-a) Effective thermal stress of linear plastic 
for m=1 when ௢ܶ= ௜ܲ= ௢ܲ=0 & ௜ܶ=200௖°  

 

Figure (6-b) Effective thermal stress of linear plastic 
for m=-1 when ௢ܶ= ௜ܲ= ௢ܲ=0 & ௜ܶ=200௖°  

 
 
                                              

Figure (7-a) Comparing of radial elastic stress [3] 
(shows with square) with linear plastic stress by 

substituting є௥௥
௣ =	є௥௥,௥

௣ =0 in stress formula that they 
should be the same when ௢ܶ= ௢ܲ=0 & ௜ܶ=10௖°  & ௜ܲ ൌ-

50 Mpa 
 

Figure (7-b) Radial mechanical stress of linear plastic 
for m=1 when ௢ܶ= ௜ܶ= ௢ܲ=0 & ௜ܲ=-50 Mpa 
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Figure (8-a) Radial mechanical stress of linear 
plastic for m=-1 when ௢ܶ= ௜ܶ= ௢ܲ=0 & ௜ܲ=-50 Mpa 

 

Figure (8-b) Comparing of radial plastic stress 
[28](shows with square) with radial linear plastic by 

substituting M=0 when ௢ܶ= ௜ܶ & 
௣೔
௣బ

=.33 Mpa 

 

Figure (9-a) Circumferential mechanical stress of 
linear plastic for m=-1 when ௢ܶ= ௜ܶ= ௢ܲ=0 & ௜ܲ=-50 

Mpa 
 

Figure (9-b) Effective mechanical stress of linear 
plastic for m=-1 when ௢ܶ= ௜ܶ= ௢ܲ=0 & ௜ܲ=-50 Mpa 

 

 

 
Figure (10-a) Radial mechanical stress for whole of 
cylinder goes to plastic region causes by ݌௜  for m=1 

when ௢ܶ= ௜ܶ= ௢ܲ=0 

 

 

Figure (10-b) Circumferential mechanical stress for 
whole of cylinder goes to plastic region causes by ݌௜  

for m=1when ௢ܶ= ௜ܶ= ௢ܲ=0 
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Figure (11-a) Effective mechanical stress for whole of 
cylinder goes to plastic region causes by ݌௜  for m=1 

when ௢ܶ= ௜ܶ= ௢ܲ=0 
 

 

Figure (11-b) Radial mechanical stress for whole of 
cylinder goes to plastic region causes by ݌௜  for m=-1 

when ௢ܶ= ௜ܶ= ௢ܲ=0 
 

 

Figure (12-a) Circumferential mechanical stress for 
whole of cylinder goes to plastic region causes by ݌௜  

for m=-1 when ௢ܶ= ௜ܶ= ௢ܲ=0 
 

 

Figure (12-b) Effective mechanical stress for whole of 
cylinder goes to plastic region causes by ݌௜  for m=-1 

when ௢ܶ= ௜ܶ= ௢ܲ=0 
 

 

Figure (13-a) Radial mechanical stress for half of 
cylinder goes to plastic region causes by ݌௜  for m=1 

when ௢ܶ= ௜ܶ= ௢ܲ=0 
 

Figure (13-b) Radial mechanical stress for half of 
cylinder goes to plastic region causes by ݌௜  for m=-1 

when ௢ܶ= ௜ܶ= ௢ܲ=0 
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Figure (14-a) Circumferential mechanical stress for 

half of cylinder goes to plastic region causes by ݌௜  for 
m=-1 when ௢ܶ= ௜ܶ= ௢ܲ=0 

 

Figure (14-b) Effective mechanical stress for half of 
cylinder goes to plastic region causes by ݌௜  for m=-1 

when ௢ܶ= ௜ܶ= ௢ܲ=0 
 

 

Figure (15-a) Radial mechanical stress for whole of 
cylinder goes to plastic region causes by ݌௢  for m=1 

when ௢ܶ= ௜ܶ= ௜ܲ=0 
 

Figure (15-b) Circumferential mechanical stress for 
whole of cylinder goes to plastic region causes by ݌௢  

for m=1 when ௢ܶ= ௜ܶ= ௜ܲ=0 
 

 

Figure (16-a) Effective mechanical stress for whole of 
cylinder goes to plastic region causes by ݌௢  for m=1 

when ௢ܶ= ௜ܶ= ௜ܲ=0 
 

 

Figure (16-b) Radial mechanical stress for whole of 
cylinder goes to plastic region causes by ݌௢  for m=-1 

when ௢ܶ= ௜ܶ= ௜ܲ=0 
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Figure (17-a) Circumferential mechanical stress for 
whole of cylinder goes to plastic region causes by ݌௢  

for m=-1 when ௢ܶ= ௜ܶ= ௜ܲ=0 
 

 

Figure (17-b) Effective mechanical stress for whole of 
cylinder goes to plastic region causes by ݌௢  for m=-1 

when ௢ܶ= ௜ܶ= ௜ܲ=0 
 

 

Figure (18-a) Radial mechanical stress for half of 
cylinder goes to plastic region causes by ݌௢  for m=1 

when ௢ܶ= ௜ܶ= ௜ܲ=0 
 

Figure (18-b) Radial mechanical stress for half of 
cylinder goes to plastic region causes by ݌௢  for m=-1 

when ௢ܶ= ௜ܶ= ௜ܲ=0 
 

 

Figure (19-a) Circumferential mechanical stress for 
half of cylinder goes to plastic region causes by ݌௢  for 

m=-1 when ௢ܶ= ௜ܶ= ௜ܲ=0 
 

Figure (19-b) Effective mechanical stress for half of 
cylinder goes to plastic region causes by ݌௢  for m=-1 

when ௢ܶ= ௜ܶ= ௜ܲ=0 
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5 Conclusions 
 
In the present work, an attempt has been made to study the problem of general solution for the 
thermal and mechanical stresses in a linear plastic thick FGM hollow cylinder due to the two-
dimensional axisymmetric steady-state loads. The method of solution is based on the direct 
method and uses power series, rather than the potential function method. The advantage of 
this method is its mathematical power to handle mathematical function for the thermal and 
mechanical linear plastic stresses boundary conditions.  
The material properties and yield strength through the graded direction are assumed to be 
nonlinear with a power law distribution. Depending on applied boundary condition, by 
selecting the optimum value of m, desirable level of radial and circumferential stresses could 
be obtained in FGM cylinders with respect to those in homogenous ones. By setting m = 0 in 
every equation, radial and circumferential stresses expressions turned to homogenous ones 
which could approve the validity of formulations. We can find the critical temperature and 
pressure that are very important for designing.  
 
 
Nomenclature 
 
T : Temperature 

p
rr : Radial linear plastic strain 

rr : Elastic strain 

rr : Radial elastic stress 

 : Lame coefficient 
 : Poisson’s ratio 
 : Coefficient of thermal expansion 

 : Circumferential stress 
p

rr : Radial linear plastic stress  
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  چكيده
  
ي توخالي با ضخامت كم هاي حرارتي و مكانيكي متقارن و دو بعدي در يك استوانهاين طرح عمومي تنش در

خارج بررسي شده شود. شكل كلي شرايط مرزي، در سطح داخل و ارائه مي FGMو ساخته شده از مواد 
است. يك روش مستقيم براي حل دستگاه غير همگن معادلات ديفرانسيلي ناوير با استفاده از حل عمومي و 

ي مختلط و روش تابع قانون توان به كار رفته است. خواص مواد به جز نرخ پوآسون خصوصي و سري فوريه
ي نمودارها اند. نتايج، مقايسهن نشان داده شدهصورت تابع قانون توا فرض شده و به rوابسته به متغير شعاع 

همگن غالباً به دو دسته تقسيم بندي مي شوند كه يك دسته ازآنجايي كه مواد نادهد. ها را نشان ميو تنش
اي است كه داراي چند فاز متمايز مادي است و دسته ديگر مواد با خصوصيات متغير كه مواد چند ماده

  ها از نقطه اي به نقطه ديگر به صورت تابع پيوسته تغيير مي كند. آن درصد ماده تشكيل دهنده
اين دسته در واقع كلاس جديدي از مواد مركب هستند كه خصوصيات مواد در آنها در طول جسم، به صورت 
پيوسته تغيير مي كند. مواد هدفمند در واقع تركيبي از دو يا چند فاز مادي است و به گونه اي طراحي شده 

ها در يك يا چند جهت تغيير نمايد. اين عامل جسم مادي را از ديدگاه است كه نسبت حجمي آن
سازد و از ديدگاه ماكروسكوپي خواص مكانيكي را به نرمي و به طور پيوسته تغيير ميكروسكوپي ناهمگن مي

ان استفاده از سري هايي براي حل معادلات اين دسته از مواد وجود دارند كه از جمله مي تودهد. روشمي
هاي المان محدود با در نظر گرفتن خواص ماده هدفمند با اي، روش اختلالات، روشتواني، روش چند لايه

  يك تابع مشخص (مانند تابع نمايي و... ) را نام برد.
  

  

 

 


