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Mechanical and Thermal Stresses in a
Linear Plastic FGM Hollow Cylinder Due to

_Axisymmetric Loads
M- Jabbari” § 7, ipis paper, an analytical solution for computing the linear plastic
Associate Professor W o1.o05e5, critical temperature and pressure in an FGM hollow
cylinder under the internal pressure and temperature is developed. It
has been assumed that the modulus of elasticity and thermal
coefficient of expansion were varying through thickness of the FGM
material according to a power law relationship. The Poisson's ratio
M. Shokouhfar' | was considered constant throughout the thickness. The general forms
M.Sc. @ of thermal and mechanical boundary conditions were considered on
the inner surface. In the analysis section, the effect of non-
homogeneity in FGM cylinder was implemented by choosing a
dimensionless parameter, named m, which could be assigned an
arbitrary value affecting the stresses in the cylinder. Distribution of
A. Hatefkia* B57esses in radial and circumferential direction for FGM cylinders
M.Sc. under the influence of internal pressure and temperature gradient
were obtained. Graphs of critical temperature and pressure versus
radius of the cylinder were plotted. Cases of pressure and
temperature loadings were considered separately. The direct method
has been considered to solve the heat conduction and Navier
.. M equations. The outer pressure for all over the cylinder goes to the
M. R. Eslami® plastic region when T;=T,=P;=0 and by increasing the modules of
Professor elasticity the pressure will increase. By substituting M=0 in radial

linear plastic stress formula, the perfect plastic equation will yield.

P _ P
. el =€’ =0. o . :
By putting ~m T in radial linear plastic stress formula, it

turns to the radial elastic stress.

Keywords: Hollow cylinder; non-homogenous; axisymmetric, FGM; Elastic-Plastic Analysis
1 Introduction

Functionally graded material (FGM) is heterogeneous material in which the elastic and
thermal properties change from one surface to the other, gradually and continuously. Since
ceramic has good heat resistance to corrosion and erosion and metal has high fracture
toughness, ceramic-Metal FGM may work at super high-temperatures or under high-
temperatures difference and also corrosive fields. In effect, the governing equation of
temperature and stress distributions coordinate dependent as the material properties are
functions of position.
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There are some analytical thermal and stress calculations for functionally graded material in
the on-dimensional case for thick cylinders and spheres [1, 2]. The authors have considered
the non-homogeneous material properties as liner function of radius.

M. Jabbari et al. [3] studied a general solution for mechanical and thermal stresses in a
functionally graded hollow cylinder due to non-axisymmetric steady-state load. They applied
separation of variables and complex Fourier's series to solve the heat conduction and Navier
equation. Poultangari et al. [4] presented functionally graded hollow spheres under non-
axisymmetric thermo-mechanical loads. Lu yunbing et al. [5] found ceramic/metal
functionally gradient material (FGM) has gradient ingredient distribution, so its properties of
the heat transfer and thermo elastic mechanics are much better than that of the homogenous
materials. In that paper, a model is adopted in which the material ingredients and the material
properties in the middle layer change continuously. Shariyat et al. [6] presented nonlinear
transient thermal stress and elastic wave propagation analyses of thick temperature-dependent
FGM cylinders, using a second-order point-collocation method. In another work [7], he found
an algorithm for nonlinear transient behavior analysis of thick functionally graded cylindrical
vessels or pipes with temperature-dependent material properties under thermo-mechanical
load. Chen and Lim [8] presented elastic mechanical behavior of nano-scaled FGM films
incorporating surface energies. X.Y. Li, HJ. Ding, W.Q. Chen[9] considers the bending of
transversely isotropic circular plates with elastic compliance coefficients being arbitrary
functions of the thickness, subject to a transverse load in the form of the ark (k is zero or a
finite even number). Afsar and Sekine [10] presented inverse problems of material
distributions for prescribed apparent fracture toughness in FGM coatings around a circular
hole in infinite elastic media. Vahid Tajeddini et al. [11] described a study of three-
dimensional free vibration analysis of thick circular and annular isotropic and functionally
graded (FG) plates with a variable thickness along the radial direction. Asghar Nosier,
FamidaFallah [12] based on the first-order shear deformation plate theory with von Karman
non-linearity, the non-linear axisymmetric and asymmetric behavior of functionally graded
circular plates under transverse mechanical loading are investigated. Zhang and Zhou [13]
presented a theoretical analysis of FGM thin plates based on the physical neutral surface.
Fazelzadeh and Hosseini [14] presented aero-thermoelastic behavior of supersonic rotating
thin-walled beams made of functionally graded materials. Ootao and Tanigawa [15] analysed
the transient thermo elastic problem of the functionally graded thick strip due to non-uniform
heat supply. They obtained the exact solution for the two-dimensional temperature change in
a transient state, and thermal stresses of a simple supported strip under the state of plane
strain. Jabbari et al. [16] studied the mechanical and thermal stresses in the functionally
graded hollow cylinder due to radial symmetric loads. They assumed the temperature
distribution to be a function of radial direction. They applied a direct method to solve the heat
conduction and Navier equations. Farid et al. [17] presented three-dimensional temperature-
dependent free vibration analysis of functionally graded material curved panels resting on
two-parameter elastic foundation using a hybrid semi-analytic, differential quadrature method.
Bagri and Eslami [18] presented generalized coupled thermo elasticity of functionally graded
annular disk considering the Lord—Shulman theory. Samsam et al. [19] presented buckling of
thick functionally graded plates under mechanical and thermal loads. Jabbari et al [20] studied
an axisymmetric, mechanical and thermal stresses in a thick short length functionally graded
material cylinder. They applied separation of variables and complex Fourier's series to solve
the heat conduction and Navier equation.

M. Zamani nejad and G.H. Rahimi [21] Using the infinitesimal theory of elasticity, closed-
form solutions for one-dimensional steady-state thermal stresses in a rotating functionally
graded (FGM) pressurized thick-walled hollow circular cylinders are obtained under
generalized plane strain, and plane stresses assumptions, respectively.



Mechanical and Thermal Stresses in a Linear Plastic FGM ... 41

R.C. Batra G.L. Iaccarino [22] found closed-form solutions for axisymmetric plane strain
deformations of a functionally graded circular cylinder comprised of an isotropic and
incompressible second-order elastic material with module varying only in the radial direction.
Cylinder’s inner and outer surfaces are loaded by hydrostatic pressures. Three-dimensional
thermo-elastic analysis of a functionally graded cylindrical panel with finite length and
subjected to non-uniform mechanical and steady-state thermal loads are carried out by Z.S.
Shao, T.J. Wang [23]. The adjective “plastic”’ comes from the classical Greek verb mAdccewv
Meaning “to shape”; it thus describes materials, such as ductile metals, clay, or putty, which
have the property that bodies made from them can have their shape easily changed by the
application of appropriately directed forces, and retain their new shape upon removal of such
forces. The shaping forces must, of course, be of sufficient intensity otherwise. A mere breath
could deform the object but often. Such intensity is quite easy to attain, and for the object to
have a useful value, it may need to be hardened, for example, through exposure to air or the
application of heat, as is done with ceramics and thermosetting polymers. Other materials
above all metals are quite hard at ordinary temperatures and may need to be softened by
heating in order to be worked. It is generally observed that the considerable deformations
which occur in the plastic shaping process are often accompanied by very slight, if any
volume changes. Consequently, plastic deformation is primarily a distortion, and of the
stresses produced in the interior of the object by the shaping forces applied to the surface, it is
their deviators that do most of the work. A direct test of the plasticity of the material could
thus be provided by producing a state of simple shearing deformation in a specimen through
the application of forces that result in a state of shear stress.

In a soft, semi-fluid material such as clay, or soil in general, this may be accomplished by a
direct shear test such as the shear-box test. In hard solids such as metals, the only experiment
in which uniform simple shear is produced is the twisting of a thin-walled tube, and this is not
always a simple experiment to perform. A much simpler test is the tension test [24].

There are new works of plasticity for FGMs materials. Y.M. Shabana, N. Noda presented
thermo-elasto-plastic stresses in functionally graded materials subjected to be thermal loading
taking residual stresses of the fabrication process into consideration [25]. A. N. Eraslan & T.
Akis presented plane strain analytical solutions for a functionally graded elastic—plastic
pressurized tube [26]. A. N. Eraslan and E. Arslan prisented plane strain analytical solutions
to rotating partially plastic graded hollow shafts [27]. A. N. Eraslan, T. Akis presented an
elastoplastic response of a long functionally graded tube subjected to internal pressure [28].
M. N. Alla, K., L.LE. Ahmed, I. H. Allah presented elastic—plastic analysis of two-dimensional
functionally graded materials under transient thermal loading [29]. H. C. Lu presented stress
analysis in a functionally graded disc under mechanical loads and a steady-state temperature
distribution [30]. B. H. Jahromi presented elasto-plastic stresses in a functionally graded
rotating disk [31]. M. Sadeghian and H. E. Toussi presented elasto-plastic axisymmetric
thermal stress analysis of the functionally graded cylindrical vessel [32].

Classical method of analysis is to combine the equilibrium equations with the stress-strain and
strain- equilibrium equation's relations to arrive at the governing equation in terms of the
stress components called the Navier equation. Navier equations are solved in elastic and
plastic hollow FGM, analytically. The analysis is presented for two types of applicable
boundary conditions. In this work, an analytical method is presented for linear plastic
mechanical and thermal stress analysis for a hollow cylinder made of functionally graded
materials. Temperature distribution is considered in steady-state axisymmetric case, and
mechanical and thermal boundary conditions are considered in general forms. It has been
assumed that the modulus of elasticity and thermal coefficient of expansion were varying
through thickness of the FGM material according to a power law relationship. The Poisson's
ratio was considered constant throughout the thickness.
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The Navier equation is solved analytically by the direct method. Many engineering
components are vulnerable to abrupt changes in the mechanical and thermal loads. Cylinders
of the internal-combustion engines that are fabricated from functionally graded materials are
an example of FGM cylinders, which are subjected to both internal pressure and thermal
shocks. Depending on the rate of variations of applied loads and distribution of the material
properties, these changes in the exerted loads may lead to the linear and perfect plastic. There
are no content and sources for predicting of the linear and perfect plastic stresses in FGM
cylinders until now. So, this paper is provided to predict these phenomena and let the
engineers to deal with it.

2 Heat conduction problems

Consider a hollow circular cylinder of inner radius a, outer radius b made of FGM
(Functionally Graded Material) respectively. The cylinder’s material graded through the r-
direction, thus the material properties are functions of r. Then the equation of heat conduction
in steady-state condition for one-dimensional problem in polar coordinates and thermal
boundary conditions for an FGM hollow cylinder yield as [3]

A,
T(r):_—mlr P44, (1)
3

cllT(a)+clzTJ (a) =f

cle(a)+0227; (a) =1

The coefficients of A; & A, are presented at Appendix part (A)

)

3 Stress analyses
3. 1 linear plastic thermal stresses

The linear plastic stress—strain relations for plane-strain conditions are

1
— P
€ _E(Grr —v0,, )+ a,T +¢’,
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Where (,r) denotes differentiation with respect to r. where oij and € (i, j = r, & ) are the stress
and strain tensors, T is the temperature distribution determined from the heat conduction
equation, a is the coefficient of thermal expansion, and A and p are Lame” coefficients related
to the modulus of elasticity E and Poisson’s ratio v as

vE

(4)
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The equilibrium equation in the radial direction, disregarding the body force and the inertia

term, is
G —0
SCEAE 5
’ r

66‘49 = rcrr N + Grr

To obtain the equation of stresses in terms of plastic strain for the FGM cylinder the
functional relationship of the material properties must be known. Since the cylinder’s material
is assumed to be graded along the r direction, the modulus of elasticity and the coefficient of
thermal expansion and yield strength are assumed to be described as a power law as.

RY"
a=aq, (7) =a,r"

RY"
a=aq, (7) =a,r"

R
o, =0, (7)'”4 =o,r" (6)
Where Eo and a0 and o, are the material constants and m,, m,, ms and m, are the power

law indices of the material. We may further assume that Poisson’s ratio is constant.
Using relations (3)—(6), the Navier equation in terms of the stresses is.

6, . +(3—-m, )%GW +m,(v—1 )%20” =—m,a E," " T — oy Eyr™ ™™ 'T + Eyr™ el +2E™ e”
(7)
Substituting Eq. (1) into Eq. (7) yields
G T8I %Grr,r +& rizcrr =gy T + g4rml+mz_lT,r +g5’””ﬁ_1€5,,» +g,r" e,
(8)

The coefficients of Eq (8) are presented at Appendix part (A). Eq (8) is the differential
equation with general and particular solutions. The general solution is assumed to have the
form.

ol (r)=1Ir
9
Substituting Eq. (9) into Eq. (8) yields
Z+z(g,-1)+g,=0
(10)
Eq. (10) has two real roots z, and z, :
—(g, -1 (gz_1)2 0.5
= —+ —
Z 5 ( > g)
(11)
. _ _ 2
7 = (gl 1)_((g2 1) _gZ)O.S

: 2 2
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Thus the general solution is as written below:

lopd (r) =1r" +Lr>

(12)

The particular solution o () is assumed to be of the form as below:

—nmy 1
ol (r)=Hr"™ ™ + Hy™™ + Hyel 7™ + Helr™

rr rr,r

(13)

By substituting Eq. (13) into Eq. (8) equating the coefficients of the identical power yields
and they are presented at Appendix part (A). The complete solution for o, is the sum of the

general and particular solutions as

- 1
o, =1r"+Lr>+Hr""™ ™ + Hr™™ + Hye” r™" + H,elr™

rr,r

(14)
And the hoop stress become as

O = (20, + 117+ (2,1, + 1, x>+ [ (m, +my —my ) H, + H, |7 """ +[ (m, +m,) H, + H, |r"™™" +

[(m1+1)H3€" +He! +He? ]r’”‘+1+[H3€p ]r’”‘”+[m1H4€f;+H4€f:]1”m1 (15)

rr,r rr,r rr,r rrr
To determine the constants /, and /, ; consider the boundary conditions for stresses given by

c,.(a)=0
c,.(b)=0
(16)
Substituting the boundary conditions (16) into Eq. (14), the constants of integration for

thermal stress yield, and they are presented at Appendix part (A).
The elastic stresses are [3]

EO my+i =1 my+i, -1
0,_,_=m[((l—v)nl+v)31r +((1=v)m, +v)Byr +(((1=v)m, +1)D, -
(149) g ™ (1= )m =y )+ 1) Dy T o

E my+m - my+n,—
Gee:m[((l—vhnlv)&r 4 ((1=v)+m,v) Byr™ ™ +((vmy +1) D, -

(14 )ty A ™™ +((o(m,— m, )+ 1) D, + ST %0A e (17)

ms

In terms of a graph of (€7, , s) the gradient (M*E) of a graph is obtained. Then the equation of
linear plastic strain for thermal stresses yields as [33]

p
"w

. :1‘_M(

l—S)

S =5, 7S
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GW
Sy = m
o,
Sop = 09314
o,
(18)
By substituting Eq. (17) into Eq. (18) the ¢/ yields as
1-M E
= ~1+ - 1=7,)(1=2v)Br™ 7" 4 (1=17, )(1=2v)Byr™ 71" 4
crr M ( (1-‘,—1))(1—21))0'0 [( 771 )( V) ]r ( 772 )( V) 2r
(Dym,(2v—1)r"""""™ +((m, —my )(2vD, — D, ))r™ """ )]) (19)
From equation (18) the ¢, yields as
M -1
el =——(S
" M ( s )
(20)
From equation (5) S yields as
S = _rSrr,r
Sr = _Srr s Srr,rr
1)
By substituting equation (21) into the equation (20) the ¢ . yields as
M -1
e =—(-s.,-S§
ey M ( rr rrpr )
1 O-)")" s
S,r == my (O-rr ),r _r(—;m),r
o,r o,r
(22)

3.2 Linear plastic mechanical stresses

Substituting Eq. (3) into Eq. (6) without considering the thermal boundary conditions the
equation of elastic stress yields

1 1 1
— —L,P m=2_p
o +gl;arr,r +g2 r_zarr _g5r l €rr,r +g6r €

rrr r

(23)
After solving Eq. (23) such as solving equation of thermal stresses, mechanical stresses yield
as
o, =Kr*+K,r* +Hye” v+ H,elr™

rr,r

Op =(2, K K\ ™ +(2,K,, K, )r® + [+ 1)Hye, + Hyep  + Hye)l | ] rm +H3€£,rrrml+2 +

p p m
[mH,el +He" |r

(24)
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To determine the constants K; and Kj; consider the boundary conditions for stresses given by

Grr (a) = _pi
s, (b)=0 (25)

Substituting the boundary conditions (25) into Eq. (24), the constants of integration for
mechanical stress yield, and they are presented at Appendix part (B).
The elastic mechanical stresses are [3]

E my -+, — 4, —
O, Wol_%)[((l—v)nlﬂ/)&r 4 ((1=v) g, +v) By
E

Cpy = WOI—ZU) [ ((1 —v)+ 7711/)Blr""“7“1 + ((1 —v)+ 7721/)821/”‘“7"1

(26)

In terms of a graph of (€7, , s) the gradient (M*E) of a graph is obtained. Then the equation of
linear plastic strain for mechanical stresses yields as [33]

1-M

gl =——(-1-s

1= (1)
(27)

From equation (27) the e’r’r,r yields as

M-1
b = s
rr,r M ( 7")

(28)

3-3 Critical temperature

The critical temperature is a temperature that causes the stresses to go beyond the elastic
region and come to plastic criteria. So this is one of the more important factors in designing.
The constants of integration for elastic stresses are presented at Appendix part (c) [3].

For obtaining the critical temperature the Tresca’s criterion is shown as [33]

my

|GHH _Grr = O-Or
(29)
By substituting the equation (17) into equation (29), equation (30) yields as
EO my+m,—1 m,+n,—1
T [(1=p, )(1=2v)By" T (1=, )(1=2v) By
(1+v)(1-2v) P
(Dymy(2v =)™ + (m,=my }(2vD, =D, """ |
(30)

By substituting the equations that are presented at Appendix part (C) & (D) into Eq. (30), the
Tresca’s criterion become as

|( o™+ dyd ™ A dy A+ —dy Agr™ ) G (dypdyy +dydy, + doy 4™ ) f1| = o™

(1)
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The coefficients of f, and f, are as inner & outer critical temperatures.

3-4 Critical Pressures

The critical pressure is a pressure that causes the stresses to go beyond the elastic region and
come to plastic criteria. By substituting equation (26) into the equation (29) the critical
pressure yields as

rml+m_1aml+7124 ( 1— v, + 1-v " r,nl”h_]a*nlwrl vn, + 1-v .
P( (1=-v)p +v (1=v)p, +v )—
0 my+m =1 _ my+mp—1 my+m =1 _ my+m -1
b1 (-1+ v, +1-v L pml v, +1-v B
P (1=-v)p, +v (1=-v)mp, +v
i my+n-1 _ my+np-1 my+mp=1 _ my+mp-1
a —da
M, +my —1y m+m; -1 UT]Z + 1 Y
T b I—W
—V)n, +v
)=o,r™

anl +my —lbnz +my -1 an2 +my —lbn] +m; -1

(32)

We obtain, P and F, as inner & outer critical pressure.

The limitations of analytical method for this paper are assumed as below:

The Poisson’s ratio is considered constant. To determine the constants /, and/,; the
boundary conditions for stresses is assumed o, (a)=0 and o, (b)=0 . The modulus of

elasticity and the coefficient of thermal expansion and yield strength are assumed to be
described as a power law.

4 Result and discussion

As an examplel, consider a thick hollow cylinder of inner radius a = 1 m, and outer radius b
= 1.2 m, Poisson’s ratio is taken to be 0.3, and the modulus of elasticity and the thermal
coefficients of expansion at the inner radius are E, =200 Gpa, anda, =1.2*107°/°c,
respectively. For simplicity of analysis, the power law coefficients for k, E and a coefficient
are considered to be the same, i.e. m =m, =m, =m, =m. The boundary conditions for

temperature are taken as 7(a)=7,°c and T(b)=T °c.

T
P 12

m=-2 —

g m=2 i r ]
VT S 2 a
-

0 L L L L L L L L L - r
1 102 104 108 108 11 142 114 116 118 12 @ 4

n 1 1 L L 1 L 1 L i
1 102 104 106 708 1 A4z 144 1496 118 12 a

Figure (1-a) Outer critical temperature distribution of ~ Figure (1-b) Inner critical temperature distribution of
radial when T;=P;=P,=0 radial when T,,=P;=P,=0
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The hollow cylinder has pressure on its inner surface so the boundary conditions for thermal
stresses are assumed as o, (a)=0and o, (b)=0and for the second example, mechanical

stresses are assumed as o, (a)=—50Mpa, and o, (b) =0 for earning the critical pressure we
considered P(a)=-P, Mpa, and P(b)= P, Mpa. As an example 3, consider a thick hollow

cylinder of inner radius a=0.7m and outer radius b= lm,& =0.33, the power law
P,
coefficient for m = 0.6 and the other coefficients are same as the previous example. Figure (1-
a) shows the outer critical temperature distribution of radial, when7, = P = P =0 . The effect
of the power-law index to the distribution of the outer critical temperature radial is shown in
this figure. Figure (1-b) shows the inner critical temperature distribution of radial, when
I' =P =P =0. These figures show increasing the power-law index cause to increase the
inner critical temperature and decrease the outer critical temperature. Figure (2-a) shows the
outer critical pressure distribution of radial, when7 =7, = P =0. Also you can see the effect
of power-law index to the distribution of the outer critical pressure is shown in this figure.
Figure (2-b) shows the inner critical pressure distribution of radial when 7, =7, = P =0 and
effect of power-law index to the distribution of the outer critical pressure. Figure (3-a) shows
the outer pressure for all over the cylinder goes to plastic region, when7, =T, = P =0 . Figure
(3-b) shows the radial inner pressure for all over the cylinder goes to the plastic region when
I =T =P =0. Figure (4-a) shows the radial thermal stress of linear plastic for m=1 when

T =P =P =0& T;=200, and the effect of any gradients on it.

Figure (4-b) shows the linear plastic’ radial thermal stress for m=-1 when 7' =P =P =0&
T, =200°¢ and the effect of the gradient on linear plastic’ radial thermal stress. Figure (5-a)
shows the Circumferential thermal stress of linear plastic for m=1 when 7, =P =P, =0&
T =200° and the effect of the gradient on linear plastic’ circumferential thermal stress.

Figure (5-b) shows the Circumferential thermal stress of linear plastic for m=-1 when
I'=P=P =0, T =200° and the effect of the gradient on linear plastic’ circumferential

thermal stress. Figure (6-a) shows the effective thermal stress of linear plastic for m=1 when
I' =P =P, =0&T =200° and the effect of M index on it.

Figure (6-b) shows the effective thermal stress of linear plastic for m=-1 when
I' =P=P =0& T =200° and the effect of M index on it. Figure (7-a) indicates the

comparing of radial elastic stress [3] (shows with square) with linear plastic stress by
substituting €” =e” =01n stress formula that they should be the same because by putting

e

P =01n radial linear plastic stress it turns to radial elastic stress.

er =e,
Figure (7-b) shows the radial mechanical stress of linear plastic for m=1 when
T'=T,=P=0 & P=-50 Mpa and the effect of M on radial mechanical stress of linear
plastic. Figure (8-a) indicates the radial mechanical stress of linear plastic for m=-1 when
I'=T =P =0& P =-50Mpa and the effect of M on radial mechanical stress of linear
plastic. Figure (8-b) shows the comparing of radial plastic stress [28] (shows with square)
with radial linear plastic by substituting M=0. By substituting M=0 in radial linear plastic

stress formula it turns to perfect plastic when 7, =T & Li 033 Mpa.
p,
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The thing that justifies the difference of two graphs is that in that article, they considered
yield strength as constant but in this article, yield strength is depended on radius and power
law’s coefficient. Figure (9-a) shows the circumferential mechanical stress of linear plastic
for m=-1 when 7' =P =P =0& P =-50Mpa and the effect of M on circumferential
mechanical stress of linear plastic. Figure (9-b) shows the effective mechanical stress of
linear plastic for m=-1 when 7 =7, =P =0& P =-50Mpa and the effect of M on

circumferential mechanical stress of linear plastic. Figure (10-a) shows the radial mechanical
stress for the whole of the cylinder goes to the plastic region causes by P for m=1 when

T =P =P =0. Figure (10-b) indicates the circumferential mechanical stress for the whole

o

of the cylinder goes to the plastic region causes by P for m=1 when7, = P =P, =0. Figure
(11-a) indicates the effective mechanical stress for the whole of the cylinder goes to the
plastic region causes by P for m=1 when7 =P =P, =0.

Figure (11-b) shows the radial mechanical stress for the whole of the cylinder goes to the
plastic region causes by P for m=-1 when7 =P =P, =0. Figure (12-a) shows the
circumferential mechanical stress for the whole of the cylinder goes to the plastic region
causes by P for m=-1 when7, = P = P, =0. Figure (12-b) indicates the effective mechanical

stress for the whole of the cylinder goes to the plastic region causes by P for m=-1 when

I =P =P =0. Figure (13-a) shows the radial mechanical stress for half of a cylinder goes

o

to plastic region causes by p; for m=1 when7, = P = P, =0. Figure (13-b) shows the radial
mechanical stress for half of a cylinder goes to plastic region causes by P for m=-1 when

I' =P =P =0. Figure (14-a) shows the circumferential mechanical stress for half of a

o

cylinder goes to plastic region causes by P for m=-1 when7 = P = P =0. What can infer
about this graph is that in terms of each M, the stress has a new yield point. Figure (14-b)
indicates the effective mechanical stress for a half of cylinder goes to plastic region causes by
P for m=-1 when7, = P = P, =0. Figure (15-a) indicates the radial mechanical stress for the

whole of a cylinder goes to the plastic region causes by P for m=1 when7, =7, =P, =0.
Figure (15-b) indicates the circumferential mechanical stress for the whole of a cylinder goes
to the plastic region causes by p, for m=1 when7, =7, = P =0. Figure (16-a) indicates the
effective mechanical stress for the whole of a cylinder goes to the plastic region causes by P,
for m=1 when7 =T =P, =0. Figure (16-b) indicates the radial mechanical stress for the

whole of a cylinder goes to the plastic region causes by P, for m=-1 when7, =7, =P, =0.

1

Figure (17-a) indicates the circumferential mechanical stress for the whole of a cylinder goes
to plastic region causes by P for m=-1 when7 =7, = P =0. Figure (17-b) indicates the
effective mechanical stress for the whole of a cylinder goes to the plastic region causes by p,
for m=-1 when7 =T =P, =0. Figure (18-a) indicates the radial mechanical stress for the

half of a cylinder goes to the plastic region causes by p, for m=1 when7, =7 =P, =0.

1

Figure (18-b) indicates the radial mechanical stress for half of cylinder goes to plastic region
causes by P for m=-1 when7 =7, =P =0. Figure (19-a) indicates the circumferential
mechanical stress for half of cylinder goes to plastic region causes by p, for m=-1 when
T =T =P =0. Figure (19-b) indicates the effective mechanical stress for the half of a

cylinder goes to the plastic region causes by P, for m=-1 wen7, =7, =P =0.

1
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Figure (4-a) Radial thermal stress of linear plastic for
m=1 when T,=P;=P,=0 & T;=200,
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Figure (2-b) Inner critical pressure distribution of
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Figure (3-b) Inner pressure for all over the cylinder
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Figure (4-b) Radial thermal stress of linear plastic for
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Figure (6-b) Effective thermal stress of linear plastic
for m=-1 when T,=P;=P,=0 & T;=200,
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Figure (8-a) Radial mechanical stress of linear
plastic for m=-1 when T,=T;=P,=0 & P;=-50 Mpa
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Figure (9-a) Circumferential mechanical stress of
linear plastic for m=-1 when T,=T;=P,=0 & P;=-50
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Figure (10-a) Radial mechanical stress for whole of
cylinder goes to plastic region causes by p; for m=1
when T,=T;=P,=0
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Figure (9-b) Effective mechanical stress of linear
plastic for m=-1 when T,=T;=P,=0 & P;=-50 Mpa
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Figure (13-a) Radial mechanical stress for half of Figure (13-b) Radial mechanical stress for half of
cylinder goes to plastic region causes by p; for m=1 cylinder goes to plastic region causes by p; for m=-1
when T,=T;=P,=0 when T,=T;=P,=0
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Figure (16-a) Effective mechanical stress for whole of ~ Figure (16-b) Radial mechanical stress for whole of
cylinder goes to plastic region causes by p, for m=1 cylinder goes to plastic region causes by p, for m=-1
when T,=T;=P;=0 when T,=T;=P;=0
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5 Conclusions

In the present work, an attempt has been made to study the problem of general solution for the
thermal and mechanical stresses in a linear plastic thick FGM hollow cylinder due to the two-
dimensional axisymmetric steady-state loads. The method of solution is based on the direct
method and uses power series, rather than the potential function method. The advantage of
this method is its mathematical power to handle mathematical function for the thermal and
mechanical linear plastic stresses boundary conditions.

The material properties and yield strength through the graded direction are assumed to be
nonlinear with a power law distribution. Depending on applied boundary condition, by
selecting the optimum value of m, desirable level of radial and circumferential stresses could
be obtained in FGM cylinders with respect to those in homogenous ones. By setting m = 0 in
every equation, radial and circumferential stresses expressions turned to homogenous ones
which could approve the validity of formulations. We can find the critical temperature and
pressure that are very important for designing.

Nomenclature

T : Temperature

el : Radial linear plastic strain

¢, . Elastic strain

o, : Radial elastic stress

A : Lame coefficient

v : Poisson’s ratio

a : Coefficient of thermal expansion
o, : Circumferential stress

o’ : Radial linear plastic stress
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These two constants of integration (ds, dg) are for mechanical stresses

d52%1+vX1—b0§%

1

d, =0
_d,d;—d,d,
' d,d, -d,d,
_ d3d5 _dldé

(1+v)a, A4

(1+v)a,4

my+m,—m
Z)Cl] Iy

my

1 my+my—m
)al 2~y

e
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Appendix D:
- a_m3 —(my+
(1+V)(1’n1+mz)a0( 1’;1 +cl2a( 3 1))
A5 - -m : -m
(1=Vley (M9 @™y — g (T2 )
my my
(1+V)(m1+m2 )ao(i+cub—(m3+l) )
UE
A = — -
(I_V)[Czl(_cna +Clza—(n13+1))_c”(_6‘21 +022b*('”3+1))]
e m,
A=A fi+ A f
(1+v) 1= g
4= m,
(1 —1)) [ Cy (_ cna +012a(m3+1)j_611 (_ Cz1b ’ +022b(m3+1)j
m; m,
4, =4, (fl _fz)
A = AS
8

—_
—_
|
<
~—~

&lmmﬁnwm+&;+w{m”—ﬂ

(1)
4 = 4
()~ ) o 1) - 1|

1-v
—my
C,,a _
_tn +c,a (my+1)
m3

B c,a ™ (m+1) c,,b™ (m+1)
11 —(m3+ 21 —(my+
| ————+c,a ™ —c, | - +c,b ™
ms ms

c,b™™

11 —(mz+1)
£—+c12b : j
A 3

12

- C a7m3 ( 1) C bﬂn3 ( 1)
11 —(my+ 21 —(my+
Cy | — +c,a ™ —c, | - +c,b™ ™
m3 m3
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Az :A13 (fl _fz)

1

A13 =

—my —my
c,.a c,b
11 —(my+1) 21 —(my+1)
Cy | — +c,a "™ —cy | = +c,b ™
m, m,

Al = A13 (fl _fz)
d,=—((1-v)m, +1)a™™™

dy =—(1+v),a

dy=—((1-v)(m,—my )+1)a™"™™™

dlo — _[(1 +D)a0 Jam1+m2—m3

ms
d,=—((1=-v)m, +1)p™™"™
d,=—(14+v)a,b™™

d,=—((1-v)(m,—m,)+1)p"""™"™

d14 — _((1 +D) G’O jbml+m2—m3

m3
dy=df,+df,
d,=d.f,+d,f
ds=(d, 4, +d. A, —dyA,—dA;)
d,=(d, A, +dA,+d,A,+d,A;)
d,=(d 4 +d, A, —dA,—d A;)

d18 :(d11A9 + d12A12 +d13A10 +d14A13 )

d19 = d1d4 _d2d3
dd, —d,d
d27= 4 16d 2913
19
dd,.—d.d
d26_ an 297
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dd,, —d.d
d — 17717 3*15
20 d19
dy = dld18 _d3d16
d19
4 _E(-n)
2 (1+v)

d EO(I_UZ)
? (1+v)
—E m

d _ 02

# (1+v)

d E,(my, —m;)
= (1+v)

D, =dyf, + 4,1,
Dz = AIO (fl _fz)
B, :dzsfz +A27f1

Bz = dzofz + d21f1
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