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M. Shahghol? The current paper presents the free vibration characteristic of a
Associate ProfessofmMovi ng conical shells made of
shell theory. The ntarial behavior is simulated based on the Bc
Lagoudas model. By applying the suitable airy function, the <
compatibility equation, and the Galerkin method, two sets of equatic
motion are obtained. The compatibility equation is solved by usia
steadystate form of equations and employing the suitable flexural |
shape concerning radial displacement. The effects of moving in the
R direction and using the SMA are investigated with the aid of the freq
A. Mohamadi* lf responses curves. The phase tfamsation would decrease the quan

Ph.D. @ of the critical velocity. The results have been evaluated by means
available data.
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1 Introduction

Axially moving Conical shells has many applications in such as medical equipment, aerospace
industries, marine industries, military equipment. This type of movement causes large
deformation in the transverse direction compared with the thickness of thd@kbeviultiple-

scale method analysis can help us to study more detail. For motion both axial and
circumferential, the governing equation is more implicated than separately. An internal variable
approach is used to derive a constitute relation for shagmony material without the
assumption of constant material functionBryjnson [1] Paiva and Sa\presented an overview

of the thermomechanical behavior of shape memory alloy and finally presented five
phenomenological theories. These models capturedahergl thermodynamical behavior of
shape memory alloy, characterized by pseudo elastics, shape memory effect, phase
transformation due to temperature variation, and internal subloops due to incomplete phase
transformatiorj2].
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To vibration reduction of # primary system subjected to external excitation a tuned vibration
absorber (TVA) is well established I8avi, De Paula [3]The application of SMAs spans a
wide variety of industrial sectors such as aerospace, automotive, biomedical, and oil
exploration. Lagoudasprovide insights into the history of SMAs, their properties, their
microstructural behavior, and varied industrial applicat{dihs A model proposed byanaka
andTanaka, Kobayaslassumegxponential hardening functions for SMA mater{al$]. the

cosine model proposed hyang and Rogers [7A series of papers by Bo ahdgoudastudied

the cyclic behavior of SMAs in orgimensional[8-11]. The internal variables are the total
martensite volume fraction and reoriented martensite volume fratBolercq and Lexcellent

use two internal variables to allow modeling of both detwinned andasetfmmodated
martensit¢12]. The exponential funitin is used to describe that. both temperature and stresses
induced are considered to formulate a single transformation function with kinematic hardening
[13]. The free vibrations of conical shells have been studied by many researchers using various
method. Civalekemployed the discrete singular convolution method to analyze the vibration
of a rotating conical shel[14]. Chen and Dainvestigated the dynamic stability using the
harmonic balance method. In this paper, the dynamic properties of the rotatiogl shell are
studied by considering the internal coupling of high and-doder modalities, which is
analyzed by the harmonic balance metfids]. Sofiyevinvestigated the nehnear vibration

of truncated conical shells made of functionally gradatenmls (FGMs) subjected to uniform

axial compressive loading and analyzed by Using the superposition, the Galerkin, and harmonic
balance methods, the modified Donnell type-tinaar stability equation of motion, and the
compatibility equatior16]. Chen Zhaoanalyzed the vibration of higspeed rotating shells

with an analytical solutiofil7]. Mohamadi, Shahghoinvestigated linear free vibration of
axially moving thin circular cylindrical shells to achieve natural frequency. The multiple scale
methodwas employed, and several types of instability are discussed. These three articles would
be references to validate this wgilg]. A study based on the firsipproximation love theory

and the Galerkin procedure done Bya determinedthe frequency of tmicated circular
orthotropic conical shells concerning axial spinnifi®-21]. Abolhassanpour, Ashenai
Ghaseminvestigated linear free vibration of axially moving thin wall truncated conical shells
by using the multiple scale meth§2R]. Nonlinear response of rotating circular cylindrical
shells with the precession of vibrating shape subjected to a harmonic excitation is done by
Wang, Guo [23]Sarkheil and Foumaimvestigated the vibrations of a truncated conical shell
under rotating enditions with considering Coriolis and centrifugal force and the initial Hoop
tension of rotation24]. In 2019 Wang, Dingreview the vibration of an axially moving
hyperelastic beam under simply supported condifidB Sofiyev and Pancanvestigatedhe
instability of truncated conical shells by Bolotin's mettip@d]. Shin, Chungnvestigated the
vibration of the axially moving membrane. The related equation is derived by employing the
extended Hamilton principle and discretized by the Galerkin meath@dmpute the natural
frequency and the mode shaj@’]. Najafov, Sofiyevpresentedaxially compressed three
layered truncated conical shells. The modified Donrtyplé dynamic stability and
compatibility equation are derived and solved by the Galerkethad eventually,and
dimensionless frequency parameters, and dimensionless critical axial loads are derived in this
work [28]. Anh and Ducstudied the vibration of composite truncated conical shells surrounded
by an elastic medium in a thermal environmeytusing a semanalytical approach and the
Galerkin method29]. Kerboua, Lakisstudied the behavior of anisotropic truncated conical
shells conveying fluif30]. The vibration and stability of carbon nanotube reinforced composite
truncated conical shells are studied3wfiyev [31]. an analytical solution is employed to obtain

the frequencyd critical axial load. the stability of a conical shell constrained the acting loads
in the form of longitudinal compressive force and lateral pressure in an -g@kstiic domain

is considered b$hokrollahi B2]. Avey, Fantuzzistudied the thermoelastic stability of carbon
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nanotube compositeonical shells with two different boundary value problef®3]. The
buckling of generally laminated conical shells having thickness variations under axial
compression is investigated Byazemi, Kouchakzadel84]. The transient dynamic response

of the composite conical shell with simply supported boundary conditions timeléateral

impact load is investigated b¥amani, Davar 35]. SMA innovationexecutionwithin the
aerospace industry has spanned the areas ofikeglaircraft, marinerotorcraft, space craft

and work in all these areas is still advancifigmperature and stresses of body and cape of
high-speed flight vehicles due to aerodynamic resistance significantly3&je

The main aim of this study first is the issue of the problem which is axial movement conical
shell made of SMA along the axis which has many applications and so far, no stiiehas
done in this regard. second, the application of the method of choosing a suitable solution like
the multiplescale method and the flexural mode shape by using some suitable relations that are
expressed by researchers. Using the convenient theorgoandnient hypothesi§onnelk
Mushtari shell theory to solviae problem. The compatibility equation is solved based on the
initial and boundary conditions. Afterward, the nonhomogeneous partial differential motion
equation in the radial direction is ttisted into a set of ordinary differential equations. Based

on the generalized coordinates with the aid of the Galerkin method, the frequency response, and
the bifurcation diagrams the behavior of the systems in various axial velocities along its axis be
predicted.

2 Constitutive relation
In this paper, the relations proposed4hbasedon the Gibbs free energy as a function of
stress tensot, (, temperature ff, martensite fraction4), and transformation strain tenser)(

areutilized as:

NE P . P oy v T uny v 2 Y o
Y-h E,,Ci\fi, Tndo| Y 'Y - WY Y YU &— 1Y

=

0.
)

In which (;) signifies the Frobenius inner product of two tensors whiland 0 , refer to
austenite and martensite states, mnohplies the initial values, respectively. Furthermoig,

| ,oii andé are the effective compliance tensor, thermal expansion tensor, specific heat
capacity, entropy, specific and internal energy correspondingly. The parameters can be
expressed as follows:

Y= Y =YY )
cC—- ® -0 o ?3)
I i (4)
0O — O -0 0 (5
I = | | (7)

In addition,’Q— is the transformation hardening function, which is expressed as:
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- '  -h - m

(6)
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Since in eq. (7);is the time rate of the martensite fractien, Ttwhichmeans that the fraction

of martensite is increasing. In other words, the material phase is changing from austenite to
martensite!( © - , and vice versa for T1(as is seen in Fig. (1)The otheparameters of

eq. (7) are expressed in Appendix A, nametyationgA-1) and (A2).

By combining the first and the second Laws of thermodynamics, the Cllanisinequality

is derived, which is:

"0 ,¢ iy m (8)

Wheres and- are entropy and strain tensor and are obtained from egs. (9) and (10).

,1. 0. o "y -
- T, Yi, | - N- &, - (9)
. 1.00p o ,
Loyt obE 10

By substitutings and- from eqgs. (9) and (10) into eq. (8), the Clauddank inequality will
be

.1 O T O ,1 O (11

The relation between the martensitic fraction volume and the evolution of transformation strain

is [4],[37]:

- o (12)

Equation (12) is called the flow rulghichQ is a transformation tensor and expressed in
Appendix A, equations () to (A-5):
By replacing- from eq. (12) intdeq. (11), the ClausiuBlank inequality is rewritten as:

0
» CLQ . |— - n (13)
Whichr is the general thermodynamic force and can be expressed as:
Yo YO €

Y
CLEY LA Do Ldel Y Y @b Y @Y
G Y 14)
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It should be noted that is the function of stress and temperature so, the phase transformation
will occur whenever this force reaches a critical value. For the forward martensite
transformation, the threshold value of functionis shown by. Also, for the backward
martensiteransformation, the threshold of functibnassumed to be & The critical value,
i.e.,®, is a quadratic polynomial hardening function and expressed in Appendix A,-6}. (A
The transformation functiom( is introduced as followg!],[37]:

[ &h 18 . x
%0 r o - om Vnt) (o€
m. %, [ @ m (15)

Yo Q@E £ Q0 Vet o g o

During both sidstransformatiorf6.=0, while for martensit&.<0 and- 1t This situation is
called KuhnTuker conditions, which are defined for both forward and backward
transformations. The material phase transformation occurs when the martensite fraction is
between zero and onet( — p). While, O indicates that the material is fully austenite, and

1 specifieshat the material is fully martensite.

The algorithm of Fig.(1) showsan iterative correctiomethodologyin which the internal
variable i.e.,—h can be obtained at eastepfor the given strain. Fothe first step, a set of
initial values is guessed. The iteration is continued until the transformation criterion, namely,
N Ttis satisfied. In the next stepthe converged internal variables of the previstepare

used as the initial guesselhe procdure is continued until the transient phase is completed
meaning that- p8The other internal required parameters are exprességhpendix A,

equations (A7) to (A-12).

Initial iteration k=0, Data at tq

[ - W0) _ .t p0  — S
Ng+1 = Nq Eq41 = £q:Dg+1 = Do agey = g

R4

Oﬁu = D1t (41 — @41 (Tger — To) — €:+1

[ = 10 _ .t n0  — (-
Na+1 = NarEa41 = £a-Dasy = Do. Xg41 = g

\ Il $%41 1< O
q If so] Retain solution above
tos1

K=kl |q No ¢

An:+ 1 Astq(qk,i

|2

ﬂ:ﬁ = A"I:u + 'l:+1

st(l.:+1) —A t(k) (k)

q+1 €q+1 T Eq41
(et1) _ (k#1)
aq+1 . Dq+1

Figure 1 The iteration method chart f&MA [38]
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Figure 2 Geometry of the truncated conical shell

3 Formulations

Figure (2) shows a truncated cone that rotates around its longitudinal axis atrgpeseda(

speed @) wherg is the angle of the conkh—are the coordinates of the cantilev¥rfiy are

the radius of both two end8,is the length othe cone,"YRY are the distance between cone
vertex and the middle and end of cone and h is the thickness of the cone. The reference surface
for the rotaion is taken to be at the middle surface of the cone and orthogonal references are
fixed at the end as shown in the figuBeformations are defined by, v, and0 in the
meridionali , circumferentia—and nomal z directions, respectively.

Thefollowing introduces the deformati@momponenbasedn the classicashell theory[39]:

- - 0
- - @ U (16)
- - 0
Where,- ,- are the normal strain along with s ardlirection and- is the shear strain at

the middle surface of the conge., 0 are the change in curative aid is the twist of the cone
which are defind by DonneltMushtari shell theory assumes the following relation§hgh:

T o
T (17)
pT U 6 VL WEO
SR A T (18
pr 6 T 0 U
) (7T e T (19
- (20)
T
. pT 0 pr 0
s PI O pTO
(T 07 i T o (22
O 11 s the Young modul us, and Poi ssonés rat. i

components are achieved by integrating the stress components.
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=
o
]

@ Qa (24)

3.1 Hamilton principle

In this work, the governing equation is derived from Hamilton's principle:

14 15A0 T (29

Where) +h1 5 are virtual kinetic energy, and virtual strain energy. The virtual kinetic energy
obtained using the Love hypothesis is as follows:

- (26)

alhe

b o - T - YQaQ—Qi

_ 27
6 U 0 'YQdaQ—Qi

alhe

Finally, by employing the simplification of the Donnell shell theory assumption and using the
equation (25), integrating the terms by part and using the SMA constitute relation, yield the
equation of motion of axially moving and rotating truncated conical shells a

LI N L S N S nE (29)
O T 6 TP TR Te Te P YT
65"Q¢% 'YYp t p f- 0+t
0, Q p ct- T
h  ph ¢ 7- T-T- 7- (29
™ o0/ 0°Te P fTe Tt P Yo
OhQ P Ci'
5:Q p % ”7 YYp t +  p cf-
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h- Ch ¢h- ph ¢Ch p h- AT 0
O O0T0 Of0R OFf0 O T oTm o1
e T x 6 O'me 5 6 hx TF6 OFx
o VR O 0 1O

6Qp FIYY 61Q

1 pF- 1

Y Y
Qp 1T 0 Qf1T 0
PC Tw pcTw
MQp 10 QT 0 675 Qp ct1 0
PC Tw pCTw 0 T O ¢

(30

Due to the symmetrical nature and boundary conditions of the axially movable rotating
cylindrical shell

1 ocfmy 1 odhct My (3D
1 ocmha 1 oafgt Ry (32
1 odfma | Oehct ha (33)
1 o0hha 1 omh-Ra (34)
1 OORRa 1 om-RY T (35)
T 00R-R ] OmhRa T (36)

The zero of the axial moment and circumferential displacement are the boundary condition for
simply-supported axially moving truncated conical shells.

0 TOU ™ oo i Hh (37)
Besides,0,% and0 must be continuous at- Therefore, the continuity conditions along the
circumferential direction must be satisfied.
0 Qu'YQ+w (38)

To,._. .. N
W%l YQ— U axg 0 ot Qi (39)

6 Qi YQ® (40)
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Where-

Poi ssonbds ration and B

are components of transformation strain tensordand

113

in which f is
i sO t e ).Yhomder g éossideno d u | u

the natural frequencies of the shell, the pure austenite phase was only studied. Consequently,
all transformation strain componentsnished because of zero martensitic volume fractlans.
addition, in this article all transformation strain component and martensitic volume fraction
were supposed to be dependent to stress and are independed to x, .

The compatibility strain equation of the truncated cone shell is expressed as féllpws

AT Ohx phRA pFA THA pHhA

CTA pTA (41)

O FO OB O B T OT

50 OO

The Airy stress function used by Sofiyev in order to reduce the three nonhomogeneous partial
differential equations in relations (280) to compatibility and motion equation in the radial

directions i440]:

phr pH AN p

hn p M

OTFg OFO 1O

Ofors O T

(42)

After substitution of airy stress function, equati@d)(into the equation4(l) together with

equation (8), and using the variable ™Q M npQ , the governing equations of motion
are obtained as follows:
T Thn . . A
o OT_do ¢ YQ ALO
Q0 - T O 10 ) T O )
pe p T+ fo Te Te °f
Q" O Q0 -
¢ pc P PS¢ P
1o 1o 10 (43)
1o et ofs
”,,QTO Ccwol O wo T 0
1O YQ!T ol oYQ 1w
p Q. . T0
Yo 08 ° T T
L'Q nTTnTTﬁTﬁcTﬁ
0-"0 Tw To Taw T Te
: : n n
¢ 'g—"Q o-q ° T-Trcb TT°T w; 49
T o 10 -
— — YQAI|IO 1
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4 Solution of the problem

We have expanded the equation of the flexdsalby using the linear axisymmetric and
symmetric modes. Assuming that the truncated conical shell is simply supported at both ends,
the transverse displacement would be in the forma dfiangular function,0 afr Fo

B !  OAT 030EN @ " ; OOE[l 30EN @hwhere!  is the unknown
amplitude of the displacemetit, ; O is the companion mode of the fundamental mdde;;

is the driven modeand} — substitutioni00 i n t h e 44 gouldheresolted im f  (

np Q 6t 6¢ AT1Ow Q 60 6p OENi® 6 0 OET -
. f s Lo 45
Q oy 069 Al IO Q Ox Ou OEMlw 6 0 OFEfl - (45)

The coefficient is calculated by Maple software. After substitulirend equations4g) into
equation 43) and applyingthe Galerkin method with convenient weighting factors, the
equation with the appropriate furmti is applied

. i W . . .
O i |0 "hEE ] 0 QGG e
QL
(46)
i Qe— 1 Z&E-A QUL Q¢
After integration and some rearrangemetits,governingequatios will be written as:

Q Q Q .

EOF‘ 05()05 05()05 OO0OfR OOp T 47)

Q Q . Q .

Eoﬁ 05()05 06(‘)05 0OO0fR OOy T (48)

We can find an approximate solution by using the multiple scales method. By introducing
new independent variable¢ tand”Y - the form of the solution of equatio(¥r), and
(48) are as follows:

6 th 6 "YAY -6 "YAY 0 - HQ phk (49)

The first and second derivative of equatidf)(can be written as:

—06 HQ pit (50)

-<
p.
O
_<
_<

Uy TYrY Uy YTy 1'% (51)
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By substitutingo © @ -@A T 1§ into the equationssQ), (51), and separating terms
for order O, we can write:

(@)
€
8.
€
(@)
=

1Y Y (52)

— 0 ®w o 6 ™ (53)

5,° 6° B2 O (54)
M 0 +C v 0 + 0 =
B> 0y B,

The solution of order has the following exponential form:

llpﬂ Ilcﬂ l‘ﬂ Z JC_ J# + JT (55)

Where/ implies the eigenvalues of the above matrix and can be written in the f@am of
, €, while its real part is zero when the rotational speed is below the critical speed. Hence
it can be written d® "Qlhand the natural frequencies and| satisfyeq. 66),

3TZrp [¢ Apd€ Tof¢ T (56)

By solving similar to what is said in Artic[d7] the natural frequengy h  are asellows

T o 1@ T T (57)

1 (58)

5 Numerical results and discussion
5.1 Validation

In order to compare the results obtained from the equations derived in this paper and their solution
method with the results of previous works, first, the two cases presented in the (v#kavé
investigated. The first case involves a very long cylindrical shell under rotating cogditidrthe

second is the case of a nonrotating cylindrical shell presented in the wqiB]ofThe
specifications of the material are listed in Tali)e

Table(2) can be employed to compare the value of the natural frequency of modes (1,2) to (1,6)
with ref. [42]. Due to the simplification assumptions of the shallow Donnell shell, such as
ignoring shear deformation andane inertia, the accuracy of thatural frequency depends

on the number of circular waves (n). wherA_(1) The accuracy is acceptable.
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Strangely, it depends on the number of circular waves selected; it can be observed(it),Table
where the r es ulTheresalts cabeecompared to thosé of @dkgially moving
circular cylindrical shell. By the consideration of zero value for the cone angle, the conical shell
structures could be converted to a cylindrical shell so that the results can be compared with the
previous studig on an axially moving cylindrical shellable(3) shows the value of the natural
frequency of modes (1,3) and (1,5) with réf8]. Also our study are validated withe one

whose vibrations analysis was performed on smart alloys stdt@8by They utilized DQM to
calculate the natural frequencies of the thialed cylindrical shell in their study and solved

them analytically. We also solve the same shell, using the proposed formulation. The outcomes
and their comparison with the results[@8] are predicted in Fig4).

Table 1 Material parameters of Nii SMA

Material parameter value Material parameter value
H 0.056 " Ed 6448.1
0 (k) 307.5 O (GPa) 67
0 (k) 322 O (GPa) 26.3
0 (k) 291.4 | E 22e6
0 (k) 282 0 (Jkgk 13.8
(k) 0.3 6 YEE 8
., piE DA . 1700 n P

Table 2 Comparison of the natural dimensionless frequency parateter2

nonrotating isotropic conical shel~ T8t p—— T& v

for an infinitely long

n | om
Lam and Hua [42] Present work Error(%)
2 0.8420 0.8447 0.3
3 0.7376 0.7363 0.17
4 0.6362 0.6352 0.15
5 0.5528 0.5538 0.15
6 0.4950 0.4953 0.06
=00 s . . — Py y m—
PP — P— .-Forwa:d ------------- e L S - /
400 0<ne1 W
S ...... e Martensite
» 300 TN Mty gt
/)] e ¥
e ...... Pl
» 200 o<pgp<1 | Present work 1
Reverse ... Result of BRINSON, L. &
LAMMERING, R. 1993
100
0 L . N
3 4 5 oy ®
Strain. (¢

Figure 3 Stressstrain diagram of pseudoelastic SNk the 1D case &Y ¢ ¢
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Table 3Comparison of the natural frequency of an axially moving cylindrical shell T8t ¢ T ¢

n Vv Mohamadi, Shahgholi [18] Present work Error (%)
0 1727.28 1727.12 0.0092
3 | 400 1264.81 1264.65 0.012
800 0 0 0
0 739.24 739.27 0.004
5 | 400 0 0 0
800 1540.15 1540.13 0.0012

w(Hz)

Figure 4 Compaison of the natural frequency w.r.t. circumferential wave number in pure austenite phase and

:

:

o

1§41

| == Result of (Forouzesh and Jafari (2015))
- Result of present work
0 2 . 6 s 10 12

first axial mode (m=1) obtained from theresent methodology and thatFdrouzesh and JafaBg]

0904 > ~

' N

e

_ N
0.85 -

' N
o.so-‘ \

N

1 N
0.75 \\

0 20 40 60 80 100 120

Vv

Figure 5 Natural frequency Vs. velocity of axially mqving truncated conical shedlre austenite phasg

oCQ
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5.2 Results and discussion

In the present study, first, as shown in Figure (5), the effect of axial velocity of the structure on
the natural frequency in the absence of excitation and damping force is investigated. The results
show that the natural frequency of the incomplete cosluall decreases with increasing axial
velocity. As compared with which one in tf#7] that made ordinary alloy steel, it can be
understood that the natural frequency of SMA truncated conical shell reaches zero at a lower
axial velocity.

The results of nmerical research and drawing of real and imaginary parts of the frequency
response show that there are two types of instability in the axially moving conical shell. One is
divergence instability and the other is flutter instability. Therefore, the $yadmlinstability of

an axially moving truncated conical shell can be investig#tedan be seen in figuré)( if

the axial velocity of the structure is zero, the real part of the eigenvalue will be zero, and the
imaginary value of the eigenvalue, whiapresents the natural frequency of the system, will

be nonzero. Adding the axial velocity to the structure will cause changes in eigenvalues. The
real part of the eigenvalue decreases with increasing the velocity. This reduction continues until
thesystm6s natural frequency converges to zero.
system. This kind of instability is divergent instability, and the axial velocity at this point is

the critical velocity. When the velocity reaches the criticahipdhe real part of the eigenvalue

has two values; thereforetatic instability,bifurcation occurs at this point. As the velocity
increases relative to the critical velocity, the imaginary part of the eigenvalue is still zero, but a
change occurs in the actual eigenvalue. These changes continue as the velocity increases until
both branches of éhreal part of the eigenvalue converge to zero. At this point, both the real
and imaginary parts of the eigenvalue are zero. Now, increasing the velocity changes the
imaginary part of the eigenvalue and increases the natural frequency of the systeitiom add

the real part of the eigenvalue does not change with increasing the velocity and remains at zero.
In fact, the system regains its stability at this point. Then, an increase in the axial velocity results
in a stage where the real part of the eigamwahanges and bifurcation occurs again. Indeed,

the second instabilitydynamic instability putter, occurs for the system at thislocity [43].

The results of the study of other movable axial structures such as pemkates[45] and

axially moving cylindrical shell§l8],[46] also show the same thing. As compared with which

one in thg47] that made ordinary alloy steel, it can be understood that the instability point, i.e.,
Flutter and Bifurcation point of axially moving SMtwuncated conical shell reaches zero at
lower axial velocity.

bifurcation an
divergence

L_ imaginary part of frequency real part of natural frequenc\,'J

Figure 6 Changes in real and imaginary parts of the frequency at different speeds in pure austerit¥e phas@p




Stability Analysis of an Axially Moving Thin Walt

0.5F N

-0.5r

A

wumoReal part of Q in pure martensite

=== |maginary part of  in pure martensite

== |maginary part of Q in pure martensite superelastic state
= Real paert of 2 in transient phase

= |maginary part of Q in transient phase

— inary part of Q in sup: ic state, ient phase
~==Real part of Q in pure Austenite

== Imaginary part of Q in pure Austenite

~|maginary part of Q in super elastic state, pure Austenite

-2.5

0 200 400

119

600 vy 800 1000 1200 1400

Figure 7 Changes in real and imaginary parts of the frequendiffatent speeds and different phase

Figure () shows the changes in real and imaginary parts of natural freghgrtyanging the

value of axial velocity and the effect of phase transformation. As can be seen, the frequency
response of the systeshiftsto the left in another word the divergence and flutter occurs at

lower axial velocity due to the material staying in a transient state or pure martensite phase.
Figure8(a) showsthe effect of the velocity on the imaginary parteigenvaluesn=2andn=
1,2,3,6.They r pointto considelin this form is the frequency change of the structurthén

static case. In this mode, when the system axial velecigro, the natural frequency of the

system decreasesith increasing circumferential wave numbers. Moreovetable is the
divergence instability points. With increasing circumferential wave numbers, the divergence

instability occurs at lower velocities tler checkable tips atbBenatural frequency changes at

very high velocitiesThedifference of the natural frequency changes oftfsternfor different

circumferentialwavenumberss smallat very high velocities so that the natural frequency of

thesystemincreases for different circumferential wave numbec®nvergevith increasinghe
velocity.Figure8(b) showgheeffectof thevelocityontherealpartsof eigenvaluefor m=2and
n = 1,2,3,6.As can be seen,valuesof criticalandp ut t er vel
circumferentialwave numbersrom low to highermodes For differentmodes the difference
between the critical velocities is not vdayge,butthedifferencein theamountof thevelocity
isveryhighat t he putter
for various modes, buhe velocity of the p u t poiatis very different with increasing the

circumferentialvavenumbersandthep u t iristahility for lower circumferential wave numbers

poi nt . Tnstabilitei$ notrvery,diffaremte

ocities

occurs atmuchhighervelocitiesthanhighercircumferentialvavenumbers. Ishouldbe noted
thattheresultsin Figures8(a) and8(b) arefor the conical shell with a corengle of 30°. In the

foll owing, wvari
angle will change these results.

When the angle of the cone is zero, the structure turns into a cylindrical shell, in which case the
changdan natural frequency in the number of different hadives modes is negligible. As can

ous

results are

observed

decr

f

pOIi

(0]

be seen, the imaginary part of the frequency diagram is shown in Figure (9) in terms of axial
velocity at different angles. As the angle of the cone increases, thalfaedquency of the

system first increases. The natural frequency also increases and then decreases with increasing
cone angle and axial velocity. This increase and decrease of frequency up to an angle of 63
degrees have similar results for different aenbhalfwaves. But at an angle of 63 degrees, the

r

I
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effect of different modes on frequency changes will be minimal, and we will have a relatively
constant frequency for different modes, which is approximately convergent in the diagram.
When this quantity wacompared in the presence of axial speed, at first these araugtjual
aboutp o and after that, the natural frequency has a lower quantity. As compared with which
one in thg47] that made ordinary alloy steel, it can be understood that at an aBgldedrees,

the effect of different modes and different materials on frequency changes will be minimal, and
we will have a relatively constant frequency for different modes, which is approximately
convergent in the diagram
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Figure 8 a) Imaginary part of nondimensional frequemtylifferent speedand
b) Real parts of the frequency at different speeds in pure austenite’¥hase; @
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Figure 10(a) shows the effect of the aspect ratio on the imaginary parts of eigenvalues of an
axially moving conical shell, indicating that increasing the thickness and decreasing the radius
will increase the natural frequency of the system. Figure 10(b) shows the effect of the aspect
ratio on the real parts of eigenvalues of an axially movingcebrshell, which indicates
changing the instability points of the syst:
created at a lower velocity as the thickness decreases or the radius increases. Furthermore, the
divergence instability range of tlsgstem increases by decreasing the radius or increasing the
structure thickness.

In order to study the effect of apex angles on stability and instability of the conical shells, three
angles were chosen i.e., p fo fip tand we analyzed the stability amtability of the

axially moving conical shell. The stability analysis of axially moving shells has been done by
plotting of the real and imaginary parts of natural frequency versus the velocity. As can be seen
in the figure (11) the bifurcation criticalelocity and flutter critical velocity decrease by
increasing the apex angle.
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6 Conclusion

The vibrations of thirwalled axially moving conical shells made of shape memory alloy with
simple supports were analyzed in this paper. First, the equation of motions was derived by using
Hamilton's principle and convenient relations for shape memory.allche shell vibration
analysis and its natural frequenciasestigation were performed using the Galerkin method
and multiple scale methoBy extracting the critical velocity of the structure, the stability and
instability of the system for differemhodes and velocities were investigated. In general, two
types of instability occur in the studied structure. The first type of instability is called divergence
instability and occurs when the real and imaginary parts of the frequency are both zere, and th
instability of the second type is called flutter and occurs when the bifurcation phenomenon
occurs in the diagram and the real part of the eigenvélaggwo values. The effect of the
material state on real and imaginary parts of natural frequgnciianging the value of axial
velocity shove that the frequency response of the sysséftsto the left in other word the
divergence and flutter occurs at lower axial velocity due to the material staying in a transient
state or in pure martensite/austenite pheseeasing the apex angle of a movable conical axis
shell with a constant aspect ratio creates critical p@ntl a flutter at lower speeds. It can be
seen that by increasing the angle of the cone, the distance between the critical points of the
divergence and the filter changes so that by increasing the angle of the cone, this distance
decreases. The amountfidquency at different angles increases with increasing axial velocity.
This trend continues up to an angle of 63 degrees, and in gertemalangle of 68egrees the

effect of different modes on frequency changes will be minimal and we will haveigalglat
constant frequency for different modes that almost convergence occurs in the diagram. Before
this angle, the imaginary part of the frequency, which represents the natural frequency of the
shell, increases, and after that, its value will decrease ndhmal frequency of the system
increases before the @lggree angle with increasing cone angle and then decreases.
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Nomenclature

0 : Austenite finish

0 : Austenite starts

6 I : Relation between temperature and critical stress

O  Of AY : The modulus of the shape memory alloy

o

: Amount of memory alloy in state of complete austenite

o

: Amount ofmemory alloy in state of complete martensite

. Martensite finish

C:

0 : Martensite start
—: Fraction of the martensite
q: Dimensionless fluctuation frequency

, h, :StressinA direction
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Appendix A

In this portion, the relation of SMA that is mentioned in section 1 is given.
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