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1 Introduction 

 

Axially moving Conical shells has many applications in such as medical equipment, aerospace 

industries, marine industries, military equipment. This type of movement causes large 

deformation in the transverse direction compared with the thickness of the shell. The Multiple-

scale method analysis can help us to study more detail. For motion both axial and 

circumferential, the governing equation is more implicated than separately. An internal variable 

approach is used to derive a constitute relation for shape memory material without the 

assumption of constant material function by Brinson [1]. Paiva and Savi presented an overview 

of the thermomechanical behavior of shape memory alloy and finally presented five 

phenomenological theories. These models capture the general thermodynamical behavior of 

shape memory alloy, characterized by pseudo elastics, shape memory effect, phase 

transformation due to temperature variation, and internal subloops due to incomplete phase 

transformation [2].  
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The current paper presents the free vibration characteristic of axially 

moving conical shells made of shape memory alloy based on Donnell’s 

shell theory. The material behavior is simulated based on the Boyd-

Lagoudas model. By applying the suitable airy function, the strain 

compatibility equation, and the Galerkin method, two sets of equations of 

motion are obtained. The compatibility equation is solved by using the 

steady-state form of equations and employing the suitable flexural mode 

shape concerning radial displacement. The effects of moving in the axial 

direction and using the SMA are investigated with the aid of the frequency 

responses curves. The phase transformation would decrease the quantity 

of the critical velocity. The results have been evaluated by means of the 

available data. 
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To vibration reduction of the primary system subjected to external excitation a tuned vibration 

absorber (TVA) is well established by Savi, De Paula [3]. The application of SMAs spans a 

wide variety of industrial sectors such as aerospace, automotive, biomedical, and oil 

exploration. Lagoudas provide insights into the history of SMAs, their properties, their 

microstructural behavior, and varied industrial applications [4].  A model proposed by Tanaka 

and Tanaka, Kobayashi assumes exponential hardening functions for SMA materials [5,6]. the 

cosine model proposed by Liang and Rogers [7]. A series of papers by Bo and Lagoudas studied 

the cyclic behavior of SMAs in one-dimensional [8-11]. The internal variables are the total 

martensite volume fraction and reoriented martensite volume fraction. Leclercq and Lexcellent 

use two internal variables to allow modeling of both detwinned and self-accommodated 

martensite [12]. The exponential function is used to describe that. both temperature and stresses 

induced are considered to formulate a single transformation function with kinematic hardening 

[13]. The free vibrations of conical shells have been studied by many researchers using various 

methods. Civalek employed the discrete singular convolution method to analyze the vibration 

of a rotating conical shell [14]. Chen and Dai investigated the dynamic stability using the 

harmonic balance method. In this paper, the dynamic properties of the rotating conical shell are 

studied by considering the internal coupling of high and low-order modalities, which is 

analyzed by the harmonic balance method [15]. Sofiyev investigated the non-linear vibration 

of truncated conical shells made of functionally graded materials (FGMs) subjected to uniform 

axial compressive loading and analyzed by Using the superposition, the Galerkin, and harmonic 

balance methods, the modified Donnell type non-linear stability equation of motion, and the 

compatibility equation [16]. Chen, Zhao analyzed the vibration of high-speed rotating shells 

with an analytical solution [17]. Mohamadi, Shahgholi investigated linear free vibration of 

axially moving thin circular cylindrical shells to achieve natural frequency. The multiple scale 

method was employed, and several types of instability are discussed. These three articles would 

be references to validate this work [18]. A study based on the first-approximation love theory, 

and the Galerkin procedure done by Hua, determined the frequency of truncated circular 

orthotropic conical shells concerning axial spinning [19-21]. Abolhassanpour, Ashenai 

Ghasemi investigated linear free vibration of axially moving thin wall truncated conical shells 

by using the multiple scale method [22]. Nonlinear response of rotating circular cylindrical 

shells with the precession of vibrating shape subjected to a harmonic excitation is done by 

Wang, Guo [23]. Sarkheil and Foumani investigated the vibrations of a truncated conical shell 

under rotating conditions with considering Coriolis and centrifugal force and the initial Hoop 

tension of rotation [24]. In 2019 Wang, Ding review the vibration of an axially moving 

hyperelastic beam under simply supported conditions [25]. Sofiyev and Pancar investigated the 

instability of truncated conical shells by Bolotin's method [26]. Shin, Chung investigated the 

vibration of the axially moving membrane. The related equation is derived by employing the 

extended Hamilton principle and discretized by the Galerkin method to compute the natural 

frequency and the mode shape [27]. Najafov, Sofiyev presented axially compressed three-

layered truncated conical shells. The modified Donnell-type dynamic stability and 

compatibility equation are derived and solved by the Galerkin method eventually, and 

dimensionless frequency parameters, and dimensionless critical axial loads are derived in this 

work [28]. Anh and Duc studied the vibration of composite truncated conical shells surrounded 

by an elastic medium in a thermal environment by using a semi-analytical approach and the 

Galerkin method [29]. Kerboua, Lakis studied the behavior of anisotropic truncated conical 

shells conveying fluid [30]. The vibration and stability of carbon nanotube reinforced composite 

truncated conical shells are studied by Sofiyev [31]. an analytical solution is employed to obtain 

the frequency and critical axial load. the stability of a conical shell constrained the acting loads 

in the form of longitudinal compressive force and lateral pressure in an elastic-plastic domain 

is considered by Shokrollahi [32]. Avey, Fantuzzi  studied the thermoelastic stability of carbon 
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nanotube composite conical shells with two different boundary value problems [33]. The 

buckling of generally laminated conical shells having thickness variations under axial 

compression is investigated by Kazemi, Kouchakzadeh [34]. The transient dynamic response 

of the composite conical shell with simply supported boundary conditions under the lateral 

impact load is investigated by Zamani, Davar [35]. SMA innovation execution within the 

aerospace industry has spanned the areas of fixed-wing aircraft, marine, rotorcraft, space craft 

and work in all these areas is still advancing. Temperature and stresses of body and cape of 

high-speed flight vehicles due to aerodynamic resistance significantly rise  [36]. 

The main aim of this study first is the issue of the problem which is axial movement conical 

shell made of SMA along the axis which has many applications and so far, no study has been 

done in this regard. second, the application of the method of choosing a suitable solution like 

the multiple-scale method and the flexural mode shape by using some suitable relations that are 

expressed by researchers. Using the convenient theory, and convenient hypothesis, Donnell-

Mushtari shell theory to solve the problem. The compatibility equation is solved based on the 

initial and boundary conditions. Afterward, the nonhomogeneous partial differential motion 

equation in the radial direction is districted into a set of ordinary differential equations. Based 

on the generalized coordinates with the aid of the Galerkin method, the frequency response, and 

the bifurcation diagrams the behavior of the systems in various axial velocities along its axis be 

predicted. 

 

2 Constitutive relation 

 

In this paper, the relations proposed in [4] based on the Gibbs free energy as a function of 

stress tensor (𝜎), temperature (𝑇), martensite fraction (), and transformation strain tensor (휀𝑡) 
are utilized as: 

 

𝐺(𝜎, 𝑇, 𝜂, 휀𝑡) = −
1

2
𝜎: 𝑆: 𝜎 −

1

𝜌
𝜎: [𝛼(𝑇 − 𝑇0) + 휀

𝑡] + 𝑐 [(𝑇 − 𝑇0) − 𝑇𝐿𝑛 (
𝑇

𝑇0
)] − 𝑠0𝑇

+ 𝑢0 +
1

𝜌
𝑓(𝜂) 

(1)  

 
In which (:) signifies the Frobenius inner product of two tensors while, 𝐴 and 𝑀, refer to 

austenite and martensite states, and 0 implies the initial values, respectively. Furthermore, 𝑆, 

𝛼, 𝑐, 𝑠0 and 𝑢0 are the effective compliance tensor, thermal expansion tensor, specific heat 

capacity, entropy, specific and internal energy correspondingly. The parameters can be 

expressed as follows: 
 

𝑆(𝜂) = 𝑆𝐴 + 𝜂(𝑆𝑀 − 𝑆𝐴) (2)  

c(𝜂) = 𝑐𝐴 + 𝜂(𝑐𝑀 − 𝑐𝐴) (3)  

𝑠0(𝜂) = 𝑠0
𝐴 + 𝜂(𝑠0

𝑀 − 𝑠0
𝐴) (4)  

𝑢0(𝜂) = 𝑢0
𝐴 + 𝜂(𝑢0

𝑀 − 𝑢0
𝐴) (5)  

𝛼(𝜂) = 𝛼𝐴 + 𝜂(𝛼𝑀 − 𝛼𝐴) 
 
In addition, 𝑓(𝜂) is the transformation hardening function, which is expressed as: 

(7)  



108           Iranian Journal of Mechanical Engineering Transactions of the ISME            Vol. 23, No. 2, Sep. 2022 
 

   

 

𝑓(𝜂) = {

1

2
𝜌𝑏𝑀𝜂2 + (𝜇1 + 𝜇2)𝜂, �̇� > 0

1

2
𝜌𝑏𝐴𝜂2 + (𝜇1 − 𝜇2)𝜂, �̇� < 0

 (6)  

 

 
 

 

Since in eq. (7), �̇� is the time rate of the martensite fraction, �̇� > 0 which means that the fraction 

of martensite is increasing. In other words, the material phase is changing from austenite to 

martensite (A → M), and vice versa for �̇� < 0 (as is seen in Fig. (1)). The other parameters of 

eq. (7) are expressed in Appendix A, namely, equations (A-1) and (A-2). 

By combining the first and the second Laws of thermodynamics, the Clausius-Plank inequality 

is derived, which is:  
 

−𝜌�̇� − �̇�: 휀 − 𝜌𝑠�̇� ≥ 0 (8)  

 

Where s and 휀 are entropy and strain tensor and are obtained from eqs. (9) and (10).  

 

휀 = −𝜌
𝜕𝐺

𝜕𝜎
= 𝑆: 𝜎 + 𝛼(𝑇 − 𝑇0) + 휀

𝑡;   휀𝑡 = 𝐻𝑠g𝑛(𝜎)𝜂 
(9)  

𝑠 = −
𝜕𝐺

𝜕𝑇
=
1

𝜌
𝜎: 𝛼 + 𝐶𝐿𝑛 (

𝑇

𝑇0
) + 𝑠0 

(10)  

 
 

By substituting s and 휀 from eqs. (9) and (10) into eq. (8), the Clausius-Plank inequality will 

be: 
 

 

(−𝜌
𝜕𝐺

𝜕휀𝑡
) : 휀̇𝑡 + (−

𝜕𝐺

𝜕𝜂
) �̇� ≥ 0 ⟹ 𝜎: 휀̇𝑡 + (−𝜌

𝜕𝐺

𝜕𝜂
)�̇� ≥ 0 

(11)  

 

The relation between the martensitic fraction volume and the evolution of transformation strain 

is [4],[37]: 
 

휀̇𝑡 = 𝛬�̇� (12)  

Equation (12) is called the flow rule which 𝛬 is a transformation tensor and is expressed in 

Appendix A, equations (A-3) to (A-5): 

By replacing 휀̇𝑡from eq. (12) into Eq. (11), the Clausius-Plank inequality is rewritten as: 

 
 

(𝜎: 𝛬 − 𝜌
𝜕𝐺

𝜕𝜂
)�̇� = 𝜓�̇� ≥ 0 

 

 

(13)  

Which 𝜓 is the general thermodynamic force and can be expressed as: 
 
 

𝜓(𝜎, 𝑇, 𝜂) = 𝜎: 𝛬 +
1

2
𝜎: 𝛥𝑆: 𝜎 + 𝜎: 𝛥𝛼(𝑇 − 𝑇0) − 𝜌𝛥𝑐 [

(𝑇 − 𝑇0) − 𝑇𝐿𝑛

(
𝑇

𝑇0
)

] + 𝜌𝛥𝑠0𝑇

− 𝜌𝛥𝑢0 −
𝜕𝑓

𝜕𝜂
 

(14)  



Stability Analysis of an Axially Moving Thin Wall …                                                                                                  109 

It should be noted that 𝜓 is the function of stress and temperature so, the phase transformation 

will occur whenever this force reaches a critical value. For the forward martensite 

transformation, the threshold value of function 𝜓 is shown by 𝑌. Also, for the backward 

martensite transformation, the threshold of function 𝜓 assumed to be −𝑌. The critical value, 

i.e., 𝑌, is a quadratic polynomial hardening function and expressed in Appendix A, eq. (A-6). 

The transformation function (ϕ) is introduced as follows [4],[37]: 
 

 

𝜙 = {
𝜓 − 𝑌, �̇� > 0

−𝜓 − 𝑌, �̇� < 0
     ;   𝐾𝑢ℎ𝑛

− 𝑇𝑢𝑘𝑒𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 {
�̇� ≥ 0, 𝜙(𝜎, 𝑇, 휀) = 𝜓 − 𝑌 ≤ 0     

�̇� ≤ 0, 𝜙(𝜎, 𝑇, 휀) = −𝜓 − 𝑌 ≤ 0
 

 

(15)  

 

During both sides transformation 𝜙 =0, while for martensite 𝜙 <0 and �̇� = 0. This situation is 

called Kuhn-Tuker conditions, which are defined for both forward and backward 

transformations. The material phase transformation occurs when the martensite fraction is 

between zero and one ( 0 ≤ 𝜂 ≤ 1). While, 0 indicates that the material is fully austenite, and 

1 specifies that the material is fully martensite.  

The algorithm of Fig. (1) shows an iterative correction methodology in which the internal 

variable, i.e., 𝜂, 휀𝑡 can be obtained at each step for the given strain. For the first step, a set of 

initial values is guessed. The iteration is continued until the transformation criterion, namely, 

∅ ≤ 0 is satisfied. In the next steps, the converged internal variables of the previous step are 

used as the initial guesses. The procedure is continued until the transient phase is completed 

meaning that 𝜂 = 1. The other internal required parameters are expressed in Appendix A, 

equations (A-7) to (A-12). 

 

 
                                         Figure 1 The iteration method chart for SMA [38] 
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Figure 2 Geometry of the truncated conical shell 

 

3   Formulations 

 

Figure (2) shows a truncated cone that rotates around its longitudinal axis at speed (Ω), axial 

speed (𝑉) where 𝛼 is the angle of the cone, 𝑠, 𝜃 are the coordinates of the cantilever, 𝑅1, 𝑅2are 

the radius of both two ends, 𝐿 is the length of the cone, 𝑆1, 𝑆2 are the distance between cone 

vertex and the middle and end of cone and h is the thickness of the cone. The reference surface 

for the rotation is taken to be at the middle surface of the cone and orthogonal references are 

fixed at the end as shown in the figure. Deformations are defined by 𝑢, 𝑣, and 𝑤 in the 

meridional 𝑠, circumferential 𝜃 and normal z directions, respectively. 

The following introduces the deformation component based on the classical shell theory [39]: 

 

[

휀𝑠
휀𝜃
휀𝑠𝜃
] = [

휀𝑠
0

휀𝜃
0

휀𝑠𝜃
0

] + 𝑍 [
𝐾𝑠
𝐾𝜃
𝐾𝑠𝜃

] 

 

(16)  

 

Where, 휀𝑠
0, 휀𝜃

0 are the normal strain along with s and 𝜃 direction and 휀𝑠𝜃
0  is the shear strain at 

the middle surface of the cone. 𝐾𝑠, 𝐾𝜃 are the change in curative and 𝐾𝑠𝜃 is the twist of the cone 

which are defined by Donnell-Mushtari shell theory assumes the following relationship [40]: 

 

휀𝑠
0 =

𝜕𝑢

𝜕𝑠
 

 
(17)  

휀𝜃
0 =

1

𝑠

𝜕𝑣

𝜕𝜑
+
𝑢

𝑠
−
𝑤𝑐𝑜𝑡(𝛼)

𝑠
 

 
(18)  

휀𝑠𝜃
0 =

1

𝑠

𝜕𝑢

𝜕𝜑
+
𝜕𝑣

𝜕𝑠
−
𝑣

𝑠
 

 

 

(19)  

𝐾𝑠 = −
𝜕2𝑤

𝜕𝑠2
 

 
(20)  

𝐾𝜃 = −(
1

𝑠2
𝜕2𝑤

𝜕𝜑2
+
1

𝑠

𝜕𝑤

𝜕𝑠
) 

 
(21)  

𝐾𝑠𝜃 = −(
1

𝑠

𝜕2𝑤

𝜕𝑠𝜕𝜑
−
1

𝑠2
𝜕𝑤

𝜕𝜑
) 

 

 

(22)  

𝐸, μ is the Young modulus, and Poisson’s ratio, respectively. The force and moment 

components are achieved by integrating the stress components. 
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(𝑁𝑠, 𝑁𝜃, 𝑁𝑠𝜃) = ∫ (𝜎𝑠, 𝜎𝜃, 𝜎𝑠𝜃)𝑑𝑧

ℎ
2

−
ℎ
2

  (23)  

(𝑀𝑠, 𝑀𝜃, 𝑀𝑠𝜃) = ∫ (𝜎𝑠, 𝜎𝜃, 𝜎𝑠𝜃)𝑧𝑑𝑧

ℎ
2

−
ℎ
2

 

 

 (24)  

3.1   Hamilton principle 

 

In this work, the governing equation is derived from Hamilton's principle: 

 

∫ (δT − δU)dt = 0
t

0

 
 (25)  

      

Where δK, δU are virtual kinetic energy, and virtual strain energy. The virtual kinetic energy 

obtained using the Love hypothesis is as follows: 

 

U =
1

2
∫∫ ∫(𝜎𝑠휀𝑠 + 𝜎𝜃휀𝜃 + 𝜏𝑠𝜃휀𝑠𝜃)𝑅𝑑𝑧𝑑𝜃𝑑𝑠

ℎ
2

−
ℎ
2

2𝜋

0

𝐿

0

 

 (26)  

T =
1

2
∫∫ ∫(�̇�2 + �̇�2 + �̇�2)𝑅𝑑𝑧𝑑𝜃𝑑𝑠

ℎ
2

−
ℎ
2

2𝜋

0

𝐿

0

 

 (27)  

 

Finally, by employing the simplification of the Donnell shell theory assumption and using the 

equation (25), integrating the terms by part and using the SMA constitute relation, yield the 

equation of motion of axially moving and rotating truncated conical shells as: 

 

 

∂Ns
∂s

+
∂Nsθ
∂φ

+
𝑁𝑠 − 𝑁𝜃

s
− 𝐴1ℎ [(1 − 𝜐)

𝜕휀11
𝑡

𝜕𝑥
+ 𝜐

𝜕휀22
𝑡

𝜕𝑥
+ 𝜐

𝜕휀33
𝑡

𝜕𝑥
+ (1 − 2𝜐)

𝜕휀12
𝑡

𝜕𝑦
]

+ 𝐴1,𝑥ℎ [𝜐 (
𝑤

𝑅
) − 𝛼∆𝑇(1 + 𝜐) − (1 − 𝜐)휀11

𝑡 − 𝜐휀22
𝑡 − 𝜐휀33

𝑡 ]

+ 𝐴1,𝑦ℎ[−(1 − 2𝜐)휀12
𝑡 ] = 0 

 

 

 (28)  

∂Nsθ
∂s

+
1

s

∂Nθ
∂φ

+
2Nsθ
s

𝐴1ℎ [𝜐
𝜕휀11

𝑡

𝜕𝑦
+ (1 − 𝜐)

𝜕휀22
𝑡

𝜕𝑦
+ 𝜐

𝜕휀33
𝑡

𝜕𝑦
+ (1 − 2𝜐)

𝜕휀12
𝑡

𝜕𝑥
]

+ 𝐴1,𝑥ℎ[−(1 − 2𝜐)휀12
𝑡 ]

+ 𝐴1,𝑦ℎ [−(1 − 𝜐) (
𝑤

𝑅
) − 𝛼∆𝑇(1 + 𝜐) − 𝜐휀11

𝑡 − (1 − 2𝜐)휀22
𝑡

− 𝜐휀33
𝑡 ] 

 (29)  
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∂2Ms

∂s2
+
2

s

∂Ms

∂s
+
2

s

∂2Msθ

∂s ∂φ
−
1

s

∂Mθ

∂s
+
2

s2
∂Msθ

∂φ
+
1

s2
∂2Mθ

∂φ2
+
Nθ
s
cot(α)

= ρh(
∂2w

∂t2
+ 2Vc(t)

∂2w

∂t ∂s
+ (Vc(t))

2 ∂2w

∂s2
+
∂Vc(t)

∂t

∂w

∂s
)

+
𝐴1ℎ(1 − 𝜐)𝛼∆𝑇

𝑅
+
𝐴1ℎ

𝑅
[𝜐휀11

𝑡 − (1 − 𝜐)휀22
𝑡 − 𝜐휀33

𝑡 ]

− 𝐴1,𝑥𝑥 (
ℎ3(1 − 𝜐)

12

𝜕2𝑤

𝜕𝑥2
+
ℎ3(𝜐)

12

𝜕2𝑤

𝜕𝑦2
)

− 𝐴1,𝑦𝑦 (
ℎ3(1 − 𝜐)

12

𝜕2𝑤

𝜕𝑦2
+
ℎ3(𝜐)

12

𝜕2𝑤

𝜕𝑥2
) −

𝐴1,𝑥𝑦ℎ
3(1 − 2𝜐)

6

𝜕2𝑤

𝜕𝑦𝜕𝑥
 

 

 

(30)  

Due to the symmetrical nature and boundary conditions of the axially movable rotating 

cylindrical shell: 
 

𝛿𝑢(𝑥, 0, 𝑧) = 𝛿𝑢(𝑥, 2𝜋, 𝑧) (31)  

𝛿𝑣(𝑥, 0, 𝑧) = 𝛿𝑣(𝑥, 2𝜋, 𝑧) (32)  

𝛿𝑤(𝑥, 0, 𝑧) = 𝛿𝑤(𝑥, 2𝜋, 𝑧) (33)  

𝛿𝑢(𝐿, 𝜃, 𝑧) − 𝛿𝑢(0, 𝜃, 𝑧) = 0 (34)  

𝛿𝑣(𝐿, 𝜃, 𝑧) − 𝛿𝑣(0, 𝜃, 𝑧) = 0 (35)  

𝛿𝑤(𝐿, 𝜃, 𝑧) − 𝛿𝑤(0, 𝜃, 𝑧) = 0 (36)  
      

 

The zero of the axial moment and circumferential displacement are the boundary condition for 

simply-supported axially moving truncated conical shells. 

𝑀𝑠 = 0 & 𝑣 = 0           𝑎𝑡  𝑠 = 𝑠1, 𝑠2                                          (37) 

 

Besides, 𝑢,𝜐 and 𝑤 must be continuous at 𝜃. Therefore, the continuity conditions along the 

circumferential direction must be satisfied. 

 

∫ ∫ 𝑁𝑠

𝑠2

𝑠1

𝑑𝑥𝑅𝑑𝜃
2𝜋

0

= 0 (38) 

∫ ∫
𝜕𝑣

𝑅𝜕𝜃

𝑠2

𝑠1

𝑑𝑠𝑅𝑑𝜃
2𝜋

0

= ∫ [𝑣(𝑥, 2𝜋) − 𝑣(𝑥, 0)]
𝐿

0

𝑑𝑠 

 

(39) 

∫ ∫ 𝑁𝑠𝜃

𝑠2

𝑠1

𝑑𝑠𝑅𝑑𝜃
2𝜋

0

= 0 (40) 
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Where 휀𝑖𝑗
𝑡  are components of transformation strain tensor and 𝐴1 =

𝐸(𝜂)

(1+𝜐)(1−2𝜐)
 in which 𝜐 is 

Poisson’s ration and E is the Young’s modulus (𝐸 = 𝐸𝐴 + 𝜂(𝐸𝑀 − 𝐸𝐴)  ). In order to consider 

the natural frequencies of the shell, the pure austenite phase was only studied. Consequently, 

all transformation strain components vanished because of zero martensitic volume fractions. In 

addition, in this article all transformation strain component and martensitic volume fraction 

were supposed to be dependent to stress and are independed to x, y. 

The compatibility strain equation of the truncated cone shell is expressed as follows [41]: 

 
cot (α)

s

∂2w

∂s2
−
1

s

∂2e𝑠𝜃
∂s ∂φ

−
1

s2
∂e𝑠𝜃
∂φ

+
∂2eθ
∂s2

+
1

s2
∂2es
∂φ2

+
2

s

∂eθ
∂s

−
1

s

∂es
∂s

= 0 (41) 

 
The Airy stress function used by Sofiyev in order to reduce the three nonhomogeneous partial 

differential equations in relations (28)-(30) to compatibility and motion equation in the radial 

directions is [40]: 

 

(N1, N2, N12) = (
1

s2
∂2∅

∂φ2
+
1

s

∂∅

∂s
 ,
∂2∅

∂s2
, −
1

s

∂2∅

∂s ∂φ
+
1

s2
∂∅

∂φ
) (42) 

 
After substitution of airy stress function, equation (42) into the equation (41) together with 

equation (30), and using the variable 𝑠 = 𝑆𝑒𝑥, ∅ = ∅1𝑒2𝑥 , the governing equations of motion 

are obtained as follows: 

 

(
𝜕2∅

𝜕𝑥2
+ 3

𝜕∅

𝜕𝑥
+ 2∅)𝑆1𝑒

3𝑥 cot(𝛼)

+ (
ℎ3𝐸(𝜂)

12(𝜇2 − 1)
)(
𝜕4𝑤

𝜕𝜑4
+
𝜕4𝑤

𝜕𝑥4
− 4

𝜕3𝑤

𝜕𝑥3
+ 4

𝜕2𝑤

𝜕𝑥2
+ 2

𝜕2𝑤

𝜕𝜑2
)

− 2((
−ℎ3𝜇𝐸(𝜂)

12(𝜇2 − 1)
) + (

ℎ3𝐸(𝜂)

12(𝜇 + 1)
))

× (
𝜕4𝑤

𝜕𝜑2𝜕𝑥2
− 2

𝜕3𝑤

𝜕𝜑2𝜕𝑥
+
𝜕2𝑤

𝜕𝜑2
)

− 𝜌ℎ (
𝜕2𝑤

𝜕𝑡2
+
2𝑉𝑐(𝑡)

𝑆1𝑒𝑥
𝜕2𝑤

𝜕𝑥𝜕𝑡
+
(𝑉𝑐(𝑡))

2

𝑆1
2𝑒2𝑥

𝜕2𝑤

𝜕𝑥2

+
1

𝑆1𝑒𝑥
(
𝑑

𝑑𝑡
𝑉𝑐(𝑡))

𝜕𝑤

𝜕𝑥
) = 0 

(43) 

(
1

𝐸(𝜂)ℎ
) 𝑒2𝑥 (

𝜕4∅

𝜕𝑥4
+ 4

𝜕3∅

𝜕𝑥3
+ 4

𝜕2∅

𝜕𝑥2
+
𝜕4∅

𝜕𝜑4
+ 2

𝜕2∅

𝜕𝜑2
)

+ 2((
1 + 𝜇

𝐸(𝜂)ℎ
) − (

𝜇

𝐸(𝜂)ℎ
)) 𝑒2𝑥 × (

𝜕4∅

𝜕𝜑2𝜕𝑥2
+ 2

𝜕3∅

𝜕𝜑2𝜕𝑥
+
𝜕2∅

𝜕𝜑2
)

+ (
𝜕2𝑤

𝜕𝑥2
−
𝜕𝑤

𝜕𝑥
)𝑆1𝑒

𝑥 cot(𝛼) = 0 

(44) 
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4   Solution of the problem 
 

We have expanded the equation of the flexural 𝑊 by using the linear axisymmetric and 

symmetric modes. Assuming that the truncated conical shell is simply supported at both ends, 

the transverse displacement would be in the form of a triangular function, 𝑤(𝑥, 𝜑, 𝑡) =
∑ Am,n(t) cos(βφ) sin(λmx) + Bm,n(t) sin(βφ) sin (λmx)
𝑀
𝑚=1 , where Am,n is the unknown 

amplitude of the displacement, Bm,n(t) is the companion mode of the fundamental mode,  Am,n 

is the driven mode, and λm =
𝑚𝜋

L
  substitution “𝑤” in the equation of (44) would be resulted in: 

 

∅1 = (((𝑒−𝑥𝐶4 + 𝐶2) cos(λ1𝑥) + (𝑒
−𝑥𝐶3 + 𝐶1) sin(λ1𝑥))𝐵1(𝑡) sin(𝛽2(𝜑)) +

(((𝑒−𝑥𝐶8 + 𝐶6) cos(λ2𝑥) + (𝑒
−𝑥𝐶7 + 𝐶5) sin(λ2𝑥))𝐵2(𝑡) sin(𝛽2(𝜑))  

(45) 

 

 The coefficient is calculated by Maple software. After substituting 𝑤 and equations (45) into 

equation (43) and applying the Galerkin method with convenient weighting factors, the 

equation with the appropriate function is applied: 

 

𝑍𝑠(𝑥, 𝜃) = 𝑠𝑖𝑛 (
(𝑠 + 1)𝜋𝑥

2𝐿
) 𝑐𝑜𝑠(𝑛𝜃) ; 𝑠 = 𝑂𝑑𝑑 ,  𝑍𝑠(𝑥, 𝜃)

= 𝑠𝑖𝑛 (
(𝑠)𝜋𝑥

2𝐿
) 𝑠𝑖𝑛(𝑛𝜃);  𝑠 = 𝑒𝑣𝑒𝑛  

(46)      

 
After integration and some rearrangements, the governing equations will be written as: 

 
𝑑2

𝑑𝑡2
(𝐵1,𝑛) + 𝐵1

𝑑

𝑑𝑡
(𝐵1,𝑛) + 𝐵2

𝑑

𝑑𝑡
(𝐵2,𝑛) + 𝐵3𝐵1,𝑛 + 𝐵4𝐵2,𝑛 = 0 

 
(47) 

𝑑2

𝑑𝑡2
(𝐴1,𝑛) + 𝐵1

𝑑

𝑑𝑡
(𝐴1,𝑛) + 𝐵2

𝑑

𝑑𝑡
(𝐴2,𝑛) + 𝐵3𝐴1,𝑛 + 𝐵4𝐴2,𝑛 = 0 

 
(48) 

 
We can find an approximate solution by using the multiple scales method. By introducing 

new independent variables 𝑇0 = 𝜏 and 𝑇1 = 휀𝜏 the form of the solution of equations (47), and 

(48) are as follows: 

 

𝐵𝑖(𝜏, 휀) = 𝐵𝑖
0(𝑇0, 𝑇1) + 휀𝐵𝑖

1(𝑇0, 𝑇1) + 𝑂(휀
2), 𝑖 = 1,2 (49) 

 
The first and second derivative of equation (49) can be written as: 

 

𝐵𝑖̇ =
𝜕

𝜕𝑇0
𝐵𝑖
0 + 휀 (

𝜕

𝜕𝑇1
𝐵𝑖
0 +

𝜕

𝜕𝑇0
𝐵𝑖
1) + 휀2

𝜕

𝜕𝑇1
𝐵𝑖
1 , 𝑖 = 1,2 (50) 

𝐵𝑖̈ =
𝜕2

𝜕𝑇0
2𝐵𝑖

0 + 휀 (2
𝜕

𝜕𝑇1

𝜕

𝜕𝑇0
𝐵𝑖
0 +

𝜕2

𝜕𝑇0
2 𝐵𝑖

1) + 휀2 (2
𝜕

𝜕𝑇1

𝜕

𝜕𝑇0
𝐵𝑖
1 +

𝜕2

𝜕𝑇0
2 𝐵𝑖

0) , 𝑖 = 1,2 
(51) 
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By substituting 𝑉(𝑡) = 𝑉0 + 휀𝑉1cos (Ω𝜏) into the equations (50), (51), and separating terms 

for order 0, we can write: 

 
𝜕2

𝜕𝑇0
2 𝐵1

0 + 𝑎11
𝜕

𝜕𝑇0
𝐵2
0 + (𝑏11𝑉0

2 + 𝑏12)𝐵1
0 = 0 

 

(52) 

𝜕2

𝜕𝑇0
2 𝐵2

0 − 𝑎11
𝜕

𝜕𝑇0
𝐵1
0 + (𝑏21𝑉0

2 + 𝑏22)𝐵2
0 = 0 (53) 

 
By casting the equations (52), (53) into the matrix form: 

 

M(
�̈�1

(0)

B̈2

(0)
)+C(

�̇�1

(0)

�̇�2

(0)
)+(

B1
(0)

B2
(0)
)=(

0

0
) 

(54) 

 
The solution of order 휀0 has the following exponential form: 

 
(B1

(0) B2
(0))=Ψeλτ      ⟹     |λ2M+λC+K|=0 (55) 

 

Where  implies the eigenvalues of the above matrix and can be written in the form of λ =
𝜉 + 𝑖𝜔, while its real part is zero when the rotational speed is below the critical speed. Hence 

it can be written as, λ = 𝑖𝜔, and the natural frequencies 𝜔1 and 𝜔2 satisfy eq. (56),  

 

ω4-(β1+β2+a11
2 )ω2+β1β2=0  (56) 

 
By solving similar to what is said in Article [47] the natural frequency 𝜔1, 𝜔2 are as bellows: 

 

𝜔1 = √
(𝛽1 + 𝛽2 + 𝑎11

2 ) + √(𝛽1 + 𝛽2 + 𝑎11
2 )2 − 4𝛽1𝛽2

2
 

𝜔2 = √(𝛽1 + 𝛽2 + 𝑎11
2 ) − √(𝛽1 + 𝛽2 + 𝑎11

2 )2 − 4𝛽1𝛽2
2

 

 

(57) 

 
 

 

(58) 

 
5   Numerical results and discussion 

5.1    Validation 
 

In order to compare the results obtained from the equations derived in this paper and their solution 

method with the results of previous works, first, the two cases presented in the work of [42] are 

investigated. The first case involves a very long cylindrical shell under rotating conditions, and the 

second is the case of a nonrotating cylindrical shell presented in the work of [18]. The 

specifications of the material are listed in Table (1). 

Table (2) can be employed to compare the value of the natural frequency of modes (1,2) to (1,6) 

with ref. [42]. Due to the simplification assumptions of the shallow Donnell shell, such as 

ignoring shear deformation and in-plane inertia, the accuracy of the natural frequency depends 

on the number of circular waves (n). when (
1

𝑛2
≪1) The accuracy is acceptable. 
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Strangely, it depends on the number of circular waves selected; it can be observed in Table (1), 

where the results converge to (n≥4). The results can be compared to those of an axially moving 

circular cylindrical shell. By the consideration of zero value for the cone angle, the conical shell 

structures could be converted to a cylindrical shell so that the results can be compared with the 

previous studies on an axially moving cylindrical shell. Table (3) shows the value of the natural 

frequency of modes (1,3) and (1,5) with ref. [18]. Also our study are validated with the one 

whose vibrations analysis was performed on smart alloys state by  [38] . They utilized DQM to 

calculate the natural frequencies of the thin-walled cylindrical shell in their study and solved 

them analytically. We also solve the same shell, using the proposed formulation. The outcomes 

and their comparison with the results of  [38] are predicted in Fig. (4). 

 
Table 1 Material parameters of Ni-Ti SMA  

Material parameter value Material parameter value 

H 0.056 𝜌(kg/m3) 6448.1 

𝐴𝑠(k) 307.5 𝐸𝐴(GPa) 67 

𝐴𝑓(k) 322 𝐸𝑀(GPa) 26.3 

𝑀𝑠(k) 291.4 𝛼(k−1) 22e-6 

𝑀𝑓(k) 282 𝐶𝐴(J/kg k) 13.8 

𝜐(k) 0.3 𝐶𝑀(J/kg k) 8 

𝜎𝑠
𝑐𝑟 100(Mpa) 𝜎𝑓

𝑐𝑟 170(𝑀𝑝𝑎) 
 

 

Table 2 Comparison of the natural dimensionless frequency parameter f = ωR2√
(1−μ2)ρ

E

2
 for an infinitely long 

nonrotating isotropic conical shell (
ℎ

𝑅2
= 0.01,

𝐿𝑠𝑖𝑛(𝛼)

𝑅2
= 0.25) 

 

n 𝛼 = 300 

 Lam and Hua [42] Present work Error(%) 

2 0.8420 0.8447 0.3 

3 0.7376 0.7363 0.17 

4 0.6362 0.6352 0.15 

5 0.5528 0.5538 0.15 

6 0.4950 0.4953 0.06 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
                

 
Figure 3 Stress-strain diagram of pseudoelastic SMA for the 1D case at 𝑇 = 328𝑘 
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Table 3 Comparison of the natural frequency of an axially moving cylindrical shell (
ℎ

𝑅
= 0.0247,

𝐿

𝑅
= 2) 

 

n V Mohamadi, Shahgholi [18] Present work Error (%) 

3 

0 1727.28 1727.12 0.0092 

400 1264.81 1264.65 0.012 

800 0 0 0 

5 

0 739.24 739.27 0.004 

400 0 0 0 

800 1540.15 1540.13 0.0012 

 

 
Figure 4  Comparison of the natural frequency w.r.t. circumferential wave number in pure austenite phase and 

first axial mode (m=1) obtained from the  present methodology and that of Forouzesh and Jafari [38] 

 

 
Figure 5 Natural frequency Vs. velocity of axially moving truncated conical shell in pure austenite phase 𝑇 =

328𝑘 
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5.2   Results and discussion 

 

In the present study, first, as shown in Figure (5), the effect of axial velocity of the structure on 

the natural frequency in the absence of excitation and damping force is investigated. The results 

show that the natural frequency of the incomplete conical shell decreases with increasing axial 

velocity. As compared with which one in the [47] that made ordinary alloy steel, it can be 

understood that the natural frequency of SMA truncated conical shell reaches zero at a lower 

axial velocity. 

The results of numerical research and drawing of real and imaginary parts of the frequency 

response show that there are two types of instability in the axially moving conical shell. One is 

divergence instability and the other is flutter instability. Therefore, the stability or instability of 

an axially moving truncated conical shell can be investigated. As can be seen in figure (6), if 

the axial velocity of the structure is zero, the real part of the eigenvalue will be zero, and the 

imaginary value of the eigenvalue, which represents the natural frequency of the system, will 

be nonzero. Adding the axial velocity to the structure will cause changes in eigenvalues. The 

real part of the eigenvalue decreases with increasing the velocity. This reduction continues until 

the system’s natural frequency converges to zero. At this point, the first instability occurs in the 

system. This kind of in- stability is divergent instability, and the axial velocity at this point is 

the critical velocity. When the velocity reaches the critical point, the real part of the eigenvalue 

has two values; therefore, static instability, bifurcation occurs at this point. As the velocity 

increases relative to the critical velocity, the imaginary part of the eigenvalue is still zero, but a 

change occurs in the actual eigenvalue. These changes continue as the velocity increases until 

both branches of the real part of the eigenvalue converge to zero. At this point, both the real 

and imaginary parts of the eigenvalue are zero. Now, increasing the velocity changes the 

imaginary part of the eigenvalue and increases the natural frequency of the system. In addition, 

the real part of the eigenvalue does not change with increasing the velocity and remains at zero. 

In fact, the system regains its stability at this point. Then, an increase in the axial velocity results 

in a stage where the real part of the eigenvalue changes and bifurcation occurs again. Indeed, 

the second instability, dynamic instability, flutter, occurs for the system at this velocity [43]. 

The results of the study of other movable axial structures such as beams [44] plates [45] and 

axially moving cylindrical shells [18],[46] also show the same thing. As compared with which 

one in the [47] that made ordinary alloy steel, it can be understood that the instability point, i.e., 

Flutter and Bifurcation point of axially moving SMA truncated conical shell reaches zero at 

lower axial velocity. 

 

 
Figure 6 Changes in real and imaginary parts of the frequency at different speeds in pure austenite phase 𝑇 = 328𝑘 
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       Figure 7 Changes in real and imaginary parts of the frequency at different speeds and different phase 

 
Figure (7) shows the changes in real and imaginary parts of natural frequency by changing the 

value of axial velocity and the effect of phase transformation. As can be seen, the frequency 

response of the system shifts to the left, in another word the divergence and flutter occurs at 

lower axial velocity due to the material staying in a transient state or pure martensite phase. 
Figure 8(a) shows the effect of the velocity on the imaginary parts of eigenvalues m = 2 and n = 

1,2,3,6. The first point to consider in this form is the frequency change of the structure in the 

static case. In this mode, when the system axial velocity is zero, the natural frequency of the 

system decreases with increasing circumferential wave numbers. Moreover, notable is the 

divergence instability points. With increasing circumferential wave numbers, the divergence 

instability occurs at lower velocities. Other checkable tips are the natural frequency changes at 

very high velocities. The difference of the natural frequency changes of the system for different 

circumferential wave numbers is small at very high velocities so that the natural frequency of 

the system increases for different circumferential wave numbers to converge with increasing the 

velocity. Figure 8(b) shows the effect of the velocity on the real parts of eigenvalues for m = 2 and 

n = 1,2,3,6. As can be seen, values of critical and flutter velocities decrease for different 

circumferential wave numbers from low to higher modes. For different modes, the difference 

between the critical velocities is not very large, but the difference in the amount of the velocity 

is very high at the flutter point. Therefore, the point of divergence instability is not very different 

for various modes, but the velocity of the flutter point is very different with increasing the 

circumferential wavenumbers, and the flutter instability for lower circumferential wave numbers 

occurs at much higher velocities than higher circumferential wave numbers. It should be noted 

that the results in Figures 8(a) and 8(b) are for the conical shell with a cone angle of 30°. In the 

following, various results are observed for different cone angles, and the influence of the cone 

angle will change these results. 

When the angle of the cone is zero, the structure turns into a cylindrical shell, in which case the 

change in natural frequency in the number of different half-waves modes is negligible. As can 

be seen, the imaginary part of the frequency diagram is shown in Figure (9) in terms of axial 

velocity at different angles. As the angle of the cone increases, the natural frequency of the 

system first increases. The natural frequency also increases and then decreases with increasing 

cone angle and axial velocity. This increase and decrease of frequency up to an angle of 63 

degrees have similar results for different ambient half-waves. But at an angle of 63 degrees, the 
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effect of different modes on frequency changes will be minimal, and we will have a relatively 

constant frequency for different modes, which is approximately convergent in the diagram. 

When this quantity was compared in the presence of axial speed, at first these are equal until 

about 13𝑜 and after that, the natural frequency has a lower quantity. As compared with which 

one in the [47] that made ordinary alloy steel, it can be understood that at an angle of 63 degrees, 

the effect of different modes and different materials on frequency changes will be minimal, and 

we will have a relatively constant frequency for different modes, which is approximately 

convergent in the diagram. 

 
 

 

 
 

Figure 8 a) Imaginary part of nondimensional frequency at different speeds and  

b) Real parts of the frequency at different speeds in pure austenite phase 𝑇 = 328𝑘 

(a) 

(b) 
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Figure 10(a) shows the effect of the aspect ratio on the imaginary parts of eigenvalues of an 

axially moving conical shell, indicating that increasing the thickness and decreasing the radius 

will increase the natural frequency of the system. Figure 10(b) shows the effect of the aspect 

ratio on the real parts of eigenvalues of an axially moving conical shell, which indicates 

changing the instability points of the system. It means that critical and flutter points will be 

created at a lower velocity as the thickness decreases or the radius increases. Furthermore, the 

divergence instability range of the system increases by decreasing the radius or increasing the 

structure thickness. 

In order to study the effect of apex angles on stability and instability of the conical shells, three 

angles were chosen i.e., 𝛼 = 10, 30, 60, and we analyzed the stability and instability of the 

axially moving conical shell. The stability analysis of axially moving shells has been done by 

plotting of the real and imaginary parts of natural frequency versus the velocity. As can be seen 

in the figure (11) the bifurcation critical velocity and flutter critical velocity decrease by 

increasing the apex angle. 
 

 
Figure 9 Imaginary parts of the frequency by changing the cone angle in pure austenite phase 𝑇 = 328𝑘 

 

   
 

(a) 



122           Iranian Journal of Mechanical Engineering Transactions of the ISME            Vol. 23, No. 2, Sep. 2022 
 

   

 
 
 

Figure 10 Real and imaginary parts of the frequency at different 
ℎ

𝑅
 by changing the velocity value in pure 

austenite phase 𝑇 = 328𝑘 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 11 Real and imaginary parts of the frequency at different apex angles by changing the velocity 

value in pure austenite phase 𝑇 = 328𝑘 

(b) 
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6   Conclusion 

 

The vibrations of thin-walled axially moving conical shells made of shape memory alloy with 

simple supports were analyzed in this paper. First, the equation of motions was derived by using 

Hamilton's principle and convenient relations for shape memory alloy.  The shell vibration 

analysis and its natural frequencies investigation were performed using the Galerkin method 

and multiple scale method. By extracting the critical velocity of the structure, the stability and 

instability of the system for different modes and velocities were investigated. In general, two 

types of instability occur in the studied structure. The first type of instability is called divergence 

instability and occurs when the real and imaginary parts of the frequency are both zero, and the 

instability of the second type is called flutter and occurs when the bifurcation phenomenon 

occurs in the diagram and the real part of the eigenvalues has two values. The effect of the 

material state on real and imaginary parts of natural frequency by changing the value of axial 

velocity shows that the frequency response of the system shifts to the left, in other words the 

divergence and flutter occurs at lower axial velocity due to the material staying in a transient 

state or in pure martensite/austenite phase. Increasing the apex angle of a movable conical axis 

shell with a constant aspect ratio creates critical points and a flutter at lower speeds. It can be 

seen that by increasing the angle of the cone, the distance between the critical points of the 

divergence and the filter changes so that by increasing the angle of the cone, this distance 

decreases. The amount of frequency at different angles increases with increasing axial velocity. 

This trend continues up to an angle of 63 degrees, and in general, at an angle of 63 degrees the 

effect of different modes on frequency changes will be minimal and we will have a relatively 

constant frequency for different modes that almost convergence occurs in the diagram. Before 

this angle, the imaginary part of the frequency, which represents the natural frequency of the 

shell, increases, and after that, its value will decrease. The normal frequency of the system 

increases before the 63-degree angle with increasing cone angle and then decreases. 
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Nomenclature 

 
𝐴𝑓: Austenite finish 

 

𝐴𝑠: Austenite starts 

 

𝐶𝐴, 𝐶𝑀: Relation between temperature and critical stress 

 

𝐸𝑆𝑀𝐴(𝐸, 𝛾, 𝑇) : The modulus of the shape memory alloy 
 

𝐸𝐴: Amount of memory alloy in state of complete austenite 

 

𝐸𝑀: Amount of memory alloy in state of complete martensite 

 

𝑀𝑓: Martensite finish 

 

𝑀𝑠: Martensite start 

 

𝜂: Fraction of the martensite 

 

Ω: Dimensionless fluctuation frequency 

 

𝜎𝜃, 𝜎𝑟: Stress in 𝜃, 𝑟 direction 

 
휀𝑡: Transformation strain 
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Appendix A 

 

In this portion, the relation of SMA that is mentioned in section 1 is given. 

𝑏𝐴 = −∆𝑠0(𝐴𝑓 − 𝐴𝑠),  𝑏
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