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1    Introduction 
 
In reality, virtually every process is a nonlinear system and described by nonlinear equations. 
After the appearance of the computers, it is not difficult to find the solution of the linear 
problems. However it is still difficult to solve nonlinear systems analytically. 

Gaëtan Kerschen et al. [1], studied the typical sources of nonlinearity in their review paper 
and categorized them as follows: 
1- Geometric nonlinearity results when a structure undergoes large displacements.  

                                                            
1 Corresponding author, Department of  Mechanical Engineering Ferdowsi University of  Mashhad,  
Email : Farshid@un.ac.ir 
2  Department of Mechanical Engineering Ferdowsi University of  Mashhad 
   

 

A. Farshidianfar 1 
Assosiate Professor 

 

 

N.Nickmehr 2 

Gradute 

Some New Analytical Techniques for 
Duffing Oscillator with Very Strong 
Nonlinearity  
The current paper focuses on some analytical techniques to 
solve the non-linear Duffing oscillator with large nonlinearity. 
Four different methods have been applied for solution of the 
equation of motion; the variational iteration method, He’s 
parameter expanding method, parameterized perturbation 
method, and the homotopy perturbation method.  
The results reveal that approximation obtained by these 
approaches are valid uniformly even for very large parameters 
and are more accurate than straightforward expansion solution. 
The methods, which are proved to be mathematically powerful 
tools for solving the nonlinear oscillators, can be easily 
extended to any nonlinear equation, and the present paper can 
be used as paradigms for many other applications in searching 
for periodic solutions, limit cycles or other approximate 
solutions for real-life physics and engineering problems. 
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2- Inertia nonlinearity derives from nonlinear terms containing velocities and/or accelerations in 
the equations of motion, and takes its source in the kinetic energy of the system. 
3- A nonlinear material behavior may be observed when the constitutive law relating stresses and 
strains is nonlinear. 
4- Damping sources other than linear viscous damping, introduce nonlinear effects and include 
hysteresis, drag, and coulomb friction. 
5- Nonlinearity may also results due to boundary conditions or certain external nonlinear body 
forces.  

Nayfeh and Mook in1979 [2], Strogatz in 1994 [3], Verhulst in 1999 [4] and Rand in 2003 [5] 
studied the nonlinear oscillations. 

Nonlinear problems can be solved numerically and analytically, but obtaining analytical 
solution for nonlinear systems is very important due to limitations of numerical methods. 

It is well-known that the common weakness of equivalent linearization approaches [6,7], 
restricts them to solve problem with weak nonlinearities and within a narrow range of parametric 
variations, so many efforts have been made to develop the method for studying the nonlinear 
systems. The concept of mode shapes has been proposed by Rosenberg [8,9]; Then Rand, Shaw 
and Pierre, and Vakakis et al,  have modified this method [10-13]. 

With the rapid development of nonlinear science, there appears an ever-increasing interest of 
scientists and engineers in the analytical asymptotic techniques for nonlinear problems. Though 
it is very easy for us now to find the solutions of linear systems by means of computer, it is, 
however, still very difficult to solve nonlinear problems either numerically or theoretically. This 
is possibly due to the fact that the various discredited methods or numerical simulations apply 
iteration techniques to find their numerical solutions of nonlinear problems, and nearly all 
iterative methods are sensitive to initial solutions, so it is very difficult to obtain converged 
results in cases of strong nonlinearity. In addition, the most important information, such as the 
natural circular frequency of a nonlinear oscillation depends on the initial conditions (i.e. 
amplitude of oscillation) will be lost during the procedure of numerical simulation. 

Perturbation methods provide the most versatile tools available in nonlinear analysis of 
engineering problems and they are constantly being modified and applied to ever more complex 
problems. But perturbation methods have their own restrictions as well as other nonlinear 
techniques (Nayfeh and Mook in1979 [2], Nayfeh in 1981 [14], O’Malley in 1991 [15] and 
Kevorkian an Cole in 1996 [16]). Almost all perturbation methods are based on such an 
assumption that a small parameter must exist in an equation. This so-called small parameter 
assumption greatly restricts applications of perturbation techniques, as is well known, an 
overwhelming majority of nonlinear problems, especially those having strong nonlinearity, have 
no small parameters at all. 

Regarding the above descriptions, some new developed methods valid for the large parameter 
domain, should be introduced to solve nonlinear problems. 

Duffing equation is widely used in the papers for verifying the effectiveness of various 
techniques. The main target of the present investigation is to solve Duffing equation with 
different developed analytical methods that are proposed by Ji-Huan He [17, 18]. 



 

 

 Some New Analytical Techniques for Duffing                                                          ...  39

2    Solving Duffing equation by four different methods 
 
2.1 Variational iteration method 
 
A new kind of analytical technique for a nonlinear problem called the variational iteration 
method is described and used to give approximate solutions for some well-known nonlinear 
problems by Ji-Huan He in1999 [17]. In this method we start with an initial estimate that is 
gained from linearization of the problem and then a more highly precise approximation can be 
obtained. 

The general nonlinear system has the following form: 
 
                                                                  )(xguNLu =+                                                           (1)                         
 
where L is a linear operator and N is a nonlinear operator. 

Considering u0(x) is the solution of Lu=0 [19], the following relation can be expressed to 
correct the value of some especial points, for example at x=1: 
 

                                                   dxguNuLuucor )()1()1( 0

1

0
00 −++= ∫ λ                                          (2) 

 
where λ is a general Lagrange multiplier [19], which can be determined via the variational 
theory. The integral term is the correction expression. He has developed the above method by 
using an iteration procedure as  follows [20]: 

                                               dxguNuLxuxu n

x

nnn )~()()(
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001 −++= ∫+ λ                                (3) 

 
Assume u0(x) as the first estimate with possible unknowns, and  nu~  as a restricted variation [21], 

i.e. 0~ =nuδ . For arbitrary value of 0x , we can rewrite equation (3) as follows: 
 

                                          ζζζζλ dguNuLxuxu n

x

nnn ))()(~)(()()(
0

1 −++= ∫+                            (4) 

 
Equation (4) is called a correction functional. The modified method, or variational iteration 
method has been shown to solve effectively, easily, and accurately a large class of non-linear 
problems with approximations converging rapidly to accurate solutions [20]. 

Now, Duffing equation with fifth nonlinearity may be solved by the variational iteration 
method. Consider the following equation with the given initial conditions: 
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Its correction functional can be given as follows: 
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where nu~ is considered as a limited variation. Making the above correction functional stationary, 
and noticing that δ u (0) = 0: 
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yields the following stationary conditions: 
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Thus the multiplier can be determined as )(sin t−= τλ , and the variational iteration formula can 
be obtained: 
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Assuming that its initial trial has the form: 
 
                                                                   )(cos)(0 tAtu α=                                                      (10) 
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where α (ε) is a non-zero unknown function of ε with α (0) = 1. Substituting equation (10) in 
equation (5) yields the following residual: 
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Using variational iteration formula (9), result in: 
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Due to no appearance of secular terms in the next iteration, resonance must be avoided. Thus the 
coefficient of cos t is considered to be zero: 
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After solving equation (13) and determining α, the first order approximation can be written down 
as follows: 
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Hence the approximate period that is true for very large parameter equals to: 
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and the period which found from perturbation method that is valid only for small parameter ε 
[14], reads: 
 
                                                              )16/51(2 4AT επ −=                                                    (16) 
 
2.2 He’s Parameter expanding method 
 

Parameter-expanding methods including the modified Lindstedt-Poincare method and 
bookkeeping parameter method can successfully deal with such special cases, however the 
classical methods fail. The methods need not have a time transformation like Lindstedt-Poincare 
method; the basic character of the method is to expand the solution and some parameters in the 
equation. 
A general nonlinear oscillator can be expressed by the following equation: 
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If a+bA2+cA-2/3>0, the above equation has periodic solution [18]. In case a<=0, one cannot use 
the traditional perturbation methods even when the parameters b and c are small.   

The solution is expanded into a series of an artificial parameter, p, in the He’s parameter 
expanding method (PEM) [18, 22]: 
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where p is a bookkeeping parameter. 

Also, the coefficient a, b and c can be expanded into a series in p in a similar way [23]: 
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Substituting equations (18) and (19) into equation (17), collecting terms of the same power of p, 
gives: 
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According to initial conditions of equation (17), the solution of the first equation of expression 
(20) is ).(cos)(0 tAtu ω=  
Substituting the results into the second equation of expression (20), yields: 
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Then the term 3/1)(cos tω  is expanded into a Fourier series: 
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By substituting equation (23) into equation (21), the following relation will be obtained: 
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No secular terms in u1 requires that: 
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If the first order approximation is considered, then p is set to be 1 in equation (19) and results: 
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Solving equations (25) and (26) yields: 
 

                                                          aAcAb ++= − 3/22 61595952669.1
4
3ω                          (27) 

 
Now the Duffing equation with third nonlinearity is considered and is solved by this method. 

If a = 1, b = ε and c = 0, according to equation (17), the Duffing oscillator can be obtained as 
follows: 
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Then regarding to equation (27), the frequency of the above nonlinear Duffing oscillator can be 
calculated: 
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Therefore zero-order approximate solution can be determined as follows: 
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2.3 Parametrized Perturbation Method 
 
To describe this method one begins with Duffing equation initially: 
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in which ∞<≤α0  and need not to be small. 

Consider: 
                                                                          vu ε=                                                                 (32) 
 
Substitute the above relation into equation (31) and obtain: 
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                                               0)0(,/)0(,01 54 =′==+⋅+′′ vAvvvv εεα                          (33) 
 
By using the parameter expanding method (modified Lindstedt - Poincare method [24]), one can 
assume that the solution of equation (33) and the constant 1 can be expanded in the forms2: 
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Substituting equation (34) into equation (33) and equating coefficients of like powers of ε, yields 
the following equations: 
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The solution of equation (35) is: 
 
                                                               )(cos/)(0 tAtv ωε=                                                     (37) 
 
By substituting )(0 tv into equation (36): 
 

                       05cos
16

3cos
16
5cos)

8
5( 5

5

5

5

14

4

1
2

1 =+++++′′ tAtAtAAvv ω
ε

αω
ε

αω
ε

ω
ε
αω             (38) 

 
Avoiding the presence of a secular term needs: 
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Therefore, the response of equation (38) is obtained as follows: 
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Then it is easy to find that v1 = v2 = v3 = 0 and ω1 = ω2 = ω3 = 0, so that the secular terms will not occur. 
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If, for example, its first-order approximation is sufficient, then: 
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Thus, the frequency of the oscillator can be calculated in the form: 
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the above relation is correct for all α > 0.  
 
2.4 Homotopy Perturbation Method 
 
Homotopy perturbation method is a relatively new method, it is still evolving. Like other 
methods, it has theoretical and application limitations. The homotopy perturbation technique 
does not depend upon a small parameter in the equation. By the homotopy technique in topology, 
a homotopy is constructed with an imbedding parameter p∈ [0, 1], which is considered as a 
‘‘small parameter’’.  

In this section, homotopy perturbation method will be used for solving the following Duffing 
equation: 
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Now the homotopy is constructed in the form: 
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If p=0, the linearized equation will be 02 =+′′ uu ω  and when p=1 the above equation turns out 
to be original one. Suppose that the periodic solution for equation (44) can be expanded as a 
power series in p: 
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Substituting equation (45) into equation (44) and equating the terms with the identical powers of 
p: 
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Solution of equation (46) is )(cos)(0 tAtu ω=  and substituting this into equation (47), results: 
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No secular terms in u1 requires that: 
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3    Results and Discussion  
 
The exact solution for equation (5) can be readily obtained as follows [18]: 
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Thus, in the case ∞→ε , the accuracy of the calculated period based on the variational 
iteration method and the parameterized perturbation method, is derived as follows: 
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Therefore, for any value of ε, it can be easily proved that  %08.0)(0 ≤−≤ TTex  , thus the 

approximate solution determined by these methods, is uniformly true for any value of ε, as 
mentioned before. 

In Figure 1 the exact solution and the proposed responses that are obtained from variational 
iteration method and parameterized perturbation method have been plotted for A=1 and ε=1, 
and compared which each other. It has been showed very good agreement. 

Now, to determine the exact period of equation (28), the following relation can be used [18]: 
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Therefore, the accuracy of the periods that was calculated by using He’s parameter expanding 
method and homotopy perturbation method is: 
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As the above relation shows, the maximal relative error is less than 7.06%, thus the 

approximate solution for Duffing equation with third nonlinearity based on these methods are 
true for any value of ε. 

Figure 2 shows the results obtained from the exact solution and the above methods. It is clear 
that there is no considerable difference between these methods, which approves the new applied 
methods. Due to the very high accuracy of the first-order approximate solution, one can stop the 
procedure before the second iteration step.  

Both variational iteration method and parameterized perturbation method have been shown to 
solve effectively, easily, and accurately a large class of nonlinear problems with approximations 
converging rapidly to accurate solutions. Most authors found that the shortcomings arising in 
traditional perturbation methods can be completely eliminated by these methods. 

However, for solving Duffing equation with the third nonlinearity and large nonlinear 
parameter the solution procedure of He’s parameter expanding method and homotopy 
perturbation method are of deceptive simplicity, and the insightful solutions obtained are of high 
accuracy even for the zero-order approximation. These methods have eliminated limitations of 
the traditional perturbation methods. On the other hand they can take full advantage of the 
traditional perturbation techniques, thus there has been a considerable deal of research in 
applying these techniques for solving various strongly nonlinear equations. 
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4    Conclusions 
 
In this paper, some new analytical asymptotic methods for solution of a nonlinear problem such 
as Duffing oscillator equation with very strong nonlinearity are presented. Four different 
techniques based upon the variational iteration method, the parameterized perturbation method, 
He’s parameter expanding method and homotopy perturbation method predicts the period of the 
system in adequate manner. For the nonlinear oscillators, all the reviewed methods yield high 
accurate approximate periods. 
Comparison of the obtained results with those of the exact solution shows that these methods are 
very effective and convenient and quite accurate to both linear and nonlinear physics and 
engineering problems. However, the homotopy perturbation method in compare with the other 
methods is relatively easy to apply even for more complex arrangements. 
As a result, we conclude that these methods have given very good accuracy in this particular 
problem of Duffing oscillator and can be easily extended to some other nonlinear problems i.e. 
Duffing oscillator with forcing term, forcing oscillator with quadratic type damping and Duffing 
oscillator with excitation term. 
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Nomenclature 
 
a Coefficient 
A Initial condition 
b Coefficient 
c Coefficient 
g Function 
L Linear operator 
N Nonlinear operator 
p Bookkeeping parameter 
R Residual 
t Independent variable 
T Period 
v Variable 
u Unknown parameter of the system 
x Independent variable 
 
Greek symbols 
 
α Non-zero constant function 
ε Nonlinear parameter 
ζ  Variable 
λ General Lagrange multiplier 
τ Variable 
ω Frequency 
 
Subscripts 
 
0 Initial conditions 
exa Exact solution 
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Figures 
 

 
 

 
Figure 1- Comparison between the approximate solutions and the exact solution: dashed line: exact solution and 

solid line: the approximate solutions. 
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Figure 2- Comparison between the approximate solutions and the exact solution: dashed line: exact solution and 

solid line: the approximate solutions. 
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  چکيده
روش مختلف جهت  ۴از . باشد يبزرگ م ير خطيبا پارامتر غنگ يداف يخطريق، هدف حل معادله غيحقن تيدر ا

، روش اختلال He ي، روش بسط پارامتريرات تکراريي؛ روش تغمطالعه معادله حرکت استفاده شده است
 يدر روش ها ب بکاربرده شدهيتوان ادعا کرد تقر يم ،جيبا توجه به نتا .يو روش اختلال هموتوپ يپارامتر

ي براي حل ن روش ها ابزار قدرتمندين ايح است و بنابرايمسئله صح ياز پارامترها يمذکور در رنج گسترده ا
  .انواع سيستم هاي غيرخطي در مسائل مهندسي هستند


