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1   Introduction 
 

Generally, optimization of the geometry of aerodynamic shapes is carried out through three 

main tools: first, a tool for airfoil shape parameterization and changing shape through control 
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In this work, a modification has been made to increase the efficiency and 

convergence of the harmony search algorithm. Then, the capability of this 

amendment was investigated by applying it to the following aerodynamic 

problems for the first time. First, the methods of airfoil shape 

parametrization (Bezier curves, Parsec method, and NACA 4-digit airfoil) 

were investigated using an inverse optimization design by the present 

modified harmony search optimization algorithm. Then, inverse and 

direct optimization of an airfoil were carried out by the modified 

algorithm. Aerodynamic analysis of the problem was obtained using 

compressible Reynolds-Averaged Navier-Stokes (RANS) equations along 

with the Spalart-Allmaras turbulence model. Results showed that the 

Bezier curves and the Parsec method have higher flexibility than the 

NACA 4-digit airfoil. The Parsec method was introduced as the best 

approach, because of fewer control parameters. The inverse optimization 

results showed that the present airfoil shape optimization set can obtain 

the target shape with high accuracy. The Direct optimization with a 

maximum lift to drag ratio target function revealed that the shock waves 

significantly weaken at the optimum airfoil. Generally, the results 

obtained verify that using the modified harmony search algorithm 

together with the Parsec method provides a powerful tool for direct and 

inverse aerodynamic optimization. 
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variables, the second one is a tool for performing aerodynamic calculations, and a third tool is 

an optimization approach. Aerodynamic measures play the leading role in optimization. 

However, parameterizing the geometry and the optimization algorithm is very important too. 

Hence, using inappropriate parametrization methods and optimization algorithms will provide 

weak results and even may cause convergence to delay [1].  

Method of airfoil shape parameterization (the first tool) is an approach through which an airfoil 

geometry is created. In creating of this airfoil geometry, some parameters must be involved so 

that airfoil geometry can be changed by changing these parameters. Different methods are used 

as these tools, including B-Spline functions [2, 3], Bezier Curves [4], Hicks-Henne Bump 

Functions [1], Parsec method [5, 6], NACA 4-digit airfoil, etc. [7]. 

In a general classification, optimization algorithms (the third tool), are divided into two major 

groups, gradient-based methods and non-gradient-based methods (Meta-heuristic Algorithms). 

Gradient-based methods usually deal with the first or second derivative of the objective function 

(and limiting functions). Despite the fast convergence of gradient optimization methods, these 

techniques sometimes encounter problems in solving some issues. These problematic cases 

include experiencing discontinuous functions, functions with sharp points, etc. Furthermore, 

these methods try to improve the solution in a neighborhood of the beginning of the solution. 

If an improper initial point is selected, sometimes the answer obtained will be a local one and 

will not cover the entire solution space. Due to these shortcomings, researchers have become 

interested in meta-heuristic methods and have conducted many types of research using them.  

Meta-heuristic methods do not need gradient information, and if the value of an objective 

function (and limiting functions) is known at different points, it will be enough for 

optimization. These methods that were developed after 1970, are inspired by natural 

phenomena and, by combining regularity and randomness, try to find the optimum state [8]. 

They include simulated annealing algorithm, Tabu search, Evolutionary Algorithm, ant colony 

optimization, genetic algorithm, big bang–big crunch, etc. 

 

1. 1   A review of previous works 

 

Many types of research have been conducted for designing airfoils. Soemarwoto researched 

airfoils using inverse optimization design with the variational method [9]. Gardner and Selig 

investigated airfoils using the inverse optimization method with an evolutionary genetic 

algorithm [10]. Vitturi and Beux studied direct and inverse optimization design using a 

gradient-based approach [11]. Shahrokhi and Jahangirian used a genetic algorithm to optimize 

airfoil geometry through a direct optimization method [12]. In another research, Jahangirian 

and Shahrokhi dealt with airfoil optimization through inverse optimization. In this research, the 

genetic algorithm is used as an optimization algorithm [5]. Xu and Xia dealt with direct and 

inverse optimization of airfoils using the continuous adjoint method and Euler equations [13]. 

Alves et al. conducted airfoil shape optimization using Parsec and particle swarm optimization 

(PSO) methods [14]. Ebrahimi and jahangirian investigated airfoil geometry optimization using 

the genetic algorithm by doing some modifications and the Parsec method [15]. Yu et al. 

investigated the influence of optimization algorithm and initial design on a wing aerodynamic 

shape optimization [16]. 

In the research as mentioned earlier, gradient-based and non-gradient-based optimization 

methods have been investigated. One of the other non-gradient-based optimization methods is 

the harmony search algorithm introduced by Geem [8]. Fesanghary et al. used a harmony search 

algorithm in designing optimum tube and shell heat exchangers through sensitivity analysis 

[17]. Kaveh et al. used an improved harmony search for economic optimization of a composite 

floor system [18]. Yousefi et al. optimized the plate-fin heat exchanger using an improved 

harmony search algorithm [19]. Boryczka and Szwarc presented a modification of the Harmony 
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Search algorithm, adapted to the effective resolution of the asymmetric case of the Traveling 

Salesman Problem. The efficacy of the proposed approach was measured with benchmarking 

tests and in a comparative study based on the results obtained with the Nearest Neighbor 

Algorithm, Greedy Local Search, and Hill Climbing [20]. Yarmohamadi et al. presented an 

enhanced adaptive global-best harmony search (EAGHS) that hybridizes the concepts of swarm 

intelligence and conventional HS to solve global continuous optimization problems [21]. Abu 

Doush and Santos used the roulette wheel and tournament selection in memory consideration 

and enhanced the harmony search algorithm with a modified β-hill-climbing algorithm [22]. 

Zhang et al. proposed a reward population-based differential genetic harmony search algorithm 

to overcome the shortcomings of the harmony search algorithm, such as its slow convergence 

rate and poor global search ability [23]. Even though problems solved by this algorithm prove 

its high efficiency, it has never been used for optimization and design of aerodynamic problems. 
 
1. 2   Presenting the current work 

 
The optimization algorithm determines which airfoil geometry should be shaped to obtain an 

optimal airfoil (for a particular purpose). However, if the tool for airfoil shape parameterization 

cannot simulate that optimal airfoil geometry, naturally, a good result will not be obtained. 

Therefore, selecting a good tool for airfoil shape parameterization is necessary, and 

investigation of this tool is essential. 

The other one, for airfoil shape optimization, is an optimization tool. In this work, harmony 

search Meta-heuristic algorithms have been used. Information from the authors shows that this 

algorithm is robust and has never been used for solving aerodynamic problems. So, some 

modifications are introduced to this algorithm to increase its accuracy and convergence. Then, 

the modified algorithm is used for airfoil shape optimization, and its ability is investigated. 

Briefly, considering the above explanations, in the present work, a comprehensive modification 

is done to the harmony search optimization algorithm, and it is used for investigating the 

following three items: 

1- Evaluation of typical airfoil shape parameterization methods. 

2- Inverse optimization design and assessment of airfoil optimizing set.  

3- Direct optimization design to increase lift-to-drag ratio. 

 
2   Introducing Request Tools 

2.1   Introducing typical airfoil shape parameterization method 

2.1.1   Bezier curves 

 

Consider the following set of points called control points or Bezier points.  

 

P = {P0, P1, P2, … , Pn}; Pi ∈ IR
d;  d = 2,3;  i = 0,… , n 

 

Then, the equation of the Bezier curve, which includes the above points, is introduced as 

follows: 

C(t) =∑Pi Bi
n(t)

n

i=0

  ( 1 ) 

 

Where Bi
n(t) is the Bernstein polynomials expressed as follows: 

 

Bi
n(t) = (

n

i
) (1 − t)n−i ti =

n!

i! (n − i)!
(1 − t)n−i ti;  i = 0,… , n ( 2 ) 
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Where n represents the order of polynomial so that n+1 control points form the polynomial of 

nth order [24].  

To better understand the above equations, their two-dimensional form is reorganized as follows: 

 

Pi = [
Px,i
Py,i
] ;  i = 0,… , n ( 3 ) 

C(t) = [
Cx(t)

Cy(t)
] =∑[

Px,i Bi
n(t)

Py,i Bi
n(t)

]

n

i=0

 ( 4 ) 

 

Bezier curves can be used for airfoil shape parameterization in different ways. In the present 

work, 14 control points are used for airfoil shape parameterization, and 4 of them (beginning 

and end control points) are fixed. Furthermore, the length (x) of the other 10 control points is 

set, and only their width (y) is used as a controller. For airfoil shape parameterization, the upper 

and lower curves must be generated independently and then connected. Based on the above 

explanations, Figure 1) shows an airfoil made by Bezier curves. 

 

2.1.2   Parsec method 

 

The Parsec method is one of the methods of airfoil shape parameterization. In this approach, 

the airfoil is generated by 11 control parameters and can be controlled by them according to the 

following equation: 
 

                                                  Zparsec = ∑ an. X
n−

1

26
n=1                                                      ( 5 ) 

 
 

These 11 control parameters are properly exhibited in Figure 2). They include a radius of the fro

nt edge (rle), and the maximum position of lower and upper surfaces (Zlo , Xlo , Zup , Xup). 

 

Figure 1 airfoil shape parametrization using Bezier curves 
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Figure 2 airfoil shape parametrization using the Parsec method 

 

The second derivative at the maximum position of lower and upper surfaces (Zxxup ,Zxxlo), the 

position of the final edge and its thickness (ΔZTE ,ZTE), and finally, the direction and width of 

the final edge. Equation (5) must be used separately once for the upper surface of the airfoil and 

once for its lower surface. Coefficients are determined by considering the known parameters of 

airfoil geometry [12]. In some cases, the total number of control parameters can be decreased 

by considering parameters ΔZTE and ZTE equal to zero. This can be explained as follows: 

1- In most cases, it is interested in investigating optimization under the fixed angle of attack 

conditions. On the other hand, the existence of ZTE causes the angle of attack to change.  

2- Parameter ΔZTE creates a small hole between the upper and lower surfaces. This hole 

creates suspicious solutions in some cases [25]. On the other hand, it is shown by experience 

that acceptable results can be achieved by considering this parameter equal to zero.  

Thus, in the present work, the Parsec method with 9 control parameters is used for airfoil shape 

parameterization. 

 

2.1.3   NACA 4-digit airfoil 

 

One of the other well-known methods for airfoil shape parameterization is to use NACA 4-digit 

airfoils. In this approach, airfoil geometry is created and controlled only by three control 

parameters. These three parameters are the maximum camber (m), the maximum camber 

location (p), and finally, the maximum thickness (𝜏) [7]. Figure 3) displays these three 

parameters. Equations describing the upper and lower surfaces of an airfoil in this method are 

as follows: 

 

 

Where yth is the thickness distribution and yc is the middle curve line introduced by the 

following equations: 

 

yth = 5τ × c(0.2969√
x

c
− 0.126

x

c
− 0.3537 (

x

c
)
2

+ 0.2843 (
x

c
)
3

− 0.1015 (
x

c
)
4

) 

 

( 10 ) 

Xup = x − yth sinθ ( 6 ) 

Yup = yc + yth cosθ (7 ) 

Xlo = x + yth sinθ ( 8 ) 

Ylo = yc − yth cosθ ( 9 ) 
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yc =

{
 

 
m

p2
(2p

x

c
− (

x

c
)
2

)                    For 
x

c
≤ p

m

(1 − p)2
(1 − 2p + 2p

x

c
− (

x

c
)
2

)     For 
x

c
≥ p

 ( 11 ) 

  

In the equation above, θ depends on the slope of the middle curve at each point (Figure 4) and 

can be obtained by taking the derivative of equation (11): 

 

θ(x) = tan−1
dyc(x)

dx
 

 

2.2    Aerodynamic calculations 

 

To obtain aerodynamic efficiency for an airfoil, equations of the flow around it must be solved. 

This is done through a numerical solver. This tool must have enough accuracy to obtain the 

pressure and velocity field around the airfoil. The flow around an airfoil can be simulated in 

different ways. In the present work, the flow is considered viscous, turbulent, and subsonic. Time-

dependent compressible Reynolds-Averaged Navier-Stokes (RANS) equations together with 

turbulence Spalart-Allmaras model [26] are solved using an explicit Runge-Kutta scheme. 

Conservative and dimensionless forms of these equations in a two-dimensional coordination 

system are as follows: 

 

∂W

∂t
+
∂Fi
∂x

+
∂Gi
∂y

=
1

Re∞
(
∂Fv
∂x

+
∂Gv
∂y
) + S ( 13 ) 

 

 

 

Figure 3 airfoil shape parametrization using NACA 4-digit airfoil 

 

 

Figure 4 Presentation of the slope of the middle curve 

(12) 
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Where W is the vector of the quantities and is defined as follows: 
 

W =

[
 
 
 
 
ρ
ρu
ρv
E
ρν̂]
 
 
 
 

 ( 14 ) 

 
Where Fi and Gi are inviscid flux vectors, Fv and Gv are viscous flux vectors, and S is the source 
term defined as follows: 
  

Fi =

[
 
 
 
 

ρu

ρu2 + p
ρuv

(E + p)u
ρν̂u ]

 
 
 
 

 ( 15 ) 

Gi =

[
 
 
 
 

ρv
ρuv

ρv2 + p
(E + p)v
ρν̂v ]

 
 
 
 

 ( 16 ) 

Fv =

[
 
 
 
 
 

0
τxx
τyx

τxxu + τxyv + qx
ρ

σ
(ν + ν̂)

∂ν̂

∂x ]
 
 
 
 
 

 ( 17 ) 

Gv =

[
 
 
 
 
 
 

0
τxy
τyy

τyyv + τyxu + qy
ρ

σ
(ν + ν̂)

∂ν̂

∂y ]
 
 
 
 
 
 

 ( 18 ) 

S =

[
 
 
 
 
0
0
0
0
D]
 
 
 
 

 ( 19 ) 

u, v, ρ, p, ν̂, and E represent velocity components in x and y directions, density, static pressure, 

intermediate chaotic kinematics viscosity variable, and the sum of internal and kinetic energies, 
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respectively. Furthermore, τ and q represent tension and thermal flux. D is the source term 

related to the turbulent model. Spalart-Allmaras model is a conventional turbulence model that 

has shown its capability and efficiency in modeling turbulent flow in aerodynamics. Therefore, 

in this work, this model is used to simulate turbulent flow.  

Equation (13) is solved by a numerical code. In this numerical code, discretization of the 

equation is done using the finite volume approach (central differential scheme). By converting 

the governing equations into entirely solvable differential equations and considering a 

computational cell with volume 𝐴 (with unit depth) and integrating the equations, we have: 

 
 

𝑑

𝑑𝑡
(𝑊𝐴) + 𝑄(𝑤) = 𝑆𝐴 ( 20 ) 

 

Where 
 

𝑄(𝑤) = ∬𝐹𝑖𝑑𝑦 + 𝐺𝑖𝑑𝑥 − 𝐹𝑣𝑑𝑦 − 𝐺𝑣𝑑𝑥 ( 21 ) 

 
 

Moreover, explicit time integration is performed using a 4-stage Runge-Kutta time-stepping 

scheme. Principles of the numerical solution were first introduced by Jameson and Schmidt for 

solving compressible flow problems [27]. 
 

 

𝑊0 = 𝑊𝑛 
 

𝑊1 = 𝑊0 − 𝛼1
∆𝑡

𝐴
[𝑄(𝑊0) − 𝐷(𝑊0)] 

𝑊2 = 𝑊0 − 𝛼2
∆𝑡

𝐴
[𝑄(𝑊1) − 𝐷(𝑊0)] 

𝑊3 = 𝑊0 − 𝛼3
∆𝑡

𝐴
[𝑄(𝑊2) − 𝐷(𝑊0)] 

𝑊4 = 𝑊0 − 𝛼4
∆𝑡

𝐴
[𝑄(𝑊3) − 𝐷(𝑊0)] 

𝑊𝑛+1 = 𝑊4 

( 22 ) 

 

𝑊0 is the value of 𝑊 at the beginning of a time step, and 𝑊𝑚 is the value of 𝑊after passing 

the m stage of the calculation at that time step. 

The scalar dissipation scheme has been used in the numerical code to remove oscillations in the 

vicinity of shock waves. Since the steady-state solution is needed, convergence accelerating 

approaches such as local time-stepping and implicit residual averaging is also used in the 

solution [28]. The numerical solution used in this paper has also been used by many researchers 

in the recent three decades for solving Navier-Stokes and Euler’s equations for a wide range of 

aerodynamic applications, and its accuracy is proved. 

 
2.3   Optimization algorithm 
 

The algorithm used in the current work is the harmony search (HS) algorithm. This algorithm 
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is inspired by the musician’s thoughts that finding the optimum state in problems is equivalent 

to finding a desirable harmony in music [8]. In the present work, a modification is done to this 

algorithm to increase its efficiency. Therefore, first, the harmony search algorithm is explained 

and then the modified harmony search algorithm is introduced. 

 

2.3.1   Harmony search algorithm 

 

In the HS algorithm, each solution is called harmony and is introduced as an n-dimensional 

vector. First, an initial population is randomly created and saved in HM*. Then a new Harmony 

Vector is made based on taking the memory into account, pitch adjustment, and random 

selection. Finally, the created Harmony Vector is compared with the worst Harmony Vector in 

the memory X⃗⃗ W†. If it is better, it replaces by the worst Harmony Vector; by, doing so, HM is 

updated. This process continues until the stopping criterion is met. Considering the presented 

explanations, the HS algorithm has three main steps; initializing the HS memory, improvising 

a new solution, and updating HM. These steps are explained below. 

 

2.3.1.1   Introduction of the problem and algorithm parameters  

 

Generally, any optimization problem can be expressed as a minimization problem as follows: 

 

Min F(X⃗⃗ ); X⃗⃗ = (x(1), … , x(n));  x(j) ∈ [LB(j), U𝐵(j)] ( 23 ) 

 

In the above equation, F(X⃗⃗ ) is the objective function, X⃗⃗  is the vector of design variables, n is 

the number of design variables, and UB(j) and LB(j) are the upper and lower limits of the 

variable, respectively. Parameters of the HS algorithm are harmony memory size (HMS) or the 

number of existing solution members in the harmonic memory, harmonic memory considering 

rate (HMCR), pitch adjustment rate (PAR), bandwidth (BW), and severe iterations.  

 

2.3.1.2   Initializing the harmony memory 

 

HM includes HMS solution vectors. If it is assumed that X⃗⃗ i = (xi (1),...,xi (n))  is the ith solution 

vector of HM, then the solution vectors of HM are randomly created using the following 

equation: 

 

Xi(j) = LB(j) + (UB(j) − LB(j)) × r ∶  j = 1,… , n;  i = 1,… , HMS ( 24 ) 

 

Where r is a random number between 0 and 1. Thus, the HM matrix is filled with HMS solution 

vectors and is represented as follows: 
 

HMS =

[
 
 
 

x1(1)

x2(1)

   x1(2)

   x2(2)
   
⋯

⋯

  x1(n − 1)

  x2(n − 1)

   x1(n)

   x2(n)
⋮

xHMS(1)

⋮

xHMS(2)

⋮

⋯

⋮

xHMS(n − 1)

⋮

xHMS(n)]
 
 
 

 ( 25 ) 

                                                                                                                                                                                     
 

*
 Harmony Memory 

† Worst Harmony Vector in the HM 
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2.3.1.3   Improvising a new harmony 

 

A new solution vector, XNew, is improved using three rules; considering memory, pitch 

adjustment, and random selection. To do this, first, a random number (r1) is selected between 0 

and 1. If r1 is smaller than HMCR, XNew(j) is selected from HM (26). Otherwise, XNew(j) is 

obtained randomly (i.e., similar to equation (24) selected between the lower and the upper 

limits). Choosing from HM is according to equation (26), where a chosen randomly from the 

set {1,…, HMS}. 
 

XNew(j) = Xa(j)  , a ∈ {1,… , HMS} ( 26 ) 

 

If XNew(j) is selected from HM, parameter PAR will be introduced. Accordingly, another 

random number (r2) is chosen between 0 and 1. If r2 is smaller than PAR, XNew(j) is changed 

according to the following equation, where r is a random number between 0 and 1. 

  

XNew(J) = XNew(J) + Bw(J) × r ( 27 ) 

 
2.3.1.4   Updating the harmonic memory  

 

After creating a new Harmony Vector X⃗⃗ new, HM must be updated. This is done by comparing 

the objective function of X⃗⃗ new with the worst member in the memory )X⃗⃗ W(. If the objective 

function of X⃗⃗ new is better than that of X⃗⃗ W, then X⃗⃗ new replaces by X⃗⃗ W. So, X⃗⃗⃗  new enters as a new 

member. Finally, steps 3 and 4 are repeated until the stopping criterion is met, so the optimum 

solution is obtained [29, 30].  

 
2.3.2   The modified harmony search algorithm in the present work 

 

Determining the main parameters of the HS algorithm (BW, PAR, and HMCR) has a significant 

effect on the performance of the algorithm. Hence, in the present work, an effort is made to 

present an approach for determining these parameters to increase the accuracy and convergence 

of the algorithm. In this regard, parameter HMCR will have a fixed value, parameter PAR will 

be dynamically updated, and parameter BW will be introduced as self-modifying. Furthermore, 

a general modification is presented in how the new solution vector is selected. 

 
2.3.2.1   Modification of the parameter HMCR 

 

In the present modification, only in the first 0.1 of iterations, a random solution is proposed, 

and the value of parameter HMCR is considered to be 0.95. In the remaining 0.9 iterations, this 

value is considered to be 1. This means that in the remaining 0.9 iterations, no variable is 

selected randomly, and only the existing solution vectors in the memory are modified.  

 
2.3.2.2   Modification of parameter PAR 

 

To modify the parameter PAR, maximum and minimum values are considered for it, and the 

solution is started with its maximum value. Then, whenever one-tenth of the total number of 

iterations is reached, PAR is updated according to the following equation: 
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PAR = PAR −
PARMAX − PARMIN

9
 ( 28 ) 

 

PARMAX is often considered between 0.9 and 1, but PARMIN will depend on the number of 

variables in the solution vector. Based on our experience, for two variables problems, 0.9 is a 

suitable value for PARMIN, and for eight variables problems, 0.45 is an appropriate value for 

PARMIN. The smallest value that PARMIN can have is equal to 0.1, which is used in problems 

with a large number of variables.  

 
2.3.2.3   Modification of parameter BW 
 
In the present work, the parameter PAR is introduced as self-modifying. This parameter begins 

to work with an initial average value (BWM, which is usually one-tenth of the allowed variations 

range of each variable). When this parameter is needed, the average value random decreases or 

increases by one-tenth of its value.  

If a new Harmony Vector enters the memory, the amount of improvement in the objective 

function compared to the worst member is calculated and is saved for the corresponding BW 

(i.e., increase or decrease in the average value). After AP* iterations, the average value of this 

parameter is updated by the following equation: 

 

BWM = {
BWM +

BWM

30
  if (Improvementup > Improvementlow)

BWM −
BWM

30
  if (Improvementup ≤ Improvementlow)

 ( 29 ) 

 
In the above equation, Improvementup represents the sum of improvements in the objective 

function during AP iterations for BWs their values are more significant than BWM by BWM /10. 

Similarly, Improvementlow represents the sum of progress in the objective function during AP 

iterations for BWs that their values are less than BWM by BWM /10. 
 
2.3.2.4   Change in selecting a new solution vector  

 

In this modification, it is proposed to ultimately select a solution vector from memory in a 

random manner. Next, parameter HMCR determines the probability of random selection of 

each variable in the solution vector. Moreover, parameter PAR will determine whether pitch 

adjustment needs to be performed on a variable or not. 
 
3. Results 

3.1   Evaluation of typical airfoil shape parameterization methods 

 

A suitable method of airfoil shape parameterization is expected to satisfy the following: 

1- It needs to have high flexibility. 

2- The number of its control parameters must be as low as possible.  

3- Independent control parameters must be used.  

4- It must present smooth and realistic curves.  

5- It needs to be easy to formulate.  

                                                                                                                                                                                     
 

*Adjusting Pace  
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Among the abovementioned items, 3, 4, and 5 are satisfied by all the approaches as mentioned 

above (Bezier curves, Parsec method, and NACA 4-digit airfoil). Accordingly, requirements 1 

and 2 play the crucial role in selecting a proper strategy.  

Requirement 1, which seems the most important one, is about having high flexibility. This 

means that the desired method must be able to simulate different geometries. This enables us 

to search for the optimum geometry in a more extensive search space. If the method of airfoil 

shape parametrization does not have such a capability, we will not be able to reach a global 

solution. This is because the low flexibility of the method causes some geometries to be missed 

out, and there may be a more appropriate geometry among these missed geometries. Therefore, 

it seems reasonable to pay more attention to this issue because even if the other elements used 

have the best performance, we will not be able to reach a global solution due to the inability of 

the method of airfoil shape parameterization. 

In this section, the goal is to investigate the flexibility of the three airfoil shape parameterization 

methods by using an inverse optimization design. Since taking aerodynamic calculations into 

account increases the time consumed for running the program; therefore, a non-aerodynamic 

objective function will be used to investigate the flexibility. To perform this, an airfoil is 

considered as the target airfoil, and the objective function is the difference between the 

geometries of the airfoil under investigation and the target one, which is intended to be 

minimized by the algorithm. Those above non-aerodynamic objective function is introduced as 

follows: 
 

Cost function =∑|yi − yi,Target|

n

i=1

 ( 30 ) 

 

Where n is the number of points that form the airfoil, yi is the lowing y of ith x forming the 

airfoil under investigation, and yi,TARGET is the y of ith x forming the target airfoil. Therefore, 

the difference between the width of the airfoil under investigation and that of the target one is 

calculated and added. Then it is introduced as the objective function. To better understand, 

Figure (5) is presented the objective function, which is plotted for n=21. 

To perform this investigation, 10 different airfoils are considered target airfoils. Therefore, each 

approach is evaluated 10 times. The approach which has the slightest error will undoubtedly 

have high flexibility. Among these 10 target airfoils, three are created by NACA 4-digit airfoil, 

three are randomly generated by the Parsec method, and three are randomly created by Bezier 

curves. The tenth one is the well-known RAE2822 airfoil. Naturally, each approach is able 

comprehensively to properly simulate the airfoil that is generated by itself because it has done 

this before. If the optimization tool is accurate, it will be able to simulate it again. But the 

capability of the other approaches will depend on their ability. 

The modified harmony search algorithm is used to perform this evaluation. The algorithm 

memory is considered to be 10 in all cases, and the algorithm has started from a completely 

random airfoil and moves towards reaching the target airfoil. The value of n (related to equation 

(30)) equals 121. Each experiment is carried out several times, and finally, the best result is 

reported as the final result. 

Table 1) shows the results of this evaluation. The value of the objective function (which 

corresponds to the error of each approach) is presented for each experiment, separately. Table 

2 reports the sum of all errors in 10 experiments for three approaches. Figure 6) to Figure 15) 

also disclose the results of each of the experiments presented in Table 1). These diagrams 

exhibit the flexibility of the three methods in reaching the target airfoil. In the present work, the 

airfoils have become dimensionless by their length. But for the sake of being brief, coordination 

related to the airfoil is represented by X and Y. Investigating the abovementioned tables and 

figures demonstrates the NACA 4-digit airfoil does not provide high flexibility. Therefore, 
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despite having a smaller number of control parameters, this approach is put away. 

But the other two approaches (the Parsec and Bezier curves) appear competent in this 

experiment. Despite the superiority of Bezier curves over the Parsec method, the other condition 

of the problem is discussed. Because this superiority is not a remarkable one, and both of them 

have almost the same sum of errors. The other essential requirement is having a small number 

of control parameters. The Parsec method has 9 control parameters, and the Bezier curves used 

in this experiment have 10 control parameters. Since the control parameter has a direct effect 

on convergence, therefore, choosing the Parsec method, proper flexibility can also be achieved 

as well as a smaller number of control parameters. Correspondingly, the Parsec method has 

been introduced for airfoil shape parameterization in the present work. 

It is worth noting that if, in specific applications, flexibility is of greater importance, the Bezier 

curves (with a more significant number of control parameters) can be used. This will result in 

an approach with high flexibility, but convergence will be delayed because of a more significant 

number of control parameters that must coordinate with each other. 

The accuracy and flexibility of these three airfoil shape definition methods clearly show their 

importance in optimizing aerodynamic problems. Because if the geometry of the airfoil is not 

obtained with good accuracy; as a result, the flow around the airfoil is not solved correctly by 

the numerical solver. Therefore, the aerodynamic parameters such as lift and drag coefficients 

will not be accurately estimated. 

 
Table 1 The results of the evaluation of the flexibility of airfoil shape parameterization methods 

 
Table 2 The Sum of All Errors in 10 Experiments Related to the Evaluation of the Flexibility of Airfoil Shape 

Parameterization Methods 

 

Experiment No. 
Method 

NACA 4-digit airfoil Parsec Method Bezier Curves 

Experiment 1 (target airfoil 

NACA0012) 
1.18E-6 5.46E-3 3.29E-2 

Experiment 2 (target airfoil 

NACA4812) 
5.18E-3 1.2E-1 1.09E-1 

Experiment 3 (target airfoil 

NACA2211) 
4.72E-3 1.79E-1 5.15E-2 

Experiment 4 (target airfoil randomly 

created by the Parsec method) 
6.54E-1 1.88E-4 9.55E-2 

Experiment 5 (target airfoil randomly 

created by the Parsec method) 
1.15 3.35E-3 1.11E-1 

Experiment 6 (target airfoil randomly 

created by the Parsec method) 
4.62E-1 6.24E-4 9.83E-2 

Experiment 7 (target airfoil randomly 

created by the Bezier curves) 
5.44E-1 3.3E-2 3.3E-3 

Experiment 8 (target airfoil randomly 

created by the Bezier curves) 
3.3E-1 2.07E-1 8.69E-3 

Experiment 9 (target airfoil randomly 

created by the Bezier curves) 
6.55E-1 1.22E-1 3.62E-4 

Experiment 10 (target airfoil RAE 

2822) 
5.22E-1 2.27E-2 3.5E-2 

 NACA 4-digit airfoil Parsec Method Bezier Curves 

Sum of errors 4.02 6.94E-1 5.46E-1 
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Figure 5  Objective function calculation to investigate 

the flexibility 
Figure 6 Experiment 1 (target airfoil NACA0012) 

  
Figure 7 Experiment 2 (target airfoil NACA4812) Figure 8 Experiment 3 (target airfoil NACA2211) 

 

  

Figure 9 Experiment 4 (target airfoil randomly created by the 

Parsec method) 

Figure 10 Experiment 5 (target airfoil randomly created 

by the Parsec method) 
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Figure 11 Experiment 6 (target airfoil randomly created 

by the Parsec method) 

 Figure 12 Experiment 7 (target airfoil randomly 

created by the Bezier curves) 

 

  

Figure 13 Experiment 8 (target airfoil randomly created 

by the Bezier curves) 

  Figure 14 Experiment 9 (target airfoil randomly 

created by the Bezier curves) 

 

 

Figure 15 Experiment 10 (target airfoil RAE 2822) 
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3.2   Aerodynamic inverse optimization design 
 
In this section, an aerodynamic inverse optimization design is performed. 

Inverse optimization is of interest in the present work because it can be used to validate the 

current improved harmony search algorithm. 

 In inverse design, the target airfoil shape is rebuilt by making the pressure distribution 

coefficient close to the defined airfoil pressure distribution. This type of design can test the 

airfoil optimizing set. 

By the results of the previous section, the Parsec method will be used. In this section, the 

memory size of the HS algorithm is considered to be 10. Also, the upper and lower limits of 

this allowable range are shown in Table (3). To start optimization, one airfoil will be considered 

to be a NACA0012 airfoil (in the second evaluation RAE2822), and the remaining 9 airfoils 

will be random, which are generated by applying some changes on NACA0012 airfoil (in the 

second evaluation of RAE2822). First, the NACA0012 and RAE2822 airfoils are considered 

the initial and target airfoils, respectively. The goal is to reach the target airfoil by minimizing 

the surface pressure difference. This is done under the following conditions: 
 

α = 2°, M∞ = 0.73, Re∞ = 6.5E6 
 

An example of mesh around the airfoil (type O) is shown in Fig. (16). Because the viscous flow 

is considered, the mesh near the body has more density. This makes it possible to simulate the 

turbulent boundary layer well. Also, the network on the leading edge and trailing edge of the 

airfoil, which have more gradients than the middle parts of the airfoil, is non-uniform. This 

work makes a smoother surface with fewer points, and finally, a better mesh is obtained. After 

the mesh study, the number of mesh 131 x 81 was selected for all the simulations. 

Figure (17) and Figure (18) show the result of this experiment as the geometry and pressure 

coefficient distribution of the initial and final airfoils. As can be seen, this set has been able to 

start from an initial airfoil and lead it towards the target one with good accuracy. The objective 

function versus several iterations presented, to investigate the accuracy and convergence of the 

optimization (Figure 19). The convergence history of the best member of the memory is shown 

along with an average of the whole members of the memory. According to this figure, it can be 

seen that the set has been able to decrease the value of the objective function to 2.5E-6. 

Furthermore, an incomplete convergence is observed. This means that by increasing the number 

of iterations, it is also likely that the value of the objective function decreases to a value less 

than the obtained value. However, since the obtained value of the objective function shows the 

accuracy of the optimization set, this value is considered to be enough (for several iterations). 

To demonstrate the independence of the set from the initial and target airfoils, the previous 

experiment is performed in the inverse direction. This means that the investigation is carried 

out under the same conditions, but starts from the RAE2822 airfoil and reaches NACA0012 

one (target airfoil) by minimizing the objective function. The geometry and surface pressure 

coefficient distribution of the initial and final airfoils are presented in Figure (20) and Figure 

(21). The convergence history is shown in Figure (22). 

These results emphasize that the initial and target airfoils do not affect the airfoil optimizing set 

significantly. The second result is the verification of the accuracy of the airfoil optimizing set. 

This is because the set has been able to decrease the value of the objective function to 4.3E-6 

(which is a good accuracy for this problem).  

The efficiency of the optimizing airfoil set is evaluated under different flow conditions. To do 

this, the NACA0012 airfoil is considered the initial airfoil, and the RAE2822 airfoil is 

considered as target one under the following flow conditions: 

 
α = 2.79°, M∞ = 0.734, Re∞ = 6.5E6. 
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Figure (23) and Figure (24) exhibit the geometry and surface pressure coefficient distribution 

of the initial and final airfoils. Figure (25) shows the convergence history of this evaluation. 

The results prove that the optimization set performs well under different flow conditions 

because the algorithm has been able to decrease the objective function to 4E-5. 
 

 

Figure 16 mesh around the RAE2822 airfoil from a close-up view (131 x 81) 

Table 3 The allowed range for controlling parameters 

 

  
Figure 17 Inverse constructed shape Starting from 

NACA0012 to RAE2822 (α = 2° , M∞ = 0.73, Re∞ =
6.5E6) 

Figure 18 pressure coefficient distribution in inverse 

optimization Starting from NACA0012 to RAE2822 

(α = 2° , M∞ = 0.73, Re∞ = 6.5E6) 
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Figure 19 convergence history in inverse optimization 

Starting from NACA0012 to RAE2822 (α = 2°, M∞ =
0.73, Re∞ = 6.5E6) 

Figure 20 Inverse constructed shape Starting from 

Rea2822 to NACA0012 (α = 2° , M∞ = 0.73, Re∞ =
6.5E6) 

  
Figure 21 Pressure coefficient distribution in inverse 

optimization Starting from RAE2822 to NACA0012 

(α = 2° , M∞ = 0.73, Re∞ = 6.5E6) 

Figure 22 Convergence history in inverse optimization 

Starting from Rea2822 to NACA0012 (α = 2°, M∞ =
0.73, Re∞ = 6.5E6) 

  
Figure 23 Inverse constructed shape Starting from 

NACA0012 to RAE2822 (α = 2.79° , M∞ = 0.734, Re∞ =
6.5E6) 

Figure 24 Pressure coefficient distribution in inverse 

optimization Starting from NACA0012 to Rea2822 

(α = 2.79° , M∞ = 0.734, Re∞ = 6.5E6) 
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Figure 25 Convergence history in inverse optimization Starting from NACA0012 to RAE2822 (α =

2.79°, M∞ = 0.734, Re∞ = 6.5E6) 

 

3.3 Direct aerodynamic optimization design aimed at obtaining the maximum lift to drag ratio 

 

By the results of the previous section, the performance of the optimization setting is confirmed. 

So, in this section, airfoil shape optimization is performed to obtain the maximum lift-to-drag 

ratio. The viscous and turbulent flow has been considered under the following conditions: 

 

α = 2.79°, M∞ = 0.734, Re∞ = 6.5E6 
 

The Parsec method describes the airfoil geometry, and the memory size of the algorithm is 

equal to 10. Considering the NACA0012 airfoil as the initial airfoil, the initial memory of the 

algorithm is filled with one NACA0012 and another 9 random airfoils.  

Next, the algorithm searches for the optimum airfoil by changing the design parameters and 

creating new airfoils. To develop reasonable geometries, design parameters are determined in 

an allowable range. The upper and lower limits of the range are shown in Table (3). 

Thin airfoils intrinsically have a smaller drag value. Whereas, thin airfoils are not a very 

desirable feature in practice.  Thus, a thickness limitation is applied to the algorithm to avoid 

investigating thinner airfoils. If this thickness limitation is not used, the geometries will be 

pulled towards thin airfoils. The allowed range is considered 11 to 12.2 percent of the airfoil 

length, at the present work. 

Figure (26) shows the result of the present aerodynamic optimization process as the initial and 

optimized shapes. This figure clearly shows that to achieve the maximum value of the objective 

function, how airfoil geometry has changed. Initial and optimized airfoil thickness is 12 and 

11.05 percent of the airfoil chord, respectively. Considering the allowed range determined for 

the airfoil thickness, this could be expected. The reason is its drag being intrinsically low. 

The present optimization algorithm acts repeatedly and gradually approaches the optimum 

shape. Figure (27)  makes this process more tangible and shows the steps of shaping progress. 

Five iterations as a representation of whole iterations show the optimization process. 

Furthermore, Figure (28) shows all the airfoils created by the algorithm. This figure illustrates 

that to obtain the optimum airfoil, the algorithm has created and investigated different shapes 

and has led the airfoil towards the optimum one. Generally, delaying or reducing shock waves 

results in increased lift and decreasing drag. Figure 29) shows the surface pressure coefficient 

distribution of the initial and optimized shapes. It is seen that the shock wave has significantly 

decreased. 

To better understand how pressure is distributed around the initial and final airfoils, pressure 
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contours are reported separately. Figure (30) shows pressure contours around the initial airfoil 

(NACA0012). The existence of a relatively strong shock wave is seen in this figure. Figure (31) 

shows pressure contours around the optimum airfoil. The weakened shock wave that has 

decreased and diffused along the optimized airfoil, compared to the initial airfoil, is observed 

in this figure. 

Figure (32) shows the best and average value of the objective function existing in the memory 

of the optimization algorithm versus the number of iterations. As can be seen in this figure, 

after about 700 iterations, the results converge to the desired value, so no significant change is 

seen in the value of the objective function. Therefore, these results can be introduced as 

converged results.  

In this optimization process, the lift coefficient increased from 0.4316 to 0.517, and the drag 

coefficient decreased from 0.01868 to 0.01104. This proves a relative increment of lift 

coefficient by 19.79 percent and a relative decrement of drag coefficient by 69.13 percent. The 

lift-to-drag ratio (objective function) has increased from 27.95 to 46.28 (relative increment of 

about 67.51 percent), and this phenomenon is of designer’s interest. 

Precise direct optimization of an aerodynamic body will lead to the production of a wing and a 

body that has a low drag coefficient and a high lift coefficient. As a result, the aerodynamic 

device will have higher maneuverability and lower fuel consumption. The results of this 

research show that the modified harmony search algorithm can direct optimization with the 

desired accuracy. Therefore, this algorithm can be used in this matter. 
 

  
Figure 26 Directly constructed shape with maximum 

lift/drag target function, initial and optimum shapes 

(α=2.79°, M∞=0.734, Re∞=6.5E6) 

Figure 27 Shape convergence progress along with 

iterations in direct optimization (α=2.79°, M∞=0.734, 

Re∞=6.5E6) 

  
Figure 28 All obtained shapes along with direct 

optimization with  maximum lift/drag target function 

(α=2.79°, M∞=0.734, Re∞=6.5E6) 

Figure 29 Surface pressure coefficient distribution of 

the initial and optimized shapes in direct optimization 

(α=2.79°, M∞=0.734, Re∞=6.5E6) 
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Figure 30 pressure contours of an initial airfoil in direct 

optimization (α=2.79°, M∞=0.734, Re∞=6.5E6) 

 

Figure 31 pressure contours of an initial airfoil in 

direct optimization (α=2.79°, M∞=0.734, Re∞=6.5E6) 

 
Figure 32 convergence history in direct optimization (α=2.79°, M∞=0.734, Re∞=6.5E6) 

 

4   Conclusion 
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aerodynamic problems. First, the capability of methods of airfoil shape parametrization (Bezier 
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modified harmony search optimization algorithm. 

In inverse optimization, the objective function is the difference in pressure coefficient 

distributions of the airfoil being investigated and the target airfoil. In direct optimization, the 
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Aerodynamic analysis of the problem was obtained using compressible Reynolds-Averaged 

Navier-Stokes (RANS) equations along with the Spalart-Allmaras turbulence model. General 

results obtained from these studies are as follows: 

 Bezier curves and the Parsec method have higher flexibility than NACA 4-digit airfoil. The 
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parameters will provide better results.  

 The results expressed that using a non-aerodynamic objective function, as inverse 

optimization design is a valuable approach for evaluating the flexibility of parameterization 

methods.  

 The inverse optimization results showed that the present airfoil shape optimization set can 

obtain the target shape with high accuracy. 

 The Direct optimization with a maximum lift to drag ratio target function revealed that the 

shock waves significantly weaken at the optimum airfoil. Furthermore, the position of 

shock waves moves towards the end of the body. To achieve the desirable airfoil, the 

pressure distribution must be smoother and more monotonic.  

 Generally, the results obtained verify that using the modified harmony search algorithm 

together with the Parsec method provides a powerful tool for direct and inverse 

aerodynamic optimization. 
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Nomenclature 
 

an             Parsec coefficients 

A                  cell volume 

Bi                 Bernstein polynomials 
BW              Bandwidth 

c            chord 

C            vector 

Cx, Cy          components of vector C 

D              source term related to the turbulent model 

E              sum of internal and kinetic energies 

𝐹              objective function 

𝐹𝑖,𝐺𝑖       inviscid flux vectors 

𝐹𝑣,𝐺𝑣            viscous flux vectors 

HMS            harmony memory size 

HMCR         harmonic memory considering the rate 

M∞               Mach number 
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m               maximum camber  

n             order of a polynomial 
p               maximum camber location  

Pi             Bezier points 

p               static pressure 

qx, qy            heat fluxes 

PAR              pitch adjustment rate 

Q                  summation of inviscid and viscous flux vectors 

Re               Reynolds number 
S               source term 
t                    time 

u,v                velocity components 

UB, LB         upper and lower limits of the variable 

W               vector of the quantities 

X              Parsec control parameters 

x,y                 longitudinal and transverse coordinates 

𝑋                    vector of design variables 

𝑋𝑢𝑝, 𝑌𝑢𝑝         coordinates of upper surfaces of NACA 4-digit airfoils   

𝑋𝑙𝑜, 𝑌𝑙𝑜           coordinates of lower surfaces of NACA 4-digit airfoils   

𝑦𝑡ℎ                thickness distribution of airfoils 

𝑦𝑐                middle curve line of the airfoil 

𝑧𝑃𝑎𝑟𝑠𝑒𝑐           Parsec equation 

Zlo, Zup         the maximum position of lower and upper surfaces 

Zxxup,Zxxlo    the second derivative at the maximum position of lower and upper surfaces 

ZTE                the thickness of the final edge 

α               angle of attack 

𝛼()                 coefficients of Runge-Kutta scheme 

θ                slope of the middle curve of an airfoil 

𝜌                density 

σ                    constant of Spalart-Allmaras turbulence model  
𝜏                maximum thickness  

τxx                 Stress tensor components 

𝜈̂                intermediate chaotic kinematics viscosity 

ν                    laminar kinematics viscosity 

ΔZTE             the position of the final edge  

Δt                  local time step 

 

 

 

 

 


