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1 Introduction 

 

In the solid mechanics, the Fourier law of heat conduction is commonly used to describe the 

heat transfer phenomena. This model predicts the thermal wave propagation with infinite speed. 

Instead, the generalized thermoelasticity introduces the transmission of thermal wave with 

finite speed. There are several mathematical models which admit finite speed of thermal wave 

propagation and the second sound effects such as Lord-Shulman [1], Green-Lindsay [2], and 

Green-Naghdi [3, 4]. In the theory of Lord-Shulman, the Fourier law of heat conduction is 

adjusted by bringing the concept of relaxation time. 

The theories of Green-Lindsay and Green-Naghdi pursue a more thermodynamical approach. 

Green and Lindsay offered two lag times in the stress-strain relation and entropy expression, 

based on works of Müller [5] and Green and Law [6]. Green and Naghdi introduced the concept 

of thermal displacement, and based on this concept they offer three distinct thermoelastic 

models which are known as type I, II, and III. The types II and III of Green-Naghdi theory 

demonstrate the second sound effect. The linearized form of type I is equivalent to the previous 

well-known Fourier law of heat conduction. The type II predicts a non-dissipative effect.  
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Dynamic Coupled Thermo-Viscoelasticity 

of a Spherical Hollow Domain 
The generalized coupled thermo-viscoelasticity of hollow 

sphere subjected to thermal symmetric shock load is 

presented in this paper. To overcome the infinite speed 

of thermal wave propagation, the Lord-Shulman theory 

is considered. Two coupled equations, namely, the radial 

equation of motion and the energy equation of a hollow 

sphere are obtained in dimensionless form. Resulting 

equations are transformed into the Laplace domain using 

the Laplace transformation and discretized by means of 

the finite element method along the radius. Week's 

method is employed to obtain the unknowns in the time 

domain. The numerical results are provided to examine 

the propagation of thermal and mechanical waves. The 

results presented visually as temporal, radial and stress-

strain plots to shown wave front of various field 

variables. 
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However, the type III, which is combinatory form of types I and II, has a dissipative effect. 

Bagri and Eslami [7] suggested a unified model of thermoelasticity which contains all 

aforementioned models. Many researches have studied the contexts of generalized 

thermoelasticity [8-13]. 

Similar to the elastic materials, it is excepted to see the second sound effect in the viscoelastic 

materials. Ezzat et al. [14] formulated the generalized thermo-viscoelasticity using the state 

space approach. Othman et al. [15] proposed a solution for the two dimensional linear 

generalized thermo-viscoelasticity. El-Karamany and Ezzat [16] established a solution for the 

linear generalized thermo-viscoelasticity based on the Laplace transformation technique. Kar 

and Kanoria [17] studied the thermo-viscoelastic interaction on a homogeneous viscoelastic 

isotropic spherical shell in the context of generalized theories of thermo-elasticity. 

In the present study, we present a dynamic coupled thermo-viscoelastic analysis for spherical 

hollow domains. The domain is considered to be subject of spherically symmetric heat shock, 

both in meridian and circumferential directions. The medium is made of homogenous and 

isotropic thermo-viscoelastic material. The Kelvin-Voigt rheological model in conjunction with 

conventional small deformation thermoelasticity is adjusted for explaining the thermo-

viscoelastic behavior of the domain. The appropriate equation of motion and energy equation 

are derived in radial direction. The energy equation is derived based on the Lord-Shulman 

theory of generalized thermoelasticity. For the sake of numerical convenience, the governing 

equations are converted into a non-dimensional form. The weak form of non-dimensional 

governing equations are discretized using the one-dimensional trans-finite element method and 

results are obtained in the Laplace domain. In order to achieve the obtained variables in the 

time domain, a numerical Laplace inversion method must be considered. In this study, the 

Weeks method [18] is employed to obtain the unknowns in the real time domain. For validation 

consideration, the results are compared with the known data in literature. 

The results are presented as distribution of stresses, displacement, and temperature with respect 

to the non-dimensional time and non-dimensional space variable in radial direction. Also, the 

stress-strain diagrams presented for different types of loading and the hysteresis effect are 

shown. Using the prepared finite element model, different numerical examples are solved. 

Consequently, effects of the viscous relaxation time and the rate of loading on the magnitude 

of stress wave fronts are obtained. In this way, the results reveal the effect of time dependent 

constitutive relation on the response of a spherical hollow domain to the different types of heat 

shock. 

 

2 Preliminaries 

 

2-1 Motion Equation 

 

The equation of motion for the case of symmetric displacement in the spherical coordinates in 

absent of body force is 

𝜕𝜎𝑟𝑟

𝜕𝑟
+

2𝜎𝑟𝑟 − 𝜎𝜃𝜃 − 𝜎𝜙𝜙

𝑟
= 𝜌𝑢̈ (1) 

Where  (    ̇ ) indicates the derivative with respect to time. In above equation,𝜎𝑟𝑟, 𝜎𝜃𝜃, and 𝜎𝜙𝜙 

are the radial, meridian, and circumferential normal components of stress tensor, respectively. 

Also, the radial displacement is denoted by 𝑢 and 𝜌 is the mass density. 

In order to model an isotropic homogeneous viscoelastic solid, Kelvin-Voigt is chosen. This 

model can be represented as shown in Figure (1) with help of spring and dashpot. Based on this 

model, the stress-strain relations are written as [19], 
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𝜎𝑟𝑟 = (1 + 𝜏
𝜕

𝜕𝑡
) [2𝜇𝜀𝑟𝑟 + 𝜆(𝜀𝑟𝑟 + 𝜀𝜃𝜃 + 𝜀𝜙𝜙) − 𝛽(𝑇 − 𝑇0)]

𝜎𝜃𝜃 = (1 + 𝜏
𝜕

𝜕𝑡
) [2𝜇𝜀𝑟𝑟 + 𝜆(𝜀𝑟𝑟 + 𝜀𝜃𝜃 + 𝜀𝜙𝜙) − 𝛽(𝑇 − 𝑇0)]

𝜎𝜙𝜙 = (1 + 𝜏
𝜕

𝜕𝑡
) [2𝜇𝜀𝑟𝑟 + 𝜆(𝜀𝑟𝑟 + 𝜀𝜃𝜃 + 𝜀𝜙𝜙) − 𝛽(𝑇 − 𝑇0)]

 (2) 

 

Here, 𝜀𝑟𝑟 , 𝜀𝜃𝜃 , and 𝜀𝜙𝜙  are the strain tensor components, 𝑇 and 𝑇0  are the absolute and 

reference temperatures, 𝜆 and 𝜇 are the Lamé coefficients and 𝛽 is the thermoelastic parameter 

which is defined as 𝛽 =  (3𝜆 +  2𝜇)𝛾, where 𝛾 is thermal expansion coefficient. In this model, 

it is assumed that the viscous effect acts on all components, including spherical and deviatoric, 

with similar viscous relaxation time of 𝜏. 

The components of strain tensor in spherical coordinates in terms of the displacement 𝑢 and 

due to the meridian and circumferential symmetry are 

𝜀𝑟𝑟 =
𝜕𝑢

𝜕𝑟
, 𝜀𝜃𝜃 = 𝜀𝜙𝜙 =

𝑢

𝑟
 (3) 

2-2 Energy Equation 

 

The conventional Fourier law of heat conduction is modified as a result of the Lord-Shulman 

theory by introduction of a relaxation time 𝑡0 in spherical coordinates as [1, 20] 

(1 + 𝑡0

𝜕

𝜕𝑡
) 𝑞𝑟 = −𝐾

𝜕𝑇

𝜕𝑟
 (4) 

 

Where  𝑞𝑟 is the radial component of heat flux and 𝐾 is the thermal conductivity coefficient. 

The linear form of the heat balance equation in term of radial heat flux 𝑞𝑟 is obtained as [20], 

1

𝑟2

𝜕(𝑟2𝑞𝑟)

𝜕𝑟
+ 𝛽𝑇0(𝜀𝑟̇𝑟 + 𝜀𝜃̇𝜃 + 𝜀𝜙̇𝜙) + 𝜌𝑐𝑇̇ = 0 (5) 

  

Here, 𝑐 represents the specific heat at constant strain. 

Figure 1 The intellectual diagram of Kelvin-Voigt thermo-viscoelastic model. 
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2-3 Equations in Non-Dimensional Form 

 

Transferring the equations into the non-dimensional form is a practical approach in numerical 

computation physics. Using this method, numerical fluctuations and noises reduce and 

numerical stability increases in return. In order to do this, dimensionless variables are 

introduced as given below 

𝑟∗ =
𝑟

𝑙
, (𝑡∗. 𝑡0

∗. 𝜏∗) =
(𝑡. 𝑡0. 𝜏)𝑐1

𝑙
, 𝑇 =

𝑇 − 𝑇0

𝑇𝑑
,

𝑢∗ =
𝑢(𝜆 + 2𝜇)

𝑙𝛽𝑇𝑑
, (𝜎𝑟𝑟 . 𝜎𝜃𝜃. 𝜎𝜙𝜙) =

(𝜎𝑟𝑟 . 𝜎𝜃𝜃. 𝜎𝜙𝜙)

𝛽𝑇𝑑
, 𝑞𝑟

∗ =
𝑞𝑟𝑙

𝐾𝑇𝑑

 (6) 

The symbol ( ∗ )  indicates the dimensionless parameters. The parameter 𝑙  is the 

characteristic length and is defined as 𝑙 = 𝐾(𝜌𝑐𝑐1)−1 and 𝑇𝑑 is the designation temperature. 

Moreover, 𝑐1  is the speed of propagation of primary elastic wave and is defined as 𝑐1  =

√(𝜆 + 2𝜇) 𝜌⁄ . Considering the dimensionless parameters (6) and the governing Eqs. (1) and 

(5) and also the constitutive relations (2), (4), and strain-displacement relations (3), the non-

dimensional form of these equations are obtained as 

𝜕𝜎𝑟𝑟
∗

𝜕𝑟∗
+ 2

𝜎𝑟𝑟
∗ − 𝜎𝜃𝜃

∗

𝑟∗
=

𝜕2𝑢∗

𝜕𝑡∗2  (7) 

1

𝑟∗2

𝜕(𝑟∗2𝑞𝑟
∗)

𝜕𝑟∗
+ 𝐶𝑇

𝜕

𝜕𝑡∗
(

𝜕𝑢∗

𝜕𝑟∗
+ 2

𝑢∗

𝑟∗
) +

𝜕𝑇∗

𝜕𝑡∗
= 0 (8) 

𝜎𝑟𝑟
∗ = (1 + 𝜏∗

𝜕

𝜕𝑡∗
) [

𝜕𝑢∗

𝜕𝑟∗
+ 2𝐶𝐸

𝑢∗

𝑟∗
− 𝑇∗]

𝜎𝜃𝜃
∗ = (1 + 𝜏∗

𝜕

𝜕𝑡∗
) [𝐶𝐸

𝜕𝑢∗

𝜕𝑟∗
+ (1 + 𝐶𝐸)

𝑢∗

𝑟∗
− 𝑇∗]

 (9) 

(1 + 𝑡0
∗

𝜕

𝜕𝑡∗
) 𝑞𝑟

∗ = −
𝜕𝑇∗

𝜕𝑟∗
 (10) 

 

In Eqs. (8) and (9), 𝐶𝐸  and 𝐶𝑇  are coupling parameters corresponding to the elastic and 

thermoelastic effects, respectively. These coupling parameters are defined as 

𝐶𝐸 =
𝜆

𝜆 + 2𝜇
, 𝐶𝑇 =

𝛽2𝑇0

𝜌𝑐𝑐1
2

 (11) 

  

3 Solution Method 

 

3-1 Transfinite Element Formulation 

 

The Galerkin method [21] is used to discretized the balance equations across the thickness of 

hollow sphere ℬ . Accordingly, the hollow sphere is divided into 𝑛𝑒  concentric spherical 

elements ℬ(𝑒)  with equal thicknesses. Nodal values are considered on each sides of these 

spherical elements, as shown in Figure (1). These nodal values interpolate across the thickness 

of elements with the aid of appropriate shape functions. 
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ℬ = ⋃ ℬ(𝑒)

𝑛𝑒

𝑒=1

 (12) 

𝑢∗(𝑟∗. 𝑡∗)|
ℬ(𝑒) = ∑ 𝑁𝑚(𝑟∗)𝑈𝑚

∗ (𝑡∗)

𝑛𝑟

𝑚=1

, 𝑇∗(𝑟∗. 𝑡∗)|
ℬ(𝑒) = ∑ 𝑁𝑚(𝑟∗)𝑇𝑚

∗ (𝑡∗)

𝑛𝑟

𝑚=1

 (13) 

 where 𝑛𝑟 is the number of nodal values across the thickness of ℬ(𝑒), which is equal to two in 

this study. Here, 𝑁𝑚 , 𝑈𝑚
∗ , and 𝑇𝑚

∗  are shape function and the nodal values of the radial 

displacement and temperature fields, respectively. The week from obtained by applying the 

Galerkin method to Eqs. (7) and (8) as following 

 

∫ (
𝜕2𝑢∗

𝜕𝑡∗2 𝛿𝑢∗ + 𝜎𝑟𝑟
∗

𝜕𝛿𝑢∗

𝜕𝑟∗
+ 2𝜎𝜃𝜃

∗ 𝛿𝑢∗

𝑟∗
) 𝑑𝑉∗

 

ℬ

= 𝐹𝑟
∗𝛿𝑢∗|𝜕ℬ (14) 

∫ (𝑞𝑟
∗

𝜕𝛿𝑇∗

𝜕𝑟∗
+ 𝐶𝑇

𝜕

𝜕𝑡∗
(

𝜕𝑢∗

𝜕𝑟∗
+ 2

𝑢∗

𝑟∗
) 𝛿𝑇∗ +

𝜕𝑇∗

𝜕𝑡∗
𝛿𝑇∗) 𝑑𝑉∗

 

ℬ

= −𝑄𝑟
∗𝛿𝑢∗|𝜕ℬ 

(15) 

 

Here, 𝐹𝑟
∗ and 𝑄𝑟

∗are radial traction and heat flux over the surface of ℬ. Using Eqs (12) and 

(13) and substituting into Eqs. (14) and (15), also by aid of the Laplace transformation in case 

of vanished initial conditions, the transfinite element equations are obtained as 

∫ [𝑠2𝑟∗2{𝑁}〈𝑁〉 + (1 + 𝜏∗𝑠) (𝑟∗2 {
𝜕𝑁

𝜕𝑟∗
} 〈

𝜕𝑁

𝜕𝑟∗
〉

 

ℬ(𝑒)

+ 2𝑟∗𝐶𝐸 ({
𝜕𝑁

𝜕𝑟∗
} 〈𝑁〉 + {𝑁} 〈

𝜕𝑁

𝜕𝑟∗
〉) + 2(1 + 𝐶𝐸){𝑁}〈𝑁〉)] 𝑑𝑟∗ {𝑈̂∗}

− ∫ [(1 + 𝜏∗𝑠) (𝑟∗2 {
𝜕𝑁

𝜕𝑟∗
} 〈𝑁〉 + 2𝑟∗{𝑁}〈𝑁〉)] 𝑑𝑟∗

 

ℬ(𝑒)
{𝑇̂∗} =

1

4𝜋
𝐹̂𝑟

∗{𝑁}|
𝜕ℬ(𝑒)  

(16) 

∫ 𝐶𝑇𝑠 [𝑟∗2{𝑁} 〈
𝜕𝑁

𝜕𝑟∗
〉 + 2𝑟∗{𝑁}〈𝑁〉] 𝑑𝑟∗

 

ℬ(𝑒)
{𝑈̂∗}

+ ∫ [
𝑟∗2

1 + 𝑡0
∗𝑠

{
𝜕𝑁

𝜕𝑟∗
} 〈

𝜕𝑁

𝜕𝑟∗
〉 + 𝑠𝑟∗{𝑁}〈𝑁〉] 𝑑𝑟∗

 

ℬ(𝑒)
{𝑇̂∗} = −

1

4𝜋
𝑄̂𝑟

∗{𝑁}|
𝜕ℬ(𝑒)  

(17) 

Figure 2 One dimensional simplex element along the thickness of hollow sphere. 
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In above equations, (   ̂) indicates the filed values in Laplace domain and 𝑠  is the Laplace 

variable. Here, Eqs. (16) and (17) can be written in form of a linear system of algebraic equation 

in the Laplace domain after assembling all elements together. 

[𝐾̂(𝑠)]{𝑋̂(𝑠)} = {𝐹̂(𝑠)} (18) 

By solving Eq. (18), field variables are obtained in the Laplace domain. To transfer this field 

variables from the Laplace domain into the time domain, a numerical Laplace inversion method 

has been applied. 

 

3-2 Numerical Laplace Inversion Method 

 

In this study, the method of Weeks [18] is employed. This method is a series expansion method 

which uses the Laguerre orthonormal polynomials [22], 

𝑓(𝑡) ≅ 𝑒𝜎𝑡 ∑ 𝑎𝑗L𝑗 (
𝑡

𝑔
)

∞

𝑗=0

 

 

(19) 

Where  𝐿𝑗(∙) is the 𝑗th Laguerre polynomial and 𝜎 and 𝑔 are scaling factors. Using 𝑀 terms of 

approximation yields 

𝜎 = Ψ −
1

2𝑔
,   𝑇 = 2𝑔,   𝑔 =

𝑡𝑚𝑎𝑥

𝑁
,   Ψ = (𝛼 +

1

𝑡𝑚𝑎𝑥
 ) 𝐻 (𝛼 +

1

𝑡𝑚𝑎𝑥
 ) (20) 

 

Here, 𝛼 is an optimizing parameter and 𝑡max  is the largest value of time needed to compute. 

In Eq. (20), 𝐻(⋅) is the unit step function. To calculate the value of weight parameters 𝑎𝑖 in Eq. 

(19), following relations are used 

𝑎0 =
1

𝑀 + 1
∑ ℎ(𝜃𝑘)

𝑀

𝑘=0

, 

(21) 

𝑎𝑗 =
2

𝑀 + 1
∑ ℎ(𝜃𝑘) cos(2𝑗𝜃𝑘)

𝑀

𝑘=0

 

which, 

𝜃𝑘 =
𝜋

2

2𝑘 + 1

𝑀 + 1
 

(22) 

ℎ(𝜃) =
𝑀

𝑡max  
{𝑅𝑒 [𝐹 (Ψ +

𝑖

2𝑔
cot

𝜃𝑘

2
)] − cot

𝜃𝑘

2
 𝐼𝑚 [𝐹 (Ψ +

𝑖

2𝑔
cot

𝜃𝑘

2
)]} 

 

4 Numerical Results and Discussion 

 

A hollow sphere made of homogeneous isotropic material with dimensionless inside radii 𝑟𝑖
∗ =

1 and dimensionless outside radii 𝑟𝑜
∗ = 2 subjected to different cases of thermal loading is 

considered. The thermomechanical properties are considered as 𝜆 =40.4 𝐺𝑃𝑎, 𝜇 =27.0𝐺𝑃𝑎, 

𝛾 = 23 × 10−6  1 𝐾⁄ , 𝜌 = 2707 𝑘𝑔 𝑚3⁄  , 𝐾 = 204 𝑊 𝑚⁄ , and 𝑐 = 903 𝐽 𝐾𝑔 𝐾⁄ .  
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Eslami and Vahedi [20, 23, 24] solve the linear thermoelasticity of a hollow sphere using 

the finite element method. The results of this study are compared with those done by Eslami 

and Vahedi [20, 23, 24]. To compare the results, two cases of thermal loadings are presented, 

as given in Figure (3). The inside boundary of sphere is under thermal shock and the outside 

boundary is considered with zero displacement. As a result, the boundary conditions for these 

two cases of loadings are obtained as 

𝑇∗(𝑟𝑖
∗, 𝑡∗) = {

1 + (𝑡∗2 − 𝑡∗ − 1)𝑒−𝑡∗
𝑐𝑎𝑠𝑒 𝐼

exp (−
(𝑡∗ − 4𝑎)2

2𝑎2
) 𝑐𝑎𝑠𝑒 𝐼𝐼

 (23) 

  

Also, the initial conditions are assumed to be zero across the thickness of sphere 

𝑢∗(𝑟∗, 0) =
𝜕𝑢∗

𝜕𝑡∗
(𝑟∗, 0) = 𝑇∗(𝑟∗, 0) = 0 (24) 

Figure 4 Variation of the non-dimensional field variables with respect to the dimensionless time at the middle 

point under the case I of thermal loading, (a) in absent of the thermal and viscoelastic relaxation effects and in 

comparison with Eslami and Vahedi results [20], and (b) with 𝝉∗ = 0.4 and no thermal relaxation effect. 

Figure 3 Thermal loading profiles, (a) the case I of thermal loading profile for validating results, 

(b) the case II of thermal loading profile in form of a thermal shock. 
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4-1 Comparison Study 

 

Considering a hollow sphere with the previous mentioned properties with the boundary and 

initial conditions of EQs. (23) and (24) under the case I of thermal loading in absent of all 

viscous and second sound effects. In this case, the temporal variation of dimensionless 

temperature, displacement, radial stress, and meridian stress are established as results of Figure 

(4a). These results are obtained by 100 elements and the Weeks parameters of 𝛼 = 0.16 and 

𝑀 = 32. By comparing these results with the previous results done by Eslami and Vahedi [20, 

23, 24], an exceptional concurrence can be observed. 

In the next step, the viscous relaxation time 𝜏∗ is considered as 0.4 and results are obtained. 

The non-dimensional field variables are obtained in Figure (4b). Clearly, it is seen that the wave 

fronts obtained in Figure (4a) are damped by the viscous effect in Figure (4b). It is, however, 

seen that the changes in temperature and meridian stress are not significant.  

Figure 5 Variation of the non-dimensional field variables with respect to the dimensionless time at the middle point, 

considering thermal and viscous effects, under the case II of thermal loading with, (a) 𝒂 = 1.0, and (b) 𝒂 = 0.5. 

Figure 6 Variation of different dimensionless field variables with respect to the dimensionless radial position at 

various dimensionless times under the case II of thermal loading with 𝒂 = 1.0. 
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4-2 Thermal Shock Effects 

 

A rapid temperature change is needed to reveal the second sound effect. Thus, the case II of 

thermal loading is applied with 𝑎 =1.0 and 𝑎 =0.5. In order to decrease numerical fluctuations, 

the Weeks parameter 𝑀 is increased to 50. The results are obtained in Figures (5) to (7). The 

second sound effect is observed in Figure (5). Also, the influence of the thermal loading 

intensity is obvious.  

Increasing the thermal loading intensity leads the results to have amplification in magnitude of 

field variables, as shown in Figures (6) and (7), because of rapid developing of thermal loading 

profile. However, the radial profile of field variables was not changed by increasing the thermal 

loading intensity in form-factor.  

In Figure (8), the thermal and displacement wave fronts are visualized at three different 

points  𝑄1, 𝑄2, and 𝑄3, which are placed in 𝑟∗ =1.25, 𝑟∗ =1.5, and 𝑟∗ =1.75, respectively. 

The waves motion show that the speed of propagation of the thermal wave is about two time 

faster that the speed of propagation of the displacement wave and they are in order of the speed 

of propagation of primary elastic wave of  𝑐1.  
 

 

4-3 Parametric Studies 

 

In the last study, the influence of viscous relaxation time is studied. In Figure (9) the temporal 

variation of different non-dimensional field variables with respect to the distinct values of the 

viscous relaxation time are revealed. Figure (9) shows that the wave front of the displacement 

and stress fields are decreased by increasing the value of the viscous relaxation time. In other 

side, the peak values of the radial stress and meridian stress are increased due to the increasing 

of viscous relaxation time. Similar to the first study, the temperature field did not change 

significantly. In Figure (10) the loading paths are shown for 𝜏∗ = 0.5 and 𝜏∗ = 2.0. By 

increasing the value of viscous relaxation time, the surrounded area of stress-strain plane is 

increased by the hysteresis loop.  

Figure 7 Variation of different dimensionless field variables with respect to the dimensionless radial position at 

various dimensionless times under the case II of thermal loading with 𝒂 = 0.5. 
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This area is equivalent to the dissipated energy of the viscous effect. Therefore, increasing of 

the temperature through the time is expected, which it is against the existing results in Figure 

(9). These facts lead us to this conclusion that a dissipative term is missed in Eq. (5).  

This dissipative term, which correspond to evanescing of mechanical stored energy in form of 

heat, seems to be positive definite. In this way, in any conditions, either loading or unloading, 

the dissipated mechanical energy appeared in form of a positive heat source in heat transfer 

equation. In the present study, the dissipative term was not considered in the heat balance 

equation, which leads to this paradox.  

Figure 8 The propagation of thermal and elastic waves through the thickness of hollow sphere which are 

observed at three points under the case II of thermal loading with 𝒂 = 0.5. 

Figure 9 Variation of different dimensionless field variables with change of viscous relaxation time under the 

case II of thermal loading with 𝒂 = 0.5. 
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5 Conclusion 

 

The linear generalized thermo-viscoelasticity problem of thick hollow sphere subjected to 

symmetrical thermal loading in the context of the theory of Lord-Shulman and the viscoelastic 

model of Kelvin-Voigt is obtained in this paper. Two coupled balance equations are obtained 

in terms of radial displacement and temperature. The resulting equations are discretized by 

using the Galerkin finite element method and transferred into the Laplace space to obtain a 

system of linear algebraic equations in Laplace space. The numerical results are achieved in 

time domain by using the numerical inverse Laplace method of Weeks. The numerical results 

are provided to show the propagation of temperature, radial displacement, radial stress, and 

meridian stress. Furthermore, the shortage of positive definite dissipative term in the heat 

balance equation is revealed. Due to this shortage, the footprints of dissipated energy by viscous 

effect is lost in the formulations. However, this shortcoming is repeated in many researches 

[14-17], continuously. Finally, it is concluded that the dissipative term is indispensable. 
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Nomenclature 

 

𝑎 Thermal loading intensity coefficient 

𝑎𝑗 Weeks weight parameters 

ℬ Body of spherical thick sphere 

𝑐 Specific heat coefficient 

𝑐1 Speed of propagation of primary elastic wave 

𝐶𝐸 Elastic coupling parameter 

𝐶𝑇 Thermoelastic coupling parameter 

𝐹𝑟 Radial force over boundary of elements 

𝑔 Weeks scaling parameter 

ℎ(∙) Weeks weight function 

𝐻(∙) Step function 

𝐾 Thermal conductivity coefficient 

𝑙 Characteristic length 

𝐿𝑖(∙) 𝑖th Laguerre orthonormal polynomials 

𝑀 Number of Laguerre terms to approximation 

𝑛𝑟 Number of node per element 

𝑛𝑒 Number of elements 

𝑁 Shape function 

𝑞𝑖 components of heat flux vector 

𝑄𝑟 Radial flux over boundary of elements 

𝑟 radius position 

𝑟𝑖, 𝑟𝑜 inside and outside radii 

𝑠 Laplace variable 

𝑡 time variable 

𝑡0 Lord-Shulman relaxation time 

𝑡max   maximum value of time to compute with Weeks method 

𝑇 Absolute temperature 

𝑇0 Reference temperature 

𝑇𝑑 Designation temperature 

𝑇𝑚 Nodal value of Temperature 

𝑢 radial displacement 

𝑈𝑚 Nodal value of displacement 

𝑋(∙) Solution vector 
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Greek symbols 
 

𝛼 Weeks parameter 

𝛽 Thermoelastic coefficient 

𝜀𝑖𝑗 components of strain tensor 

𝛾 Thermal expansion coefficient 

𝜆, 𝜇 Lamé coefficients 

𝛹 Weeks parameter 

𝜌 mass density 

𝜎 Weeks parameter 

𝜎𝑖𝑗 Components of stress tensor 

𝜏 Kelvin-Voigt relaxation time 

𝜃_𝑖 Weeks parameters 
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 چکیده
 

تقارن م یتحت بار حرارت یتوخال یکره کی یبر رو افتهی تیعموم یتهیسیسکوالاستیو-مورمقاله ت نیدر ا

 دهشلمان به کار گرفته ش-موج حرارت، مدل لرد تینها یفائق آمدن بر سرعت انتشار ب یشده است. برا یبررس

ت. شده اس بعدیو سپس ب بدست آورده شده یتوخال یکره نیا یبرا یو انرژ یحرکت شعاع ی. دو معادلهاست

 محدود گسسته شده است.  یلاپلاس برده شده و با استفاده از روش اجزا یمعادلات به فضا نیا

. در دیزمان بدست آ یها در دامنهبه کار گرفته شده تا معادل آن کسیروش و ر،یبدست آوردن مقاد یبرا

 ییدارهابه صورت نمو جینتا نی. ادیدرآ شیبه نما یکیارائه شده تا انتشار موج حرارت و مکان یعدد ریمقاد ت،ینها

 .اندشده دهیکش ریزمان و شعاع به تصو یدر دامنه


