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Mechanical Buckling of FG Saturated
Porous Rectangular Plate with

Piezoelectric Actuators

In this study buckling analysis of solid rectangular plate
made of porous material bounded with the layers of
piezoelectric actuators in undrained condition s
investigated. Porous material properties vary through the
thickness of plate with a specific function. Distributing of the
pores through the plate thickness is assumed to be the
nonlinear nonsymmetric  distribution. The general
mechanical non-linear equilibrium and linear stability
equations are derived using the variational formulations to
obtain the governing equations of piezoelectric porous
plate. The effects of piezoelectric layers on critical buckling
load of plate, piezoelectric layer-to-porous plate thickness
ratio and actuator voltage are studied. Also, effect of fluid
compressibility and variation of porosity on critical
buckling load are investigated in the undrained condition.
Closed-form solutions is used to derive the critical buckling
loads of the plate subjected to mechanical loading. The
results obtained for porous plates with the layers of
piezoelectric actuators are verified with the

known data in literature.
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1 Introduction

Porous material composed of two elements: the main part of the porous material is solid (Body),
liquid or gas is the second part. Deflection and buckling problems of the porous plates have
been expanded by many authors. Biot [1] described the buckling of a fluid-saturated porous
slab under axial compression. He investigated interaction between the pore compressibility
effect and critical buckling load. Buckling of porous beams with varying properties were
presented by Magnucki and Stasiewicz [2]. Shear deformation theory applied to determine the
critical load. They investigated the effect of porosity on buckling load of the beam. The bending
and buckling of rectangular plate made of foam material which have nonlinear mechanical
properties in thickness direction with its material properties being non-symmetric with respect
to middle of the plate were studied by Magnucki et al. [3] They showed the result for a
porous/nonlinear symmetric distribution plate.
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The critical buckling load for rectangular plate made of foam with two layers of perfect material
was described by Magnucka-Blandzi [4]. The core was made of a metal foam with properties
varying across the thickness. The analytical, numerical, and experimental critical buckling load
for plate and beam made of foam with two layers of perfect material were studied by Jasion et
al. [5]. They obtained global and local buckling-wrinkling of the face sheets of sandwich beams
and sandwich circular plates. The values of the critical load compared by the analytical,
numerical (FEM), and experimental methods. The poroelastic and thermoelastic coupling
parameters for a linear poroelastic saturated rock were investigated by Zimmerman [6]. He
deduced that poroelastic coupling parameter is more effective than the thermoelastic
parameters. The effects of temperature

gradients on pore pressure and stress distribution by using a non-isothermal poroelasticity
theory was described by Ghassemi et al. [7]. Thereafter, the influence of cooling on pore
pressure and stresses distribution by displacement discontinuity method was studied by
Ghassemi [8]. The poroelastic circular plate under the mechanical loads base on classical plate
theory and higher order shear deformation theory, Also thermal forces Base on classical plate
theory (CPT) were described by Jabbari et al. [9,10] They investigated the effects of distribution
and properties of pores that are saturated by fluid on critical buckling load of plate.

Buckling analysis of porous plates with functional properties have similarities with the FGM
plates to some extend. Javaheri et al. [12] presented the buckling of FGM rectangular plates
under in-plane mechanical or thermal loads based on the classical and higher order shear
deformation plate theories, respectively. the thermal buckling of simply-supported moderately
thick rectangular FGM plates based on the FSDT under different types of temperature fields is
investigated by Lanhe [13]. Shariat et al. [14] presented a closed-form solution for the buckling
analysis of rectangular thick FGM plates based on the TSDT under mechanical and thermal
loads. The buckling analysis of thin FG rectangular plates based on the classical or FSDT under
various loads were done by Mohammadi et al. [15], respectively. Bodaghi et al. [16,17] used a
Levy-type solution method to investigate the mechanical or thermoelastic buckling of thick
FGM rectangular plates based on the TSDT, respectively. Bateni et al. [19]. investigated the
effect of temperature dependency of material properties on the critical buckling load. In this
study, a four-variable refined plate theory is employed to derive the governing equations of
equilibrium. A multi-term Galerkin solution is presented to derive the critical buckling
loads/temperatures along with the buckled shape of the plate. Behravan Rad et al. [20]
Investigated three-dimensional magneto-elastic analysis of asymmetric variable thickness
porous FGM circular plates with non-uniform tractions and Kerr elastic foundations.

A comprehensive review of various analytical and numerical models to predict the bending and
buckling under mechanical and thermal loads is done by Swaminathan et al. [21,22]. Chen et
al. [23,24] presented the elastic buckling and static bending solutions based on Timoshenko
beam theory also free and forced vibrations of shear deformable functionally graded porous
beams. One of the techniques exists to increase the buckling load is equipping plates with smart
materials. Piezoelectric materials, as sensor and actuator of the most common sub-group of
smart materials are used in solid structures to control the deformation, vibration and buckling
control of structures. An analytical solution for free vibration analysis of a piezoelectric coupled
circular plate with clamped and simply supported boundary conditions based on classical plate
theory was showed by Wang et al. [25]. Post-buckling of piezoelectric FGM plates subjected
to the thermo-electro-mechanical loading was reported by Liew et al. [26]. They showed a semi-
analytical iteration to determine the post-buckling response of the plate. Viliani et al. [27]
investigated the active buckling control of smart functionally graded plates using
sensor/actuator patches. Closed-form solutions for the critical temperatures of simply supported
piezoelectric FGM cylindrical shells based on the higher order displacement field was described
Mirzavand and Eslami [28].
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They investigated three types of temperature loadings combined with constant applied voltage.
Shen [28] presented thermo-electro-mechanical buckling and post-buckling of FGM plates with
piezoelectric actuators based on the singular perturbation method.

Thermoelastic buckling analysis of functionally graded circular plates integrated with
piezoelectric layers based on the classical plate theory was studied by Khorshidvand et al. [28].
Jabbari et al. [28] considered the stability of sandwich plate with piezoelectric layers and
poroelastic core under uniform thermal and electrical field. Also, they achieved their results
based on the classical plate theory and first-order theory. They explored the effects of
mechanical and thermal properties on stability of poroelastic plate too. Mojahedin et al. [28]
studied the buckling of poroelastic plate with piezoelectric layers under electrical, thermal, and
mechanical forces. Jabbari et al. [28] considered the buckling of circular porous plate under
transverse magnetic field. They explained the effects of mechanical and magnetic properties on
stability of porous-magnetic plate.

The purpose of this paper is analyses of rectangular plate made of saturated porous with variety
of property along the thickness and is supported by two layers of piezoelectric. The equilibrium
and stability equations are derived by Euler equations from the variations that based on the
classical plate theory. Close form solution is used to solve the obtained equations with simply
supported edges. Also, the effects of pores properties in critical buckling load and stability of
plate are investigated. These properties changes with fluid property that is stuck in pores and
pore distribution along the thickness.

2 Governing equations

Consider a rectangular plate made of porous materials with length a, and width b, and thickness
h, in the middle with two identical piezoelectric layers with thicknesses h, bounded to its upper
and lower surfaces referred to the rectangular Cartesian coordinates (x, y, z), as shown in figure

(D).

The material properties are assumed to vary through the thickness according to the following
power law distribution. The functional relationship between E and G with z for plate is assume
as (Magnucki et al. [2] and Magnucka-Blandzi [4])

G(z) = G, —1 — e, COoS <(27T_h) (z + ;))

[ ] (1)
E(z) = Ey|1— e, cos <(27T_h) (z + ;))

where e, is the coefficient of plate porosity 0 < e; < 1, E; and E, are Young's modulus of
elasticity at z = —h/2 and z = h/2, respectively, (Ey = E;) and G; and G, are the shear
modulus at z = —h/2 and z = h/2, respectively, (Gy = G;). The relationship between the
modulus of elasticity and shear modulus of elasticity for j = 0 and 1 is E; = 2G;(1 + v) where
v is Poisson's ratio, which is assumed to be constant across the plate thickness.
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Figure 1 Coordinate system and geometry of a piezoelectric coupled rectangular porous material plate

2.1 Basic equations

The non-linear strain-displacement relations according to the von-Karman assumption are by
Brush and Almroth [37]

1
Exx = Uy t+ E (W.x)z

1
Eyy = Vy + 2 (W.y)z ()

Yoy = Uy TV T Wyw,

Here, &y, and €,,,, are the normal strains and y,,, is the shear strain, where u, v, and w denote

the displacement components in the x, y, and z directions, respectively, and comma indicates
the partial derivative with respect to its afterwards. Note that transverse shear strains are zero
as Yy, = ¥xz = 0 in the Kirchhoff plate theory.

The displacement field for the Kirchhoff plate theory is by Wang et al. [38]

U,(X, Y, Z) = uO(xl y) — ZWo x

3)

v(x,y,2) = vo(x,y) — 2wy,

w(x,y,z) = WO(XIY)
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Where (uq,vq,wp) represent the displacement on middle plate surface (z = 0).
The linear poroelasticity theory of the Biot has two features by Detournay and Cheng [39]

1. An increase of pore pressure induces a dilation of pore.
2. Compression of the pore causes a rise of pore pressure.

The stress-strain law for the poroelasticity is given by Ghassemi [8] of the plate is written as
following:

O'i}]l- = ZGSij + AuE(Si]- - paSij (4)
Where
2Gvy,
A= 1T 2v,

_v+aB(1-2v)/3

Ve ST aB(1 - 2v)/3
p = M[{ — ae] )
(26 +31)
"~ 3(1—aB)

Here, the superscript h is used to denote the porous plate. p is pore fluid pressure, 4, is the
Lame parameters, M is Biot's modulus, { is variation of fluid volume content, v,, is undrained
Poisson's ratio v < v, < 0.5, B is the skempton coefficient, the pore fluid properties is
introduced by the skempton coefficient. The values of the undrained Poisson ratio and the

Skempton pore pressure coefficients depend on the pore fluid compressibility. Here, « is the

Biot coefficient of effective stress 0 < a < 1. The Biot coefficient (oc =1- %) indicates

0
the effect of porosity on the solid constituents of poroelastic plate and it shows the effect of

generated stresses in the pores on the poroelastic material in undrained condition ({ = 0) and
(1 — aB) is relation between drained bulk modulus and undrained bulk modulus.
The term aB is coupling between pore fluid effects and macroscopic deformation Zimmerman

[6], and € is the volumetric strain.

The two dimensional stress-strain law for plane-stress condition in the Cartesian coordinate for
the undrained condition ({ = 0) is given by

a)?x = A1(2)exx + By (Z)Syy
o)y = A1(2)ey, + B1(2)€xy (6)
O_J?y = G(Z)ny

By substituting the third and fourth equations of (5) into Eq. (4), terms A;(z), B;(2), C; (z) and
R, (z) become

A(2) =26G(2) + (A, + Ma®)R(z)
Bi(z) = (A, + Ma*)R(2)
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A, + Ma? (7)

R =1 = + 4 + Ma?

The stress-strain law for piezoelectric parts by Liew et al. [27] of the plate are written as
following:

14 14
O—DIC)X C11 (12 0 g.;gx 0 O €31 E (8)
{O-}p = O-yy = [CIZ C22 0 ] gyy - [O 0 632 Ey
afy 0 0 ce g}?y 0 0 O0Il(E

Where the superscript p is used to denote the piezoelectric layer, ¢;; (i, j = 1,2,6) is the elastic
stiffness of the layers given by

2G
C11 = Cyp = m
2Gv )
Ci2 = Cx1 = m
Co6 = G

The piezoelectric stiffness e3; and e3, can be expressed in terms of the dielectric constants d54
and d5,. The elastic stiffness c; i (i,j = 1,2,6) of the piezoelectric actuator layers as

e3; = (d31¢q1 + d32021)
(10)

e3p = (d31C12 + d3202;)

As only the transverse electric field component E, is dominant in the plate type piezoelectric
material, it is assumed that
E, 0
E, ¢ = { 0 } (11)
Ez V;l/ha

Where 1, is the voltage applied to the actuators in the thickness direction.
2.2 Strain energy

The total virtual potential energy of the plate as the sum of total virtual strain energy and virtual
potential energy of the applied loads is equal to

h_ +h/2 (12)
6U™ = f f f (O-;lxggxx + 03’}3,583,3, + ny5yxy)dxdydz
h/2

h/2-hg (13)

h/2+ha
f (0f.8exx + ab, ¢ 08y 6Vxy — E;6D,)dxdydz
h/2

1 re h/2
SUP = 7). fo f (0xx0&xx + 05,8€y, + 05,8Yxy, — E, 6D, )dxdydz
f yy yy
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S8V = SUP + sUM
(14)

Substituting the strain-displacement relations from Eqgs. (2) and Eq. (3) into Eq. (14), and apply
the Green-Gauss theorem to relieve the virtual displacements, result in the following three
equilibrium equations by Eslami [40]

Oug : Nyxx + Nyy, =0
8V ¢ Nyyx + Ny, =0 (15)

+ 2M + NXXWO,XX + NyyWO,yy + 2nyW0,xy = 0

6W0 : Mxx,xx +M xXy,xXy

yy,yy

Where N;; and M;; are the force and moment resultants defined by

—h/2 h/2 h/2+hg
(Nij,Mij) = f (1,2)0idz +f (1,2)0;;dz +f (1,2)0{jdz ij = xx,yy,xy (16)

ij
—h/2-hq —h/2 h/2

3 Stability equations

Consider an equilibrium position described by displacement components ud, vJ, and w§. Each
of these components is perturbed from the primary equilibrium state. An equilibrium state exists
adjacent to the primary one, described by the displacement components as by Eslami [40]

0 4 1
Uy = uJ + up (17)
vy = V0 + v
wo = w + wg

Here, a superscript 1 indicates the magnitude of increment (perturbation). Accordingly, the
stress resultants are divided into two terms representing the stable equilibrium and the
neighboring state. The stress resultants with superscript 1 are linear functions of displacement
with superscript 1. Considering this and using Eqgs. (15) and Egs. (17), the stability equations
become

8v5 t Ngyx + Npyy =
SWg ¢ Myzxx + My + 2Myy, vy + NOWG 1 + nyw(}’yy + 2N,?yw&xy =0

The stability equations in terms of the displacement components may be obtained by inserting
Egs. (16) into the above equations. Upon substitution, second and higher order terms of the
incremental displacements may be omitted. Resulting equations are three stability equations
based on the Kirchhoff plate theory for porous material plate.

Azu(l),xx + C;u(l),yy +(B; + CZ*)U(},xy - (ABW&,xxx + (B3 + ZCB)W&,xyy) =0
(B; + C3)Ug vy + A308 yy + C306 50 — (A3WGyyy + (Bs + 2C3)W ry) = 0 (19)
_(A3u(1),xxx + (B3 + 2C3)u(1),xyy) - (A3v3,yyy + (BB + 2C3)v3,xxy)
+ (AZ(W(},xxxx + W&,yyyy) +2(B; + ZC;)W(},xxyy) + N)?xW(},xx
+ Np,wgy, =0
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Where
+h/2
Aodshy= [ @A
—h/2
+h/2
Bz,B3,B4 = f Bl(Z)(].,Z,ZZ)dZ
—h/2
+h/2
Cp) s Cy = j 6(2)(1,2,22)dz
—-h/2
/ 1 2 (20)
A; = AZ + Zhacll, Az_ = A4, + (hhé + Ehzha + §hg.) Cll
1 2
B; == Bz + Zhaclz, B;l_k = B4 + (hhczl + Ehzha + §h§l> C12

* * 2 1 2 2 3
CZ = Cz + ZhaC66, C4_ = C4 + (hha + Eh ha +§ha> C66

4 Boundary conditions

As stated, only plates with all edges simply supported are consider in this work, Out-of-plane
boundary conditions for simply supported edges are

x=0,a: wt=ML =0 (21)
y=0,b: wjg =M, =0

The in-plane boundary conditions of the simply supported edges may be of the free to move
(FM) type. This is classified as follow
x=0,a:

P,
(22)
y = 0, b H

Py

up = finite, vy = finite, ~ Ny, =0, Ny, =— >

2V (d31612 + da3C25) (FM)
Where a bar over each parameter stands for the known external forces applied at boundaries.

5 Mechanical buckling analysis

The functions for displacements that satisfy the governing equations and boundary conditions
are

M N
5= S s eos(gsingy)

m=1n=1

(23)
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M N
Uy = Z Z Vmy sin(Bx) cos(yy)
m=1n=1
M N
Wi = > Wi sin(Bx) sin(vy)
m=1n=1
Where
_mm _nm 123
,B—a, y—b m,n =123, ..

Substitution of Egs. (23) into Egs. (19) yield

Ky = A3B% + Coy?
Ki, = By(B; + (3)
Kis = —(A38° + By*(Bs + 2C3)) (24)
K3, = A3y* + G5 7
Ky3 = —(A3v® + B?y(Bs + 2C3))
K33 = AL(B* +v™*) + 2B2%y?(B; + 2C;) + N2y B? + Ny, y?

For a nontrivial solution of these equations, the coefficients of functions must be set to zero.

Setting |Ki ]-| = 0, the value of the N2, is found as

P
TN~ Ny = o AL (B* + ") + 2672 (Bi + 26)) (25)

Where

Pf = K{1K35 — 2K, K73Kq3 + K5, K
P; = K1*1K2*2 - (Kikz)z

By substitution (m = 1,n = 1), the critical mechanical load for porous-elastic plate buckling

. : : : : . P o
is obtained. Introducing the dimensionless form for P, as P* = z “— and substitution of Egs.

oh?
(22) into Eq. (25) and solving for P* yields

* b Pl* * 4 4 2,,2 * *

- 2)’2V¢1(d31C12 + d23022)l

6 Result and discussion

The buckling of rectangular plates made of porous material with variable properties along the
thickness with piezoelectric layers under uniform outside compressive load is investigated in
this paper. The effects of poroelastic and piezoelectric layers parameters on critical buckling
load P* are investigated and presented.
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Poisson’s ratio v for porous plate and piezoelectric layers are equal, also we consider G shear
modulus of piezoelectric layers equal to G,. Piezoelectric constants ds; , d3, are 2.54 X
1071 m/v .

The variation of the critical buckling load versus the plate aspect ratio for three various voltage
actuators are shown in figure (2). It is apparent from this figure that the P* can be increased by
applying a negative voltage on the actuator layers, and the effect of I/, becomes more significant
at higher plate aspect ratios.

The effect of dimension changes on the critical buckling load of the porous/nonlinear
nonsymmetric distribution plate. By increasing the length to width ratio of the plate, the critical
buckling load P* reduces.

Figure (2) shows the critical buckling load for porous plate subjected to various actuator
voltages by increasing the thickness of porous plate. As seen in these figure, by increasing the
thickness of porous part, effect of voltage decreases.

Figure (3) shows the effect of the ratio of the piezoelectric layer thickness on the critical
buckling load subjected to various actuator voltages is presented. It is seen that with an increase
in the piezo thickness to width ratio, the P* increases. Also by increasing voltage from —500
to 500 the critical buckling load decreases.

Figure (4) shows the effect of porous and various actuator voltages on the critical buckling load
for porous/nonlinear symmetric distribution plates. It is seen that by increasing the porosity of
the plate, the critical buckling load P* decreases. Also with an increase the voltage the P*
decreases.

Figures (5) shows the effect of porous and piezo thickness on the critical buckling load for the
porous/nonlinear nonsymmetric distribution plate. As seen in these figure, by increasing the
thickness of piezo layer, the critical buckling load P* increases. By increasing the porosity, the
free spaces within the plate increases and shear modulus decrease with respect to the first of
Egs. (1). Also, increasing the porosity of the plate decreases the critical buckling load.

In Figure (6) the effect of pores distribution on critical buckling load for the undrained condition
and for simply supported edges is presented. It is observed that the pores distribution and e;
have significant effect on the critical buckling load. In this figure it is seen that by increasing
porosity the buckling load decreases. Also it can be seen that for the plate with high porosity,
adding the piezo layer has better effect on stability of the plate with constant thickness of the
porous plate.

In investigation of porous materials, properties of pores is so important in order to, in express
of behavior of porous plate, it is seperated into drained and undrained conditions. In undrained
condition, compressibility of fluid that is struck in pores are illustrated by Skempton coefficient
(see Eq. (5)) that change between 0 and 1. As long as the compressibility of fluid is high,
Skempton coefficient is willing to zero which results is just for drained condition. However, by
decrease the compressibility Skempton coefficient increase up to 1 that plate behavior about
the same as hemogenous plate without pores. As can be shown in figures (7). by increasing
Skempton coefficient the critical buckling load P* of the plate is increased. In addition, the
figures show the effect of actuator voltages on the buckling load that by increasing the actuator
voltage of the plate, the critical buckling load P* decreases.
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Figure (8) shows the effect of compressibility of the pore and piezo thickness on the critical
buckling load for the porous/nonlinear nonsymmetric distribution plate. As seen in these figure,
by increasing the thickness of piezo layer, the critical buckling load P* increases. By decreasing
the compressibility of the pore, the critical buckling load decreases.

In figures (9) and (10) the effect of compressibility of the pore on critical buckling load is
presented. It is observed that the compressibility of the pore have effect on the critical buckling
load. In this figure it is seen that by decreasing compressibility of the pore the buckling load
decreases. Also it can be seen that by adding the piezo layer has better effect on stability of the
plate with constant thickness of the porous plate.

\ Without Piezo Layer
0.7 '\
\. '\ V,=500(V)
Ay e
0.6 '-“\\ N V,=0(V)
. N " S——
PANIRN V, = —500
* \ a= " w
0.5 3 \ o e s

P*x10

“b

Figure 2 Critical buckling load (P* X 10) vs. length to width ratio of the porous/nonlinear nonsymmetric
distribution plate with piezoelectric layers, for the cases of [V, = —500,0,500V],B = 0.5,e; = 0.5 with
v = 03,h,/h=0.1.
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Figure 3 Critical buckling load (P* x 10) vs. thickness to width ratio of the porous/nonlinear
nonsymmetric distribution plate with piezoelectric layers, for the cases of
[V, = =500,0,500V], = 0.5,e; = 0.5withv = 0.3, h, = 0.001.
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Figure 4 Critical buckling load (P* x 10) vs. the actuator voltage of the porous/nonlinear
nonsymmetric distribution plate with piezoelectric layers, for the cases of
[ha/b = 0.001,0.002,0.003], = 0.5,e; = 0.5withv = 0.3.
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Figure 5 Critical buckling load (P* x 10) vs. coefficient of porosity of the porous/nonlinear
nonsymmetric distribution plate with piezoelectric layers, for the cases of
[V, = =500,0,500V], = 0.5,[a/b =1, h/b =0.01,h,/h = 0.1], withv = 0.3.
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Figure 6 Critical buckling load (P* X 10) vs. thickness of piezo layer to width of the porous/nonlinear
nonsymmetric distribution plate with piezoelectric layers, for the cases of
[e; = 0,0.5,1], = 0.5,[V, = 500V], with[a/b =1, h/b =0.01],v = 0.3.
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Figure 7 Critical buckling load (P* x 10) vs. coefficient of porosity of the porous/nonlinear
nonsymmetric distribution plate with piezoelectric layers, for the cases of
[ha/b =0,0.001,0.002], = 0.5, [V, = 0V],with[a/b=1, h/b=0.01],v = 0.3.
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Figure 8 Critical buckling load (P* x 10) vs. the Skempton coefficient of the porous/nonlinear
nonsymmetric distribution plate with piezoelectric layers, for the cases of
[V, = =500,0,500V], = 0.5,[a/b=1, h/b =0.01,h,/h =0.1], withv = 0.3.
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Figure 9 Critical buckling load (P* x 10) vs. the Skempton coefficient of the porous/nonlinear
nonsymmetric distribution plate with piezoelectric layers, for the cases of
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7 Conclusions

In the present article, the energy method is used for the buckling analysis of plate made of pore
material and derivation is based on the classical plate theory with the assumption that the
porosity of the material changes as a specific function. The equilibrium and stability equations
for a porous rectangular plate bonded with two piezoelectric layers in upper and lower sides of
the plate as a single structural member is obtained. The boundary conditions of plate are
assumed to be simply supported. Two edges of the plate is subjected to uniform compressive
in-plane loads. The effects of porosity and piezoelectric layers on mechanical buckling capacity
of rectangular plates as closed-form solution are presented. It is concluded that:

1. By increasing the coefficient of porosity e; the buckling load P* is reduced.

2. The critical load P* will increase when the ratios h,/b, h/b, and h,/h increase.

3. The application of negative voltage on the actuator layers can improve the mechanical
buckling strength, and the critical buckling load can be controlled by applying a suitable

voltage on the actuator layers.

4. By increasing the Skempton coefficient, the compressibility of fluid within the pores decrease
and the buckling load P* increases.
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Nomenclatures

E : Young's modulus of elasticity
G : Shear modulus of elasticity
e : Coefficient of plate porosity
v : Poisson's ratio

Exx » Eyy : Normal strains

Yxy » Vyz » Yaz - Shear strains

u,v,w : Displacement components in the x, y, and z directions
Uy, Vo, Wy : Displacement on middle plate surface

p : Pore fluid pressure

Ay : Lame parameters

M : Biot's modulus

¢ : Variation of fluid volume content

Vy : Undrained Poisson's ratio

B : Skempton coefficient
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a : Biot coefficient of effective stress

€ : Volumetric strain

Cij : Elastic stiffness of the layers

€31, €32 : Piezoelectric stiffness

dsq,ds; : Dielectric constants

Ey,Ey, E, : Transverse electric field component

v, : Voltage applied to the actuators in the thickness direction
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