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1 Introduction  
 
Obtaining the natural frequencies and mode shapes of a structure like beam, plate, etc. due to 
the presence of fluid is generally known as the fluid-structure interaction (FSI) problem. These 
problems are covering a broad area of applications in engineering and marine industries, such 
as the vibration problem of offshores, ship structures, reservoirs, dams and signaling problems 
of submarines and torpedoes. Nowadays, using the composite plates comparing to other metal 
alloys, in applications like; civil, astronautic industries, etc. because of the better strength to 
weight ratio of them is increasingly growing. Thus, a good understanding of the dynamic 
interaction between an elastic plate and fluid is necessary.  
In addition, the existence of fluid around the structure causes the kinetic energy to increase 
considerably. Consequently, the natural frequencies of the plate coupled with fluid significantly 
decrease in comparison with those of the plate in the air. Therefore, it is essential to find the 
natural frequencies of the structures immersed in or in contact with fluid, since the natural 
frequencies in contact with fluid are different from those in air. Both analytical and numerical 
methods have been used for FSI problems in literatures. The analytic approaches are restricted 
to some special cases, and the numerical methods, such as fluid finite element method (FFEM) 
and boundary element method (BEM) could be used for general cases.  
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Vibration Analysis of a Rectangular 
Composite Plate in Contact with Fluid  
In this paper, modal analysis of the fluid-structure 
interaction has been investigated. Using classical laminated 
plate theory, a closed form solution for natural frequencies 
of FSI is extracted. For fluid, homogenous, inviscid and 
irrotational fluid flow is assumed. Then, a combined 
governing equation for the plate-fluid system is derived. In 
order to validate the equations and results, they are 
compared with results reported in other literatures. The 
vibration behavior for different plate length to width ratios 
are also studied. For the forced vibration, three cases; 
harmonic point load, distributed loading and step pressure 
loading; are performed and for each case, the time response 
of plate-fluid system is obtained. Also, frequency response 
of plate-fluid system has been achieved for harmonic load.  
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However, the FFEM and BEM naturally require a huge time for modeling and computations, 
in addition, there is some difficulties to explain the qualitative effects of fluid. The analytic 
approach for the addressed problem was initiated by Rayleigh [1] at 1877. He calculated the 
increase of inertia of a rigid disc vibrating in a circular aperture. Haddara and Cao [2] derived 
and approximate expression of the modal added masses for cantilever rectangular plate 
horizontally submerged in fluid, using analytical and experimental data. They also studied the 
effects of the boundary conditions and submergence depth. Watanabe et al. [3] studied the 
forced vibration of floating rectangular plates under the moving loads using the FEM. They 
reported that the depth of fluid has a considerable effect on dynamical response of plate. Zhou 
and Cheung [4] investigated vibration characteristic of a rectangular plate in contact with fluid 
on one side, employing the Rayleigh-Ritz approach. In their study, the fluid is filled in a rigid 
rectangular domain, which has a free surface and is infinite in the length direction. Bermudez 
et al. [5] using the FEM, studied the free and forced vibration of rectangular plate on 
incompressible finite fluid. Kerboua and Lakis [6] proposed a semi-analytical method for 
vibration of pontoon-type plates affected by fluid flow.  

First, a solution was initiated by an analytical implicit response for fluid problem; then, 
another solution for the vibration of plate was found using FEM and final equations was 
combined as an eigenvalue problem. Khorshidi [7, 8], addressed the problem of linear free 
vibration of a rectangular thin plate partially in contact with fluid. Natural frequencies and wet 
mode shapes of the plate coupled with fluid, using the Rayleigh-Ritz method was the results of 
his works. Hosseini-Hashemi et al. [9] proposed a semi-analytical solution for the free vibration 
of multi-span, moderately thick, rectangular plate. In their work, the resulting Galerkin equation 
was solved by application of the Rayleigh-Ritz minimization method. Hosseini-Hashemi et al. 
[10] studied the free vibration of a rectangular submerging plate for six different boundary 
conditions. Bakhsheshi and Khorshidi [11], studied the free vibration of a FGM rectangular 
plate, partially in contact with fluid. Their work was based on the Rayleigh-Ritz method. 
Rezvaani et al. [12] studied the fluid virtual added mass effect on the natural frequencies of the 
plate. First, they addressed the problem, analytically, and then, they used some experimental 
tests and software simulations in ANSYS for validation of their results. Robinson and Palmer 
[13] performed vibration analysis for a rectangular plate floating on a body of fluid. They 
derived the transfer function for a harmonic point load, but their analysis is valid only for a 
finite number of lower frequency modes.  

In this paper, free and forced vibration of the rectangular composite CLPT plate, floating on 
the surface of an inviscid fluid; using the modal analysis expansion method, has been 
investigated and the natural frequencies and mode shapes of the FSI for the simply supported 
edges has been extracted. The previous similar works have not focused on the composite plate; 
therefore, the modal expansion method used for the forced vibration analysis, has been used for 
the first time here. Similar works concerning the FSI problem have differences in both modeling 
and solution methodology. Some of the similar works have considered an infinite physical 
domain for the fluid, while in this paper we considered limited domains. Hence, similar works 
used different methods to find the solutions, like as Fourier transformation method, etc. while 
we used the method of modal expansion. The analysis presented in this paper is of a FSI 
problem in which the plate and the fluid modes are compatible. First, a rectangular composite 
plate with unspecified edge condition; floating on a body of incompressible fluid, is considered. 
After addressing the combined governing equation, free motion in the combined mode is 
investigated, then, the constraints on the mode shapes are developed. Afterward, natural 
frequencies of composite plate with and without fluid has been calculated and the results are 
compared with the other works. Also, with consideration of length to width ratio of plate, the 
effects of aspect ratio have been considered.  
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Finally, dynamic deflection response of plate for three important cases; concentrated harmonic 
loading, distributed harmonic pressure loading and step pressure load, using the above 
mentioned modal expansion method has obtained. Then, frequency response of the FSI has 
been extracted.  
 

2 Physical Modeling and Formulation  
 
Here we consider the physical model of a horizontal, rectangular, composite plate floating on 
the surface of a body of liquid, where ܽ, ܾ and ݄ represent the length, width and the thickness 
of the rectangular plate, respectively. ܨ Denotes the fluid domain and ௙ܵ௦ denotes the surface 
between fluid and the plate. The weight of the plate is assumed to be supported by the buoyancy 
forces and the dry surface of the plate is under a varying external pressure  ݌ሺݔଵ, ,ଶݔ  ሻ, whileݐ
the pressure acting on the wet surface is ݌ᇱሺݔଵ, ,ଶݔ   .ሻ as shown in figure (1)ݐ

The governing equation of the forced vibration of the rectangular orthotropic composite plate 
in contact with fluid, neglecting the effects of the rotatory inertia and shear deformation effects 
can be written as [13]:  
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(1)  

 

Where ߩ௣ is the mass density of plate and ܦ௜௝‘s are bending stiffness coefficients of the 
composite plate [14], which are introduced as:  
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(2)  

Property relations for the laminates of the composite, in the case that local and global 
coordinates does not coincide and have a counterclockwise angle ߠ, are included in the 
appendix II.  

 
Figure 1 Rectangular composite plate floating on a fluid of constant depth ݀  
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The assumptions for dynamic modeling of the fluid are including: (a) fluid is homogeneous and 
incompressible, (b) low-amplitude oscillations of fluid are assumed and (c) fluid is inviscid and 
its motion irrotationaly. According to these assumptions of velocity potential ߶ሺݔଵ, ,ଶݔ ,ݖ  ,ሻݐ
Laplace equation is hold:  

߶ଶ׏ ≜
߲ଶ߶
ଵݔ߲

ଶ ൅
߲ଶ߶
ଶݔ߲

ଶ ൅
߲ଶ߶
ଶݖ߲

ൌ 0 
 

(3)  

The fluid surface condition is derived from the unsteady Bernoulli equation. In this analysis, 
we consider problems where there is heavy fluid loading, such that the weight of the fluid is 
significant. However, confining the analysis for low-frequency, low-amplitude oscillations, in 
which particle velocities are small, the convective inertia terms can be ignored. Thus, the 
pressure at any point in the fluid domain is presented by, ܲ, where:  

ݖ݃ ൅
ܲ
௙ߩ
െ
߲߶
ݐ߲

ൌ 0 
 

(4)  
At the surface of the fluid, if we assume that the deflection of the plate is smaller than the 

fluid depth, this equation becomes:  
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(5)  
Now, substituting ܲᇱሺܠ,  ሻ from equation (5) in equation (1), partial differential equationݐ

governing the forced vibration of a rectangular composite CLPT plate floating on fluid, could 
be extracted:  
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(6)  

At the interaction domain of plate-fluid, if one assume that the displacements are small, this 
led to equating velocities [13] and we have:  
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(7)  

 
3 Free Vibrations  
 
Here we consider the response of the fluid and the plate in any one combined modes. Separable 
solutions are assumed for the displacement response and the velocity potential, so that:  

,ܠሺݓ ሻݐ ൌ ߰ሺܠሻܶሺݐሻ 
߶ሺܠ, ,ݖ ሻݐ ൌ ܷሺܠሻܨሺݖሻܩሺݐሻ 

 
 (9)  

Where, ߰ ሺܠሻ describes the horizontal spatial variation of ݓ and ܶ ሺݐሻ is the time variation. ܷ ሺܠሻ, 
 ߶. Then, substituting from	 ሻ are the horizontal, vertical and temporal variation ofݐሺܩ ሻ andݖሺܨ
Eqs. (8)-(9) in equation (7) and some simplifications would result a new form for the velocity 
potential ߶ሺܠ, ,ݖ   :ሻ as belowݐ
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 (10) 

and substituting this velocity potential in Laplace equation, results two separate differential 
equations:  
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ሻܠଶ߰ሺ׏ ൅ ሻܠሺ߰ߤ ൌ 0 
݀ଶܨሺݖሻ

ଶݖ݀
െ ሻݖሺܨߤ ൌ 0 

(11) 
 

(12) 
 
Where, the parameter ߤ in this equations is a constant real number. Those solutions with ߤ as a 
complex number, have no physical interpretation in wave theory and we ignore them. Now at 
the bed of the fluid container, there is no normal component of velocity and Neumann boundary 
condition holds, ቀడథ

డ௭
ቁቚ
௭ୀିௗ

ൌ 0. Then using equation (12), one can see:  

ሻݖሺܨ ൌ ܿଵ cosh൫ߣሺݖ ൅ ݀ሻ൯ , ߤ ൌ  ଶ (13)ߣ

 
3-1 Mode Shapes and Natural Frequencies  
 
For free vibrations in any one combined mode, expressions (8) and (10) are substituted in 
equation (6) and it is supposed  ܲሺݔଵ, ,ଶݔ ሻݐ ൌ 0, which gives:  
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(15) 

 

Where, ݉௙ ൌ ௙ߩ ቀ
ୡ୭୲୦ሺఒௗሻ

ఒ
ቁ is added mass effect initiated from the fluid and ܭ is a constant 

real parameter and will be accurately calculated later. Now considering a separable solution for 
߰ሺܠሻ in Cartesian coordinates, ߰ሺܠሻ ൌ  ଶሻ, and applying equation (11), forݔଶሺߟଵሻݔଵሺߟ
nontrivial solutions, gives:  
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(16) 

 
(17) 

Where ߛଵ and ߛଶ are constant parameters such that, ߛଵଶ ൅ ଶߛ
ଶ ൌ  which have general ,ߤ

solutions:  

ଵሻݔଵሺߟ ൌ ܽଵ cosሺߛଵݔଵሻ ൅ ܾଵ sinሺߛଵݔଵሻ
ଶሻݔଶሺߟ ൌ ܽଶ cosሺߛଶݔଶሻ ൅ ܾଶ sinሺߛଶݔଶሻ

 (18) 
 (19) 

 

Where ܽ௜, ܾ௜	ሺ݅ ൌ 1,2ሻ are constants which should be determined by substituting appropriate 
edge conditions. It should be noted that, mode shapes, unknown constants ߛଵ and ߛଶ and the 
promised parameter ܭ would be calculated using the mentioned boundary conditions.  

 
3-2 Simply Supported Boundary Condition  
 
As an example, a rectangular plate (ܽ ൈ ܾ) floating on a fluid tank (ܽ ൈ ܾ ൈ ݀) is considered, 
as shown in figure (2).  
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Figure 2 Mode shape and simply supported edge restraints for a rectangular  
composite plate floating on a rectangular fluid tank 

 

The plate edges are constrained to have zero deflections and are in the mathematical form as:  
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And also, there is no component of fluid velocity normal to the tank walls. Thus,  
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After applying these conditions to Eqs. (18)-(19), leads to finding parameters ߛ௜ as ߛଵ ൌ ଵ௠ߛ ൌ
௠గ

௔
 and ߛଶ ൌ ଶ௡ߛ ൌ

௡గ

௕
, and the surface displacements mode shapes as:  
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These happen to be orthogonal. Normalizing so that, ∬ ߰௠௡߰௣௤݀ݔଵ݀ݔଶ஺ ൌ  ,௡௤ߜ௠௣ߜܣ
where ܣ is the area of the plate and ߜ௠௣ is the Kronecker delta function , gives:  
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Now, substituting these mode shapes in to equation (15), leads to finding constant parameter 
  :ܭ
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And using the equation (15), natural frequencies of the rectangular composite plate in contact 
with fluid; with simply supported edges, are:  
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3-3 Results and Validation of free vibration  
 
In this section, the analytically found natural frequencies are validated, for the case without of 
fluid and then, for the FSI case. An important point could be seen in relation (25), that is if we 
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ignore the fluid terms in this equation (ߩ௙ ൌ 0), natural frequencies of a composite plate without 
fluid are found, separately. In the other words, the fluid affected terms in equation (25), are 
separate from the plate terms, which are known as virtual added mass terms [12]. Parameters 
and engineering constants which are used in this research are listed in appendix I.  

For the case ߩ௙ ൌ 0 (without fluid), non-dimensional natural frequencies of the composite plate 

are defined as, ഥ߱௔೘೙
ൌ ߱௔೘೙

ቀ௕
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ଶ
ට
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(26) 

 

Where ܦഥଵଵ ൌ
஽భభ
஽మమ

 and ܦഥଵଶ ൌ 2 ቀ஽భమ
஽మమ

൅ 2 ஽లల
஽మమ
ቁ are the non-dimensional stiffness constants of 

the composite plate. Comparison of this results with references [14] and [15] are presented in 
tables (1) and (2), respectively.  

As one can see in table (1), fundamental non-dimensionalized natural frequencies of a lamina 
is decreasing with increase in the number of modes. The results of table (2) show that, the 
natural frequencies of a lamina is greater than a laminated three layer composite, initiating from 
decreasing of the stiffness to mass ratio.  

In the following, if we put ݉ ൌ ݊ ൌ 1 in the equation (25), fundamental natural frequencies 
of composite plate will be calculated. The variation of this frequencies as a function of aspect 
ratio of plate (ܽ ܾൗ ), are shown in figure (3).  

Table 1 Non-dimensionalized frequencies of laminated composite plate, ഥ߱௔೘೙, according to 
               the CLPT plate, in comparison with reference [14] 

  
2E/1E 

  
(m,n) 

o0 

Present work   Reference [14]   
10 (1,1) 3.6674 3.672 
10 (2,2) 14.6697 14.690 
10 (3,3) 33.0068 33.053 
10 (4,4) 58.6788 58.692 
10 (5,5) 91.6856 91.701 
20 (1,1) 4.8451 4.847 
20 (2,2) 19.3804 19.388 
20  (3,3) 43.6059 43.623  
20 (4,4) 77.5216 77.530 
20  (5,5) 121.1275  121.133  

 

Table 2 Non-dimensionalized frequencies of laminated composite plate, ഥ߱௔೘೙, according to the 
            CLPT plate, in comparison with reference [15] 

  
2E/1E 

Mode number   
)o/45o45-/o(45 
ܽ
݄ൗ ൌ 0.05 ܽ

݄ൗ ൌ 0.02 

Present work   Reference 
[15]   Present work   Reference 

[15]   
40 1 3.6575 3.646 1.5782 1.576 
40 2 13.5160 13.506 4.9042 4.837 
40 3 23.1569 23.001 11.3677 11.227 
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Figure 3 Non-dimensionalized fundamental frequencies, ഥ߱௔భభ, as a function of plate aspect ratio (ܽ ܾൗ ),  
for symmetric (0௢/90௢)s graphite-epoxy laminated plate, with ாభభ

ாమమ
ൌ 10 

 

In figure (3), as much as the aspect ratio is growing, the values of fundamental natural 
frequencies of composite plate are considerably decreasing; which means for a plate with 
constant width, the more the length of plate is larger, the less the value of fundamental natural 
frequency is.  
For the second case (ߩ௙ ് 0), the square values of fundamental natural frequencies of the FSI 
system are:  
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(27) 

 

Comparing the analytical values of ߱ഥ௙೘೙
 from equation (27), with those of reported in reference 

[16] are shown in table (3). This comparison shows that, addition of fluid to the system causes 
a considerable decrease in amount of natural frequencies of plate, and also, the differences 
between the natural frequency values are initiated from approximate solution method used in 
reference [16], which are in an acceptable level.  

In figure (4), non-dimensionalized natural frequencies of FSI in comparison with those of 
without fluid as a function of aspect ratio are shown.  

 
Table 3 Non-dimensionalized natural frequencies of isotropic plate floating on fluid ഥ߱௙೘೙,  

                according to the CLPT 

2E/1E  (m,n) Present work  Reference [16]  

10 (1,1) 2.1689 2.3708 
10 (2,2) 10.5534 11.106 
10 (3,3) 25.9073 26.245 
10 (4,4) 48.4198 50.274 
10 (5,5) 78.1633 81.045 
20 (1,1) 2.8673 3.001 
20 (2,2) 13.9522 14.337 
20  (3,3) 34.2509 35.184  
20 (4,4) 64.0136 67.136 
20  (5,5) 103.3361 105.037  
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Figure 4 Comparison between non-dimensionalized fundamental frequencies, ഥ߱௔భభ and ഥ߱௙భభ, 
              as plate aspect ratio ܽ ܾൗ  varies, for symmetric (0௢/90௢)s graphite-epoxy laminate, with ாభభ

ாమమ
ൌ 10  

 

It can be interpreted from figure (4), that the natural frequencies of FSI system are considerably 
smaller than the plate without fluid. The reason of this is that adding fluid to the system, causes 
increase in kinetic energy of the system and subsequently, it causes decreasing the natural 
frequencies, and this is why the fundamental natural frequency curve of FSI is below that of the 
plate without fluid.  
 
4 Forced Vibrations  
 
In section 3, general solution of the plate displacement and velocity potential function of fluid, 
in any one combined mode, were analytically calculated. Now, the modal expansion of the 
displacement and velocity potential could be presented in the form of:  

,ܠሺݓ ሻݐ ൌ෍෍߰௝௞ሺܠሻ ௝ܶ௞ሺݐሻ
ஶ

௞ୀଵ

ஶ

௝ୀଵ

 

߶ሺܠ, ,ݖ ሻݐ ൌ െ෍෍߰௝௞ሺܠሻ
ஶ

௞ୀଵ

ஶ

௝ୀଵ

cosh ቀߣ௝௞ሺݖ ൅ ݀ሻቁ

௝௞ߣ sinh൫ߣ௝௞݀൯
ሶܶ௝௞ሺݐሻ 

 
(28) 

 
 

(29) 

Where, ߣ௝௞ equals to  ߣ௝௞ ൌ ටቀ௝గ
௔
ቁ
ଶ
൅ ቀ௞గ

௕
ቁ
ଶ
.  

 
Now, substituting expressions (28) and (29) into equation (6), and then multiplying the resulted 
equation by ߰௝௞ሺܠሻ and integrating over the surface of the plate, ܣ, gives:  
 

ඵ ߰௝௞ሺܠሻ ቐ෍෍ൣܯ௝௞ ሷܶ ሺݐሻ ൅ ሻܠሻ൧߰௝௞ሺݐ௝௞ܶሺܭ
ஶ

௞ୀ଴

ஶ

௝ୀ଴

ቑ݀ݔଵ݀ݔଶ
஺

ൌ െඵ ߰௝௞ሺܠሻሼܲሺܠ, ଶݔଵ݀ݔሻሽ݀ݐ
஺

 

 
 

 (30) 

Where, ܯ௝௞ ൌ ൬ߩ௣݄ ൅ ௙ߩ
ୡ୭୲୦൫ఒೕೖௗ൯

ఒೕೖ
൰.  

It is possible to simplify the analysis at this stage by assuming that the mode shapes of the liquid 
loaded plate are orthogonal. Those given in equation (23) happen to be orthogonal, but in 
general, this is not so. However, for a sufficiently thin plate with simply supported edges, 
oscillating at low frequency, the motion is dominated by the liquid. Liquid-coupled plate modes 
can then be approximated by the surface response of a body of liquid with a smooth and 
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continuous surface. For problems of this nature, the normalization condition of the plate 
∬ ߰௝௞ሺܠሻ߰௤௥ሺܠሻ஺ ൌ  ௤௥ is assume to hold. Thus, equation (30) becomes a series ofߜ௝௞ߜܣ
decoupled modal expressions, which could be used for finding time responses.  

 
4-1 Time Response  
 
In this section, time response of the forced vibrations of FSI system in any position, for three 
case of (a) unit harmonic external excitation with frequency of ߱ applied at point ܠ૙, (b) 
distributed harmonic pressure excitation and (c) distributed unit step pressure excitation, will 
be calculated.  

For the case (a), external force applied to the FSI equals to, ܲሺܠ, ሻݐ ൌ ܠሺߜ െ ૙ሻܠ sinሺ߱ݐሻ 
and if we assume that the plate has been initially at rest, initial values of the system could be 
considered as ܶሺ0ሻ ൌ ሶܶ ሺ0ሻ ൌ 0. However, dynamical steady state deflection of the forced 
vibration of FSI system, in any one combined mode, is:  

,ܠሺݓ ሻݐ ൌ෍෍ܮ௝௞ sin ൬
ଵݔߨ݆
ܽ

൰ sin ൬
ଶݔߨ݇
ܾ

൰

ஶ

௞ୀଵ

ஶ

௝ୀଵ

sinሺ߱ݐሻ 
 

(31) 

Where, ܮ௝௞ ൌ
ିଶటೕೖሺܠ૙ሻ

௔௕൛௄ೕೖିఠమெೕೖൟ
. Dynamic response curve of the steady state forced vibration of 

the FSI, at point ܠ૙ ൌ ቀ௔
ଶ
, ௕
ଶ
ቁ, is shown in figure (5).  

Displacement as a function of time in figure (5), shows a harmonic behavior with frequency 

߱ ൌ 5
ೝೌ೏
ೞ೐೎ . Also, considering mode numbers, ݉ ൌ ݊ ൌ 50, amplitude of vibrations in equation 

(31), converges to 0.38021ఓ௠.  

For the case (b), external force applied is ܲሺܠ, ሻݐ ൌ ଴ܲ sinሺ߱ݐሻ, with ଴ܲ ൌ 0.5௞௉௔ and initial 
values are the same as case (a). Then, dynamical steady state deflection of the forced vibration 
of FSI system, in any one combined mode, is:  

,ܠሺݓ ሻݐ ൌ෍෍ ௝ܴ௞ sin ൬
ଵݔߨ݆
ܽ

൰ sin ൬
ଶݔߨ݇
ܾ

൰

ஶ

௞ୀଵ

ஶ

௝ୀଵ

sinሺ߱ݐሻ 
 

 (32) 

 
Where ܴ ௝௞ ൌ

ିସ௉బௌೕೖ
௝௞గమ൛௄ೕೖିఠమெೕೖൟ

 and ܵ ௝௞ ൌ ൣሺെ1ሻ௝ା௞ െ ሺെ1ሻ௝ െ ሺെ1ሻ௞ ൅ 1൧. In the following, 

dynamic response of the steady state forced vibration, at ܠ૙ ൌ ቀ௔
ଶ
, ௕
ଶ
ቁ, is shown in figure (6).  

Figure 5 Dynamical response to harmonic point load ܨሺݐሻ ൌ ௢ܲ sinሺ߱ݐሻ, for a symmetric (0௢/90௢)s  
graphite-epoxy laminate composite floating on fluid, ாభభ
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Figure 6 Dynamical response to harmonic distributed force ܨሺݐሻ ൌ ௢ܲ sinሺ߱ݐሻ, for 
a symmetric (0௢/90௢)s graphite-epoxy laminate composite floating on fluid, ாభభ

ாమమ
ൌ 10 

 

This figure shows a harmonic behavior with the frequency ߱ ൌ 5
ೝೌ೏
ೞ೐೎ . Also, considering mode 

numbers ݉ ൌ ݊ ൌ 50, amplitude of vibrations in equation (32), converges to 6.986ఓ௠. 
For the case (c), external force applied is ܲሺܠ, ሻݐ ൌ ଴ܲݑሺݐ െ 0ሻ, with ଴ܲ ൌ 0.5௞௉௔ and initial 

values are the same as the previous cases. Then, dynamical steady state deflection of the forced 
vibration of FSI system, in any one combined mode, is:  

,ܠሺݓ ሻݐ ൌ෍෍ܪ௝௞ sin ൬
ଵݔߨ݆
ܽ

൰ sin ൬
ଶݔߨ݇
ܾ

൰

ஶ

௞ୀଵ

ቀ1 െ cos ቀ߱௙ೕೖݐቁቁ

ஶ

௝ୀଵ

 
 

 (33) 

Where ܪ௝௞ is  ିସ௉బௌೕೖ
௝௞గమ௄ೕೖ

. Dynamic response of the steady state forced vibration, is shown in 

figure (7). This figure shows a harmonic behavior and despite two previous cases, frequencies 
of vibration are equal to natural frequencies of the FSI system.  

 
4-2 Frequency Response  
 
In this section, first we apply an external concentrated excitation to the center of the plate and 
then, the Domain-Frequency response will be found. For this purpose, equation (30) should be 
written as a series of decoupled modes as:  

௝௞ܯ ሷܶ ሺݐሻ ൅ ሻݐ௝௞ܶሺܭ ൌ െ
∬ ߰௝௞ܲሺܠ, ଶ஺ݔଵ݀ݔሻ݀ݐ

ܣ
 

 
 (34) 

Consider now the time response at ܠ to an unit, harmonic, point load at  ܠ૙, of frequency ߱. 
Then ܲሺܠ, ሻݐ ൌ ݁௜ఠ௧ߜሺܠ െ  ૙ሻ and substituting in equation (34), forced vibration equation forܠ
any decoupled mode would be resulted as:  

 

Figure 7 Dynamical response to harmonic distributed force ܨሺݐሻ ൌ ௢ܲ sinሺ߱ݐሻ, for  
                      a symmetric (0௢/90௢)s graphite-epoxy laminate composite floating on fluid, ாభభ
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௝௞ܯ ሷܶ ሺݐሻ ൅ ሻݐ௝௞ܶሺܭ ൌ െቆ
߰௝௞ሺܠሻ

ܣ
ቇ ݁௜ఠ௧ 

 
 (35) 

If it is assumed that 	ܶሺݐሻ ൌ ௝ܻ௞ሺ߱ሻ݁௜ఠ௧, then substituting in equation (35), ௝ܻ௞ሺ߱ሻ could be 
found:  

௝ܻ௞ሺ߱ሻ ൌ
െ߰௝௞ሺܠ૙ሻ

௝௞ܭ൫ܣ െ ߱ଶܯ௝௞൯
 

 
(36) 

So, from equation (28), the response at ܠ to an unit, harmonic, point loaded at ܠ૙ could be 
found. On the other hand, the displacement could be written as ݓሺܠ, ሻݐ ൌ ,ܠሺܩ ,૙ܠ ߱ሻ݁௜ఠ௧, 
where ܩሺܠ, ,૙ܠ ߱ሻ is the frequency domain transfer function. Now, if we show the transfer 
function as ܩሺܠ, ,૙ܠ ߱ሻ ൌ ߰௝௞ሺܠሻܪ௝௞ሺ߱ሻ߰௝௞ሺܠ૙ሻ, the domain ܪ௝௞ሺ߱ሻ as a function of 
frequency ߱ is:  

௝௞ሺ߱ሻܪ ൌ
െ1

௝௞ܭܣ ቆ1 െ ൬
߱
௝߱௞
൰
ଶ

ቇ
  

(37) 

 
Drawing the frequency domain ܪ௝௞ሺ߱ሻ for a specific range of frequency ߱, domain-frequency 
curve would be resulted as figure (8). As we can interpret from figure (8), frequency domain 
curve have some peaks at the place of points shown with numbers 1 to 5 and each of this peaks 
are showing a natural frequency of the system. For the case without fluid, these peaks happen 
sooner, meaning that, the values of natural frequency of the FSI are lower than those of without 
fluid. The frequency domain analysis is important, because when dealing with the instability or 
happening of natural frequencies, it is hard to find any explanation by time domain analysis 
and, hence, the explanation turned to be very logical when one uses the frequency analysis and 
the peaks are initiated from presence of natural frequencies. Actually, it may not have any 
special physical meaning but we could use it as a tool for finding and even comparing natural 
frequencies of the plate with or without fluid. As one can see in figure (8), for the case without 
fluid, natural frequencies (peaks) happen sooner, meaning that the values of the natural 
frequency of FSI are lower than those of without fluid. The more the fluid depth ݀  is increasing, 
the less the amplitude ܪ௝௞ሺ߱ሻ will increase. As a result, we can say that increasing the fluid 
depth ݀ causes an increase in the natural frequency, hence, it causes a delay in happening of the 
peaks in figure (8). The frequency response function for the plate supported by liquid is similar 
to the standard result obtained for the case without fluid, with added mass and stiffness, ߩ௙݃ 

and ߩ௙ ൬
ୡ୭୲୦൫ఒೕೖௗ൯

ఒೕೖ
൰, respectively. This is equivalent to adding a layer of liquid of depth 

൬
ୡ୭୲୦൫ఒೕೖௗ൯

ఒೕೖ
൰, moving with the plate. As the liquid level is deeper, the thickness of the layer is 

approaching  ଵ
ఒೕೖ

. As the mode number increases, the effect of this layer decreases.  

Figure 8 Frequency response, amplitude as a function of frequency plot for 
composite plate floating on fluid (dash line) and without fluid (solid line) 
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5 Conclusions  
 
The main objective of this paper is the analytical free and forced vibration analysis of the 
composite plate floating on fluid. For this purpose, natural frequencies and mode shapes for 
free vibration were obtained, then, frequency response of forced vibration was calculated, 
analytically. As a result of this study, it was found that, increasing the number of lamina in 
composite plate, causes a considerable decrease in the natural frequencies. Also, the more the 
aspect ratio of the plate is, the less the fundamental natural frequencies of FSI are. Natural 
frequencies of a plate in presence of fluid are lower than those of without fluid. Forced vibration 
response of FSI, with external load of type harmonic concentrated force and harmonic 
distributed pressure, have vibration frequency equal to excitation frequency. Although, for the 
case of step loading, FSI oscillates with natural frequency of system. Adding fluid under the 
plate in FSI, causes an increase in mass and stiffness of the plate.  
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Nomenclatures  
 
ܽ:    length of the plate  
ܾ:    width of the plate  
݀:    depth of the fluid tank  
  ௜௝:    Young modulusܧ
  ௜௝:    shear modulusܩ
݃:    gravitational acceleration  
݄:    thickness of the plate 

 

Greek Symbols  
  ௜௝:    Poison ratioߥ
  ௙:    fluid mass densityߩ
 ௣:    plate mass densityߩ
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Appendix I  
 
 
 

Table 4 Values of parameters and engineering properties used for  
                                    validation of results  

Engineering constant 
or parameter 

Values  Unit   

  ௙1000 3kgmߩ

  ௉2440 3kgmߩ
ܽ0.5 M 
ܾ0.2 M 
݄0.01 M 
݀2 M 
݃9.81 2-ms 

  - ଵଶ0.25ߥ
ଵଵܧ

9260x10 2-Nm  

ଶଶܧ
9, 26 x10913 x10  2-Nm  

  ଵଶ220.5E 2-Nmܩ
  ଵଷ220.5E 2-Nmܩ
  ଶଷ220.2E 2-Nmܩ

 
 
Appendix II  
 
Let (ݔ, ,ݕ  denotes the global coordinate system used to write the governing equations of a (ݖ
laminate, and let (ݔଵ, ,ଶݔ  ଷ) the local material coordinates of a typical layer of composite plateݔ
in the laminate such that ݔଷ-axis is parallel to ݖ-axis (i.e., the ݔଵݔଶ-plane and the ݕݔ-plane are 
parallel) and ݔଵ-axis is oriented at an angle of ൅ߠ counterclockwise from the ݔ-axis. see figure 
(9).  

The relations between the generalized plane stress coefficients for the ݇-th layer; തܳ௜௝
ሼ௞ሽ, and 

plane stress-reduced stiffnesses; ܳ௜௝
ሼ௞ሽ, are as below:  

തܳ
ଵଵ
ሼ௞ሽ ൌ ܳଵଵ cosସሺߠሻ ൅ 2ሺܳଵଶ ൅ 2ܳ଺଺ሻ sinଶሺߠሻ cosଶሺߠሻ ൅ ܳଶଶ sinସሺߠሻ 

തܳ
ଵଶ
ሼ௞ሽ ൌ ሺܳଵଵ ൅ ܳଶଶ െ 4ܳ଺଺ሻ sinଶሺߠሻ cosଶሺߠሻ ൅ ܳଵଶሺsinସሺߠሻ ൅ cosସሺߠሻሻ 

തܳ
ଶଶ
ሼ௞ሽ ൌ ܳଵଵ sinସሺߠሻ ൅ 2ሺܳଵଶ ൅ 2ܳ଺଺ሻ sinଶሺߠሻ cosଶሺߠሻ ൅ ܳଶଶ cosସሺߠሻ 

തܳ
଺଺
ሼ௞ሽ ൌ ሺܳଵଵ ൅ ܳଶଶ െ 2ܳଵଶ െ 2ܳ଺଺ሻ sinଶሺߠሻ cosଶሺߠሻ ൅ ܳ଺଺ሺsinସሺߠሻ ൅ cosସሺߠሻሻ 

 

And the relations between ܳ௜௝
ሼ௞ሽ and engineering properties of the composite material are:  

ܳଵଵ
ሼ௞ሽ ൌ

ଵଵܧ
ሼ௞ሽ

ቀ1 െ ଵଶߥ
ሼ௞ሽߥଶଵ

ሼ௞ሽቁ
ܳଶଶ
ሼ௞ሽ ൌ

ଶଶܧ
ሼ௞ሽ

ቀ1 െ ଵଶߥ
ሼ௞ሽߥଶଵ

ሼ௞ሽቁ

ܳଵଶ
ሼ௞ሽ ൌ

ଶଵߥ
ሼ௞ሽܧଵଵ

ሼ௞ሽ

ቀ1 െ ଵଶߥ
ሼ௞ሽߥଶଵ

ሼ௞ሽቁ
ܳ଺଺
ሼ௞ሽ ൌ ଵଶܩ

ሼ௞ሽ
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And also, bending stiffness coefficients of composite plate; ܦ௜௝, are presented as:  

 

 

 
                                     

Figure 9 A lamina with local and global coordinates systems [14] 
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					ሺ݅, ݆ ൌ 1,2,6ሻ 
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  كيده چ
 

 به وسيله تئوريقرار گرفته است.  سيال مورد بررسي -مسئله تداخل سازهآناليز مودال براي  ،در اين مقاله
هاي طبيعي و شكل مودهاي به منظور محاسبه فركانس تحليليبسته يك پاسخ  ،ايهاي لايهكلاسيك ورق
: عمده فرضيات صورت گرفته شاملسازي ديناميكي سيال؛ در مدلسيال استخراج گرديده است.  -سيستم سازه

معادله ديفرانسيل مشتق جزئي در ادامه؛ باشد. ال ميجريان سيغيرويسكوزي و غيرچرخشي بودن  ،همگني
  به دست آمده است. سيال  -م تركيبي سازهحاكم بر ارتعاش سيست

ها با نتايج ديگر مقالات پرداخته به مقايسه آن ،به منظور اعتبارسنجي صحت معادلات و نتايج به دست آمده
راي بگاه تاثير نسبت ابعادي ورق كامپوزيتي بر فركانس طبيعي سيستم بررسي شده است. آنشده است. 

بار فشاري گسترده هارمونيك و  ،بار متمركز هارمونيك مختلف شاملسه حالت بارگذاري ارتعاش اجباري؛ 
 گرفته است. ها ترسيم گرديده و مورد بررسي قرارآندر هر حالت پاسخ زماني در نظر گرفته شده و  ،ايهلپ

  سيال تحت بارگذاري هارمونيك استخراج شده است.  -پاسخ فركانسي سيستم ورق ،چنينهم
 


