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1  Introduction 

 

Flow-induced vibrations of fluid-conveying structures such as pipes, micro-pipes and 

nanotubes have been topics of wide research interests which have received numerous 

experimental, numerical, and theoretical studies over many past decades.  Benjamin [1] studied 

dynamics of a system of articulated pipes conveying fluid. Housner et al. [2] investigated the 

effect of high velocity fluid flow in the bending vibration and static divergence of simply 

supported pipes while Holmes [3] submitted that pipe supported at both ends cannot flutter. 

Semler et al. [4] developed the non-linear equations of motion of pipes conveying fluid. 
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Nonlinear Analysis of Flow-induced 

Vibration in Fluid-conveying Structures 

using Differential Transformation Method 

with Cosine-after Treatment Technique  
In this work, analytical solutions are provided to the 

nonlinear equations arising in thermal and flow-induced 

vibration in fluid-conveying structures using Galerkin-

differential transformation method with cosine 

aftertreatment technique. From the analysis, it was 

established that increase of the length and aspect ratio of the 

fluid-conveying structures result in decrease the nonlinear 

vibration frequencies of the structure while increase in the 

fluid-flow velocity causes increase in nonlinear vibration 

frequencies of the structures. Also, increase in the slip 

parameter leads to decrease in the frequency of vibration of 

the structure and the critical velocity of the conveyed fluid 

while increase in the slip parameter leads to decrease in the 

dimensionless frequency ratio of vibration of the structure. 

As the Knudsen number increases, the bending stiffness of 

the nanotube decreases and in consequent, the critical 

continuum flow velocity decreases as the curves shift to the 

lowest frequency zone. Good agreement are established 

when the results of the differential transformation method 

are compared with the results of the numerical method and 

exact analytical method for the non-linear and linear 

models, respectively.  
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Paidoussis [5] analyzed the dynamics behavior of flexible slender cylinders in axial flow while 

Paidoussis and Deksnis [6] presened articulated models of cantilevers conveying fluid.  Rinaldi 

et al [7] stuied the stability of microscale pipes containing internal fluid flow while Akgoz and  

Civalek [8]presented vibration analysis of axially functionally graded tapered Bernoulli–Euler 

microbeams based on the modified couple stress theory. Xia and Wang [9] analyzed microfluid-

induced vibration and stability of structures based on non-classical Timoshenko beam theory” 

while Ahangar et al. [10] used modified couple stress theory to analyze the stability of a 

microbeam conveying fluid considering. Yin et al [11] used strain gradient beam model for 

carry out the dynamics of microscale pipes conveying fluid. Sahmani et al. [12] adopted 

modified strain gradient elasticity theory nonlinear free vibration analysis of functionally 

graded third-order shear deformable microbeams.  

Akgoz, and Civalek [13] presented buckling analysis of functionally graded microbeams based 

on the strain gradient theory Also, Zhao et al. [14] and Kong et al [15] applied strain gradient 

theory nonlinear dynamic behavior of microbeam model while Setoodeh and Afrahhim 

[16]studied nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain 

gradient theory.  Yoon et al.  [17] analyzed vibration and instability of carbon nanotubes 

conveying fluid. Yan et al [18] investigated the nonlocal effect on axially compressed buckling 

of triple-walled carbon nanotubes under temperature field.  Murmu and Pradhan [19] studied 

thermo-mechanical vibration of Single-walled carbon nanotube embedded in an elastic medium 

based on nonlocal elasticity theory. Yang and Wang [20] presented bending stability of multi-

wall carbon nanotubes embedded in an elastic medium. Yoon et al. [21] analyzed the vibration 

of an embedded multiwall carbon nanotube. Chang and Lee [22] used Timoshenko beam model 

to analyze vibration of a single-walled carbon nanotube containing a fluid flow. Lu et al. applied 

of nonlocal beam models for carbon nanotubes. Zhang et al. [23] studied transverse vibration 

of double-walled carbon nanotubes under compressive axial load. Ghorbanpour [24] analyzed 

the thermal effect on buckling analysis of a DWCNT embedded on the Pasternak foundation. 

It is established from reviewed works that the dynamic analysis of flow-induced vibration in 

pipes, micropipes and nanotubes has become a subject of vast interests as it has attracted a large 

number of studies in literatures. This is because, modeling the dynamic behaviours of the 

structures under the influence of some thermo-fluidic or thermo-mechanical parameters often 

results in nonlinear equations and such are difficult to find the exact analytical solutions. In 

some cases where decomposition procedures into spatial and temporal parts are carried out, the 

resulting nonlinear equation for the temporal part comes in form of Duffing equation. 

Application of analytical methods such as Exp-function method, He’s Exp-function method, 

improved F-expansion method, Lindstedt-Poincare techniques, quotient trigonometric function 

expansion method to the nonlinear equation present analytical solutions either in implicit or 

explicit form which often involved complex mathematical analysis leading to analytic 

expression involving a large number terms.  

Furthermore, the methods are time-consuming task accompanied with possessing high skills in 

mathematics. Also, they do not provide general analytical solutions since the solutions often 

come with conditional statements which make them limited in used as many of the conditions 

with the exact solutions do not meet up with the practical applications.In practice, analytical 

solutions with large number of terms and conditional statements for the solutions are not 

convenient for use by designers and engineers [25].  

Consequently, recourse has always been made to numerical methods or approximate analytical 

methods in solving the problems.However, the classical way for finding exact analytical 

solution is obviously still very important since it serves as an accurate benchmark for numerical 

solutions. Also, the experimental data are useful to access the mathematical models, but are 

never sufficient to verify the numerical solutions of the established mathematical models.  
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Comparison between the numerical calculations and experimental data often fail to reveal the 

compensation of modelling deficiencies through the computational errors or unconscious 

approximations in establishing applicable numerical schemes. Additionally, exact analytical 

solutions for specified problems are also essential for the development of efficient applied 

numerical simulation tools. Inevitably, exact analytical expressions are required to show the 

direct relationship between the models parameters.  

When such exact analytical solutions are available, they provide good insights into the 

significance of various system parameters affecting the phenomena as it gives continuous 

physical insights than pure numerical or computation methods. Furthermore, most of the 

analytical approximation and purely numerical methods that were applied in literatures to 

nonlinear problems are computationally intensive. Exact analytical expression is more 

convenient for engineering calculations compare with experimental or numerical studies and it 

is obvious starting point for a better understanding of the relationship between physical 

quantities/properties. It is convenient for parametric studies, accounting for the physics of the 

problem and appears more appealing than the numerical solutions.  

It appears more appealing than the numerical solution as it helps to reduce the computation 

costs, simulations and task in the analysis of real life problems.  Therefore, an exact analytical 

solution is required for the problem.  

Differential transform method is an approximate analytical method for solving differential 

equations Although, this concept was introduced by Ζhou [26], its applications to both linear 

and non-linear differential and systems of differential equation have fast gained ground as it 

appeared in many engineering and scientific research papers. It is a method that could solve 

differential equations, difference equation, differential-difference equations, fractional 

differential equation, pantograph equation and integro-differential equation. It solves nonlinear 

integral and differential equations without linearization, discretization or restrictive 

assumptions, perturbation and discretization round-off error. Itreduces complexity of expansion 

of derivatives andthe computational difficulties of the other traditional methods.   

Using DTM, a closed form series solution or approximate solution can be obtained as it provides 

excellent approximations to the solution of non-linear equation with high accuracy. It is capable 

of greatly reducing the size of computational work while still accurately providing the series 

solution with fast convergence rate. Also, DTM can be used to solve linear and non-linear non-

homogeneous PDEs with accurate approximate, which is acceptable for small range. Laplace 

transform could be combined with the DTM to overcome the large range solution deficiency 

that is mainly caused by the unsatisfied conditions. DTM is more effective and convenient 

compared to the ADM and VIM. DTM does not require many computations as carried out in 

ADM and VIM to have high and fast rate of convergence.  

       Also, Galerkin’s method provides a very powerful, novel and accurate approximate 

analytical solution procedure that is applicable to a wide variety of linear and non-linear 

problems. Combining the Galerkin’s method with differential transform method in the analysis 

of non-linear initial-boundary value problems, provides complementary advantages of higher 

accuracy, reduced computation cost and task as compared to the other methods as found in 

literatures. Although, the hybrid method of Galerkin-differential transform method (GDTM) 

solves the differential equations without linearization, discretization or approximation, 

linearization restrictive assumptions or perturbation, complexity of expansion of derivatives 

and computation of derivatives symbolically, a well-known fact is that, the differential 

transformation method (DTM) gives the solution in the form of a truncated series. 

Unfortunately, in the case of oscillatory systems, the truncated series obtained by the method is 

periodic only in a very small region. This drawback is not only peculiar to DTM, other 

approximate analytical methods such as ADM also have the same short-coming for oscillatory 

systems [27, 28].  
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To overcome this difficulty, an aftertreatment technique (AT) was used to obtain approximate 

periodic solutions in a wide range of solution. In modifying ADM to provide periodic solutions 

in a large region, Venkatarangan and Rajakshmi [27] and Jiao et al. [28] developed AT 

techniques which are based onusing Pade approximates, Laplace transform and its inverse. 

Although, the AT techniques were found to be effective in many cases, it has some 

disadvantages, not only it required a huge amountof computational work to provide accurate 

approximations for the periodic solutions but also thereis a difficulty of obtaining the inverse 

Laplace transform which greatly restricts the application areaof their technique [29]. In this 

work, the after treatment techniqueas developed by Elhalim and Emad [29] which has shown 

to be better than previously developed aftertreatment techniques is applied. Therefore, in this 

research, analytical solutions are provided to the nonlinear partial differential equations arising 

in flow-induced vibration in pipes, micro-pipes and nanotubesunder different boundary 

conditions using Galerkin-differential transformation method with aftertreatment technique.  

The nonlinear partial differential equations were converted to nonlinear ordinary differential 

equations and then differential transformation method with after treatment technique is utilized 

to provide exact analytical solutions to the nonlinear ordinary differential equations of vibration 

of the structures.  The developed analytical solutions are compared with the numerical results 

and the results of approximate analytical solutions and good agreements reached. The analytical 

solutions can serve as a starting point for a better understanding of the relationship between the 

physical quantities of the problems as it provides continuous physical insights into the problem 

than pure numerical or computation methods. 

 

2 Governing equations and boundary conditions 

 

Case 1: Flow-induced vibration in pipe 

 

Consider a pipe conveying hot fluid, subjected to stretching effects and resting on linear and 

nonlinear elastic foundations (Pasternak, linear and nonlinear Winkler foundations) under 

external applied tension and global pressure as shown in Figure (1). Using nonlocal elasticity 

theory and Hamilton’s principle, the governing equation of motion for the is given as   
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If the pipe is slightly curved, then the governing equation becomes 

 

 
Figure 1 Geometry and loading of the problem 
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Where Zo(x) is the arbitrary initial rise function. 

Using the Galerkin’s decomposition procedure to separate the spatial and temporal parts of 

the lateral displacement functions as  

 

( , ) ( ) ( )w x t x u t                                                               (3) 

 

Where ( )u t the generalized coordinate of the system and ( )x is a trial/comparison function 

that will satisfy both the geometric and natural boundary conditions. 

Applying one-parameter Galerkin’s solution given in Eq. (4) to Eq. (3) 
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Where for the straight pipe 
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And for the slightly curved pipe 

 
4 2 2 2

2

4 2 2

2 22
3

1 3 2 2

0

( , ) ( ) 2
1 2

0
2

p f f f p

L

o o
o

w w w w EA w
R x t EI m m vm m v PA T k

x t t x t x

Z ZEA w w w
k w k w N dx

L x x x x x

 




      
          

       

         
           

           


 

 

We have the nonlinear vibration equation of the pipe as 

 

𝑀𝑢̈(𝑡) + 𝐺𝑢̇(𝑡) + (𝐾 + 𝐶)𝑢(𝑡) − 𝑉𝑢3(𝑡) = 0                                            (5) 
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For the slightly curved pipe, M, G, K and C are the same but  
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The circular fundamental natural frequency gives  
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Case 2: Flow induced vibration in functionally graded micro-pipe 

 

Consider the case of flow induced vibration in a functionally graded micropipe conveying hot 

fluid subjected to stretching effects and resting on linear and nonlinear elastic foundation under 

external applied tension and global pressure. Applying strain gradient and coupled stress 

theories followed by Hamilton’s principle [16], we arrived at the governing equation of motion 

for the functionally graded micropipe is given as   
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(7) 

If the pipe is slightly curved, then the governing equation for the FG micropipe becomes 
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Where 
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lo, l1 and l2are the independent length scale parameters embedded in the constitutive equations 

of the higher order stresses. 

If we follow the same procedure of applying the Galerkin’s decomposition procedure to 

separate the spatial and temporal parts of the lateral displacement and then apply the one-

parameter Galerkin’s solution, we arrived at the same nonlinear vibration equation for the 

micropipe as 

𝑀𝑢̈(𝑡) + 𝐺𝑢̇(𝑡) + (𝐾 + 𝐶)𝑢(𝑡) − 𝑉𝑢3(𝑡) = 0                                       (9) 
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For the slightly curved FG micropipe, M, G, K and C are the same but  
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The circular fundamental natural frequency gives  
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Case 3: Flow-induced vibration in nanotube 

 

Consider a single-walled carbon nanotube conveying hot fluid, subjected to stretching 

effectsand resting on linear and nonlinear elastic foundation under external applied tension and 

global pressure. Following the Eringen’s nonlocal elasticity theory [30-33] and Hamilton’s 

principle, we arrived at the governing equation of motion for the single-walled carbon nanotube 

(SWCBT) as  

  

 

24 2 2 2 2
2

4 2 2 20

24 3 2 4
2

1 32 2 2 2 3

23

1 3

( ) 2
1 2 2

( ) 6 3 2

L

p f f f p

p f f

o

f

w w w w EA w EA w w
EI m m vm m v PA T k dx

x t t x t x L x x

w w w w w w
m m k k w w vm

x t x t x x x x t
k w k w e a

m v

 






           
              

             

      
      

         
  





24 4
2

4 40

0

1 2 2

L

p

EA w EA w w
PA T k dx

x L x x

 



 
 
 

                  
          



     

                                                                                                                                              (11) 

 

If the nanotube is slightly curved, then the governing equation for the nanotube becomes 
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For nanotube conveying fluid, the radius of the tube is assumed to be the characteristics length 

scale, Knudsen number is larger than 10-2. Therefore, the assumption of no-slip boundary 

conditions does not hold and modified model should be used. Therefore, we have 
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Where Kn is the Knudsen number, σvis tangential moment accommodation coefficient which 

is considered to be 0.7 for most practical purposes [34]. 
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And Eq. (12) could be written as  
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Again, following the same procedure of applying the Galerkin’s decomposition procedure and 

then apply the one-parameter Galerkin’s solution, we arrived at the same nonlinear vibration 

equation for the nanotube as 

 

𝑀𝑢̈(𝑡) + 𝐺𝑢̇(𝑡) + (𝐾 + 𝐶)𝑢(𝑡) − 𝑉𝑢3(𝑡) = 0                                    (18) 
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For the slightly curved nanotube, M, G, K and C are the same but  
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and the circular fundamental natural frequency gives  
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3 The initial and boundary conditions 

 

The structures (pipe, micopipe and nanotube) may be subjected to any of the following 

boundary conditions 

 

i. Clamped-Clamped (doubly clamped) 

 

Where the trial/comparison function are given as  
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Where  
n  are the roots of the equation 

 

1n ncos Lcosh L    

 

The initial and the boundary conditions are 

 

𝑤(0, 𝑥) = 𝐴, 𝑤̇(0, 𝑥) = 0 

 (22) 
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The applications of space function as given above for clamped-clamped will involve long 

calculations and expressions in Finding M, G, K, C, and V, alternatively, a polynomial function 

of the form Eq. (23) can be applied for this type of support system. 
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Applying the boundary conditions 
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Substitute Eq. (24) into Eq. (25), we have 
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For a =1, arrived at 
4 25.20a  for the first mode 
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ii. Clamped-Simple supported 

 

The trial/comparison function are given as  
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n  are the roots of the equation 
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The initial and the boundary conditions are  
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Alternatively, a polynomial function of the form Eq. (29) can be applied for this type of support 

system. 
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On using orthogonal functions, 
4 11.625a  for the first mode 

 

iii. Simple-Simple supported 
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The initial and the boundary conditions are  
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Alternatively, a polynomial function of the form Eq. (31) can be applied for this type of support 

system. 
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iv. Clamp-Free (cantilever) 
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n are the roots of the equation 
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The initial and the boundary conditions are  

 

𝑤(0, 𝑥) = 𝐴, 𝑤̇(0, 𝑥) = 0 

 (35) 
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Alternatively, a polynomial function of the form Eq. (36) can be applied for this type of support 

system. 
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Also, with the aid of orthogonal functions, 
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4    Determination of natural frequencies 

 

The natural frequency analysis is the sine qua non for the analysis of stability, it must therefore 

be carried out in the dynamic response of the structures. 

 

Under the transformation, t  , Eq. (5) turns out to be 

 

𝑀𝜔2𝑢̈(𝜏) + 𝐺𝜔𝑢̇(𝜏) + (𝐾 + 𝐶)𝑢(𝜏) − 𝑉𝑢3(𝜏) = 0                             (37) 

                                                                    

For the undamped clamped-clamped, clamped-simple and simple-simple supported structures,  

G=0 

 

𝑀𝜔2𝑢̈(𝜏) + (𝐾 + 𝐶)𝑢(𝜏) − 𝑉𝑢3(𝜏) = 0                                      (38) 

                                                                                   

In order to find the periodic solution of Eq. (38), assume an initial approximation for zero-order 

deformation to be  
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2 3 3( ) 0oM Acos K C Acos VA cos                                        (40)                                                                    
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 
                                (41) 

 

In order to eliminate the secular term, we have 
3

23
( ) 0

4
o

VA
K C A M A

 
    

 
                                               (42) 

Thus, for the zero-order nonlinear natural frequency, we have 

 
23

4
o

K C VA

M M



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Therefore, the ratio of the zero-order nonlinear natural frequency, ωo to the linear frequency, 

ωb  

 

23
1

4( )

o

b

VA

K C




 


                                                         (44) 

 

Similarly, for the first-order nonlinear natural frequency, we have 
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                  (45) 

 

 

The ratio of thefirst-order nonlinear frequency, ω1 to the linear frequency, ωb 
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                    (46) 

 

 

On a general note, following Lai et al. [67], it can easily be shown that the exact natural 

frequency of the fluid-conveying structures is given as  
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                                                (47) 

 

For the general case in this work,  
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Where when the nonlinear term, V is set to zero, we recovered the linear natural frequency. 

 

It is very difficult to generate exact solution of Eq. (47), using series integration method, we 

developed an approximation analytical solution for finding the natural frequency as 

 
2 3 4 5

1 1 2 2 2 2 21 0.25000 0.11680 0.59601 1.90478 2.04574                           (48) 

 

The ratio of the first-order nonlinear frequency, ω1 to the linear frequency, ωb 

 

2 3 4 51
2 2 2 2 21 0.25000 0.11680 0.59601 1.90478 2.04574

b


    


                      (49) 
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Also, it is difficult to generate any closed form solution for the above nonlinear Eq. (5 or 9 or 

18). In finding simple, direct and practical solutions to the problem, we apply differential 

transformation with after treatment technique to the nonlinear equation. 

 

 

5   Differential transformation method 

 

As pointed previously, the differential transformation method is an approximate analytical 

method for solving differential equations. However, a closed form series solution or 

approximate solution can be obtained for non-linear differential equations with the use of DTM.  

The basic definitions of the method is as follows 

If )(tu  is analytic in the domain T, then it will be differentiated continuously with respect to 

time t. 

),(
)(

kt
dt

tud
K

K

  for         all Tt             (50) 

for 
itt  , then ),(),( Ktkt i   , where K belongs to the set of non-negative integers, denoted 

as the K-domain. Therefore Eq. (50) can be rewritten as  
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                   (51) 

Where
kU  is called the spectrum of )(tu  at 

itt   

If )(tu  can be expressed by Taylor’s series, the )(tu  can be represented as 
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

 
                                               (52) 

Where Equ. (52) is called the inverse of )(kU  using the symbol ‘D’ denoting the differential 

transformation process and combining (51) and (52), it is obtained that 
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5.1 Operational properties of differential transformation method 

 

If )()( tvandtu  are two independent functions with time (t) where )(kU  and )(kV  are the 

transformed function corresponding to )(tu  and )(tv , then it can be proved from the 

fundamental mathematics operations performed by differential transformation that. 

 

i. If ),()()( tvtutz      then )()()( kVkUk   
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iii. If ,
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)(
dt
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iv. If ),()()( tvtutz  then 
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5.2   Solution of the temporal nonlinear equation using differential transformation method 

 

The above DTM described is applied to solve the temporal nonlinear differential equation. 

Applying DTM to Eq. (5), we have 
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For p = 0, 1, 2, 3, 4, 5, 6, 7, 8. We have the following 
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2
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On applying the comparison function in Eqs. (20)-(36) made G=0for the clamped-clamped, 

clamped-simple and simple-simple supported structures, therefore the above equations reduced 

to 
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                                                                                                                                                (59) 

 

Apart from the solution of the DTM given above is too long for practical applications, the 

method gives solution in the form of truncated series. This truncated series is periodic only in 
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a very small region. In order to make the solution periodic over a large range, we applied 

Cosine-after treatment (CAT-technique).   

If the truncated series in Eq. (59) is expressed in even-power, only, of the independent variable 

t, i.e. 

2

0

( ) (2 ) (2 1) 0, 0,1,..., 1,
2

N
k

N

k

N
t U k t U k k where N is even



                    (60) 

 

The CAT- technique is based on the assumption that this truncated series can be expressed as 

another finite series in terms of the cosine-trigonometric functions with different amplitude and 

arguments 

 
1

( ) ,
N

N j j

j

t cos t where n is finite


                                   (61) 

 

On expanding both sides of Eq. (61) as power series of t and equating the coefficient of like 

powers, we have  
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                                                (61) 

 

For practical application, it is sufficient to express the truncated series ( )N t  in terms of two 

cosines with different amplitudes and arguments as 

 

 
2

6

1

( ) .j j

j

t cos t


                                                      (62) 

Therefore, we have  

 

1 2 (0)U  
                                                            

(63a) 

 
2 2

1 1 2 2 2 (2)U     
                                                     

(63b) 

 
4 4

1 1 2 2 24 (4)U                                                          (63c) 

 
6 6

1 1 2 2 720 (6)U     
                                                 

(63d) 

 

On substituting the DTM results, we have 

 

1 2 A                                                              (64a) 
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 2 2 2

1 1 2 2 ( )
A

VA K C
M

         (64b) 
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  
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(64d) 

 

 

On solving the above Eq. (64a-64d), we have 
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                (65a) 
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(65b) 
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Therefore, the approximated periodic solution for u(t) is given as 
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(66) 
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(i) Clamped-clamped (doubly clamped) 
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(67) 

 

 

(ii) Pinned-Pinned structure 
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(68) 

 

 

Note: M, K, C and V are respective integral values of the respective space functions of the 

respective boundary conditions and structure considered. 

 

 

6  Results and Discussion 

 

Figures (2-5) show the first five normalized mode shapes of the beams for clamped-clamped, 

simple-simple, clamped-simple and clamped-free supports. Also, the figures show the 

deflections of the beams along the beams’ span at five different buckled and mode shapes. 
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Figure 2 The first five normalized mode shaped of the beams under clamped-clamped supports 
 

 

 
 

Figure 3 The first five normalized mode shaped of the beams under simple-simple supports 
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Figure 4 The first five normalized mode shapes of the beams under clamped-simple supports 

 

 
 

Figure 5 First five normalized mode shaped of the beams under clamped-free (cantilever) supports 

 

 

Figures. (6-9) show the comparison of hyperbolic-trigonometric and the polynomial functions 

for the normalized mode shapes of the beams for clamped-clamped, simple-simple, clamped-

simple and clamped-free supports. The figures depict the validity of the developed polynomial 

functions in this work as there are very good agreements between the hyperbolic-trigonometric 

and the developed polynomial functions. 
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Figure 6 Normalized mode shaped of the structures under clamped-clamped supports for  

Hyperbolic-Trigonometric and Polynomial functions 

 

 

 
 

Figure 7 Normalized mode shaped of the structures under simple-simple supports for 

 Hyperbolic-Trigonometric and Polynomial functions 
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Figure 8 Normalized mode shaped of the structures under clamped-free supports for 

Hyperbolic-Trigonometric and Polynomial functions 
 

 
 

Figure 9 Normalized mode shaped of the structures under clamped-simple supports for  

Hyperbolic-Trigonometric and Polynomial functions 
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The lowest frequency ratio of the clamped-clamped beam is due to high stiffness of the beam 

with this type of boundary conditions in comparison with other types of boundary conditions.  

The fundamental linear vibration frequency is the lowest root of the resulting characteristics 

equation. It can be seen from the figure, in contrast to linear systems, the nonlinear frequency 

is a function of amplitude so that the larger the amplitude, the more pronounced the discrepancy 

between the linear and the nonlinear frequencies becomes.  

 
 

Figure 10 Effects of boundary conditions on the nonlinear amplitude-frequency 

 response curves of the pipe 
 

 

 
 

Figur 11 Effects of boundary pipe length on the nonlinear amplitude-frequency 

 response curves of the pipe 
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Figure (11) show the effects of pipe length on the nonlinear amplitude-frequency response 

curves of the pipe. It is observed that with increase of the length or by extension, the aspect 

ratio of the pipe, the nonlinear vibration frequencies of the structure decreases while nonlinear 

vibration frequencies increases with the increase in the fluid-flow velocity. 

 

Figure (12) shows effects of fluid-flow velocity on the nonlinear amplitude-frequency response 

curves of pipe. It is observed that with increase of the length or by extension, the aspect ratio 

of the pipe, the nonlinear vibration frequencies of the structure decreases while nonlinear 

vibration frequencies increases with the increase in the fluid-flow velocity. 

 

Figure (13) show the comparison of the results of exact analytical solution and the results of 

the present study for the linear models while Figure (14) presents the comparison of numerical 

results models and the results of present work for the nonlinear models. From the results, it 

could been seen that good agreements are established reached and good agreements are 

established reached. 

 

Figure (15) illustrates the midpoint deflection time history for the nonlinear analysis of SWCBT 

when Kn=0.03 and U= 100 m/s while Figure (16) presents the midpoint deflection time history 

for the nonlinear analysis of SWCBT when Kn=0.03 and U= 500 m/s.  

 

Also, Figure (17) depicts the midpoint deflection time history for the linear analysis of CBT 

when Kn=0.03and U= 500 m/s The Knudsen number measures the slip effects of the fluid on 

the flow and consequently on the vibration induced by the flow. It should be pointed out that 

the Knudsen number predicts various flow regimes in the fluid-conveying nanotube.  

 

 
 

Figure 12 Effects of fluid-flow velocity on the nonlinear amplitude-frequency 

 response curves of pipe 
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Figure 13 Comparison between the obtained results and the exact 

 solution for the linear vibration 
 
 

 
 

Figure 14 Comparison between the obtained results and the numerical  

solution for the nonlinear vibration 
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Figure15 Midpoint deflection time history for the nonlinear analysis of SWCBT 

 When  Kn=0.03 and U= 100 m/s  

 
 

 
 

Figure 16 Midpoint deflection time history for the nonlinear analysis of SWCBT 

 when  Kn=0.03 and U= 500 m/s  
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Figure 17 Midpoint deflection time history for the linear analysis of SWCBT 

 when  Kn=0.03 and U= 500 m/s  

 
Figure (18) shows the comparison of the linear vibration with nonlinear vibration of the 

SWCNT. It could be seen in the figure that the discrepancy between the linear and nonlinear 

amplitudes increases with increment of the maximum vibration.  

 

 
 

Figure 18 Comparison of midpoint deflection time history for the linear and nonlinear 

 analysis of CBT when Kn=0.03 and U= 500 m/s  
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Figure 19 Comparison between the obtained results and the exact 

 solution for the linear vibration 
 

 
 

Figure 20 Comparison between the obtained results and the numerical solution 

 for the nonlinear vibration 
 

Figure (19) and (20) show the comparison of the results of exact analytical solution and the 

results of the present study for the linear models while Figure (14) presents the comparison of 

numerical results models and the results of present work for the nonlinear models.  

The results show that good agreements are established reached and good agreements are 

established reached. 
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Figure 21 Effects of nonlocal parameter on the natural frequency of the nonlinear vibration 

 
 

 
 

Figure 22 Effects of nonlocal parameter on the natural frequency of the nonlinear vibration 
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Figure 23 Effects of temperature change on the natural frequency of the structure vibration 
 

 
 

Figure 24 Effects of Knudsen number on the dimensionless frequency  

of simply supported single-walled nanotube 
 

The studies and the investigations of the dynamic and stability behaviours of the structure are 

largely dependent on the effects of fluid flow velocity, amplitude on the natural frequencies of 

the vibration. Effects of nonlocal parameter and temperature on the vibration of the nanotube 

are shown in Figures (10-12). It is depicted that increase in the slip parameter leads to decrease 

in the frequency of vibration of the structure and the critical velocity of the conveyed fluid.  

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Dimensionless flow velocity 

D
im

e
n
s
io

n
le

s
s
 F

re
q
u
e
n
c
y
  

Change in Temp. = 0K

Change in Temp. = 45K

Change in Temp. = 55K

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Dimensionless flow velocity 

D
im

e
n
s
io

n
le

s
s
 F

re
q
u
e
n
c
y
  

Kn = 0.00

Kn = 0.01

Kn = 0.10



                             Iranian Journal of Mechanical Engineering                               Vol. 18, No. 1, March 2017 38 

It should be pointed out as shown in the figures that the zero value for the nonlocal parameter, 

i.e. 0oe a  , represents the results of the classical Euler-Bernoulli model which has the highest 

frequency and critical fluid velocity (a point where the structure starts to experience instability).  

When the flow velocity of the fluid attains the critical velocity, both the real and imaginary 

parts of the frequency are equal to zero. Also, the figures present the critical speeds 

corresponding to the divergence conditions for different values of the nonlocal parameters. It is 

shown in Figures (10) and (11), the real and imaginary parts of the eigenvalues related to the 

two lowest modes with different nanotube parameters.  

Figure (12) shows the effects of temperature change on the frequencies of the CNT.  From the 

figure, as the temperature change increases, the natural frequencies and the critical flow velocity 

of the structure increase. Effects of slip parameter, Knudsen number on the dimensionless 

frequency ratio of the nanotube are shown in Figure (13).  

It is depicted that increase in the slip parameter leads to decrease in the dimensionless frequency 

ratio of vibration of the SWCNT. It should be pointed out that the Knudsen number predicts 

various flow regimes in the fluid-conveying nanotube. The Knudsen number with zero value 

has the highest frequency as shown in the figure. As the Knudsen number increases, the bending 

stiffness of the nanotube decreases and in consequent, the critical continuum flow velocity 

decreases as the curves shift to the lowest frequency zone. 
 

 

7   Conclusion 

 

In this work, analytical solutions to the nonlinear equations arising in flow-induced vibration 

of in pipes, micro-pipes and nanotubes using Galerkin-differential transformation method with 

aftertreatment technique have been developed.  From the analysis, it was established that 

increase of the length and aspect ratio of the fluid-conveying structures result in decrease the 

nonlinear vibration frequencies of the structure while increase in the fluid-flow velocity causes 

increase in nonlinear vibration frequencies of the structures. Also, increase in the slip parameter 

leads to decrease in the frequency of vibration of the structure and the critical velocity of the 

conveyed fluid while increase in the slip parameter leads to decrease in the dimensionless 

frequency ratio of vibration of the structure.  

As the Knudsen number increases, the bending stiffness of the nanotube decreases and in 

consequent, the critical continuum flow velocity decreases as the curves shift to the lowest 

frequency zone. The results show that the alteration of nonlinear flow-induced frequency from 

linear frequency is significant as the amplitude, flow velocity, and aspect ratio increase. The 

developed analytical solutions are compared with the numerical results for the non-linear 

models and the results of exact analytical solution for the linear models and good agreements 

are established. The analytical solutions can serve as a starting point for a better understanding 

of the relationship between the physical quantities of the problems as it provides continuous 

physical insights into the problems than pure numerical or computation methods. 
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Nomenclature 

 

A Area of the structure 

E Young Modulus of Elasticity 

G Shear Modulus 

I moment of area 

kp  Pasternak foundation coefficient 

k1  linear Winkler foundation coefficient 

k3  nonlinearWinkler foundation coefficient 

Kn Knudsen number,  

lo, l1,l2independent length scale parameters 

L   length 

mp mass of the structure 

mfmass of fluid 

N  axial/Longitudinal force 

P  Pressure 

rradius of the structure 

t   time 

T  tension 

( )u t generalized coordinate of the system 

w  transverse displacement/deflection 

x  axial coordinate 

Zo(x) is the arbitrary initial rise function. 

σv tangential moment accommodation coefficient 

( )x trial/comparison function 

υPoisson’ ratio   

μ damping coefficient 

Δθ change in temperature 

α     coefficient of expansion 
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 چکیده
 

حرارت و اثر سیال در ناشی از ارتعاشات اجباری در کار حاضر، حل تحلیلی برای معادلات غیرخطی حاصل از 

یلی گالرکین ارائه شده است. نتایج تحلیل نشان های حامل سیال با استفاده از روش تبدیل دیفرانسسازه

دد. گرسازه حاوی سیال باعث کاهش فرکانسهای غیر خطی سازه می نسبت ابعادیدهند که افزایش طول و می

ش گردد. همچنین افزاییال باعث افزایش فرکانسهای ارتعاش غیرخطی سازه میدر صورتی که افزایش سرعت س

 شود. ت بحرانی سیال میکاهش در فرکانس طبیعی سازه و سرعپارامتر لغزش باعث 

شود. با افزایش عدد عد سازه میاز طرف دیگر افزایش پارامتر لغزش باعث کاهش در نسبت فرکانس بدون ب

به فرکانس  منحنیکند و در نتیجه سرعت بحرانی جریان با انتقال نادسن، سفتی خمشی نانولوله کاهش پیدا می

کند. نتایج بدست آمده از روش تبدیل دیفرانسیلی در مقایسه با نتایج حل عددی تر کاهش پیدا میپایین

 .ی برخوردار استغیرخطی و حل تحلیل خطی از تطابق خوب

 


