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1 Introduction 

 
Heat transfer process is one of the most important aspects in engineering and scientific studies 
of materials behaviours. A good understanding of heat transfer processes in material is helpful 
in predicting the thermal cycles in the material under thermal applications and processes also 
in evaluating the thermal and temperature-dependent properties of the materials. The 
temperature profile and the rate of cooling at and near the surface of a material can affect the 
metallurgical properties, microstructures, thermal shrinkage, thermal cracking, hardness 
distribution, residual stresses and heat affected zones of the material [1]. Therefore, the 
determination of temperature distribution helps to minimize the thermal related problems. Also, 
temperature measurements during the manufacturing process of a moving coordinate system 
such as welding are very difficult to achieve because of the intense plastic deformation 
produced by the rotation and translation of the tool.  
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Transient Three-Dimensional Thermal 
Analysis of a Slab with Internal Heat 
Generation and Heated by a Point 
Moving Heat Source 
In this work, analysis of transient three-dimensional heat 
transfer in a slab with internal heat generation and heated 
by a point moving heat source along its axis is carried out 
using integral transforms methods. The heat input into slab 
or workpiece by the moving heat source is considered in the 
model. From the results, it was established that the 
temperature of the material during the heat transfer process 
decreases while the time required to reach the peak 
temperature increases with increasing distance from the 
centerline. Also, the rate of heating and the rate of cooling 
decrease with increasing distance from the centerline. The 
computed results at different monitoring locations show 
typical features of the temperature profiles and they afford a 
close analysis of the factors governing the heat flow in a 
point moving heat source.
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Moreover, thermal analysis of manufacturing process can be used predict the transient 
temperature field, maximum temperatures, active thermal stress and forces and may be 
extended to determine the residual stress in the joint. The effect of process temperature on 
material, particularly when it is too high, can lead to rapid tool wear,  thermal flaking, creep 
and fracturing due to thermal shocks, dimensional inaccuracy of the material in process due to 
thermal distortion and expansion-contraction during and after manufacturing process, surface 
damage by oxidation, rapid corrosion and burning etc.  
Also, temperature variations and flow patterns in a workpiece during heat processes are 
important to engineers for an appropriate designing of manufacturing process layout. 
Consequently, it is important to obtain information about the temperature distribution during 
the processes either by numerical or analytical methods.  
However, the nonlinearities and the complexities in most developed models of the moving heat 
source problems or moving coordinate systems have made it very difficult to develop exact 
analytical solutions which provide good physical insights into the significance of various 
parameters affecting the processes. Consequently, recourse has always been made to numerical 
methods in solving the problems. However, from comparatively simple analytical solutions, it 
is possible to build up more complex solutions to describe different situations and conditions at 
the surface of the workpiece. In various ways, it is possible to solve more complicated problems 
in terms of these simple analytical solutions, an approach that can lead to better understanding 
before resorting to more complicated computational methods [2].  
Therefore, the classical way for finding exact analytical solution is obviously still very 
important since it serves as an accurate benchmark for numerical solutions. Also, the 
experimental data are useful to access the mathematical models, but are never sufficient to 
verify the numerical solutions of established mathematical models. Comparison between the 
numerical calculations and experimental data often fail to reveal the compensation of modelling 
deficiencies through the computational errors or unconscious approximations in establishing 
applicable numerical schemes. Additionally, exact analytical solutions for specified problems 
are essential for the development of efficient applied numerical simulation tools. Inevitably, 
exact analytical expressions are required to show the direct relationship between the models 
parameters. When such exact analytical solutions are available, they provide good insights into 
the significance of various system parameters affecting the phenomena as it gives continuous 
physical insights into the problems than pure numerical or computation methods. Furthermore, 
most of the analytical approximation and purely numerical methods that were applied in 
literatures to nonlinear problems are computationally intensive.  
Exact analytical expression is more convenient for engineering calculations compare with 
experimental or numerical studies and it is obvious starting point for a better understanding of 
the relationship between physical quantities/properties. It is convenient for parametric studies, 
accounting for the physics of the problem. It appears more appealing than the numerical 
solution as it helps to reduce the computation costs, simulations and task in the analysis of real 
life problems.  Therefore, the need for such exact analytical solutions in the analysis of moving 
heat source problems in many metallurgical processes such welding, surface hardening or 
continuous casting cannot be overemphasized.  
However, the theory of heat flow due to a moving source has received little attention in the 
study of the general treatment of heat flow in metals. Rosenthal and Cameron [3, 4] made the 
first attempt by applying instantaneous point source solution in presenting the exact theory of 
moving point heat source in arc welding process while Weichert and Schonert [5] presented a 
series of studies concerning the temperature rise near a moving heat source.  
However, these studies were limited to the linear and steady-state heat transfer. Such steady 
state heat transfer analysis makes the temperature field appear invariant to an observer moving 
along with the heat source, at the same speed.  
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In most cases and unfortunately, the solution is too complicated for direct practical applications 
[6]. Therefore, several attempts, both experimental and theoretical, have been made to describe 
the temperature situations created by moving heat source. Kim [6] presented one-directional 
analytical solution to heat conduction problems in solid with a moving heat source using Fourier 
series. Carslaw and Jaeger [7] adopted Green’s function and method of images to develop 
analytical solutions of moving heat source problems. Dowden et al. [2] developed a simple model 
for time-dependent line and point sources in welding processes.  Malmuth [8] analyzed temperature field 
of a moving point-source problem with change of state while Groshet al. [9] pointed properties 
heated by moving heat source and in recent times, Kuang and Atluri [10] applied a moving 
mesh finite element method to determine the temperature field due to a moving heat Source. 
Webb and Viskanta [11] investigated the heat transfer during melting the pure metal from an 
isothermal vertical wall using finite different method.  
However, the theoretical analysis of temperature distribution around moving source shows 
singularity at the locus of the heat source. Although, the restriction is not severe for great 
distances from the source, for distances comparable with the real source size, the results become 
incorrect [6]. Jeager [12] used the instantaneous point source solution to find the temperature 
distribution due to a moving heat source within an infinite body. The same method was applied 
by Peak and Gagliano [13] to determine the transient temperature distribution for laser drilled 
holes in ceramic substrate materials.  
In their work, a circular heat source was considered and a temperature profile was formed in 
terms of double integrals, which cannot be solved analytically. Also, the same approach has 
been used by Zubair and Chaudhry [14] for a moving line source with time variable heat flow 
rate, and Terauchi et al. [15] for moving circular and rectangular plane sources where the effect 
of different heat flux distributions has been investigated for the quasi-steady condition. 
Combining the asymptotic solutions of very fast moving, and stationary heat sources, 
Muzychka and Yovanovich [16] developed a model to predict the thermal resistance of non-
circular moving heat sources. Their solution is only valid for quasi-steady condition. Recently, 
Houand Komandouri [1] used point source solution in the quasi-steady condition to present a 
general solution for transient temperature distribution of a moving plane source in a half space. 
Their solution includes a triple integral which they solved numerically for various heat source 
shapes including elliptic, circular, rectangular and square surfaces.  
More recently, using almost the same method, Kou and Lin [17] developed a three dimensional 
solution for the rectangular shaped moving heat source for surface grinding while Nyugenet al. 
[18] presented three-dimensional analytical solutions for a double-ellipsoidal power density 
moving heat source in a semi-infinite body using the same point source solution. Several 
attempts have been made by other researchers to analyze the problems [19-39]. However, most 
of the previous solutions assumed that heat transfer to or by the moving heat source can be 
neglected. However, the ratio of the heat transfer to the heat source or tool was estimated to be 
up to 20% by some researchers. The condition that there is no additional heat input to the slab 
or the workpiece imposes a restriction on the accurate determination of the heat distribution in 
the workpiece.  In order to model the heat transfer process accurately, it is necessary to include 
the heat generated by the tool in the modeling. Therefore, a better predictive model is required. 
Although, both experimental procedures and mathematical models in limited dimensional 
coordinates have been utilized to understand material behavior during manufacturing process, 
three-dimensional modeling is very much important for detail analysis and understanding of 
the manufacturing processes.  Also, the analytical solutions of such three-dimensional models 
are very much more important.  
Therefore, in this work, analytical solutions for transient three-dimensional temperature 
distributions in a slab with internal heat generation subjected to moving heat source at a constant 
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speed along its axis is carried out using integral transforms methods (Laplace and Fourier 
transforms methods).  
The physical significance of the integral transforms methods facilitates observation of great 
many properties and hidden views, of both mathematical and physical interests which are not 
yet very well-known and have not met with proper appreciations.  The result of the passage of 
the heat source shows that the rise of temperature produced at a given near the source tends to 
become constant. 
 
2 Problem Formulation and Analytical Solutions 

 
Figure (1) shows a three-dimensional rectangular coordinate system with a moving heat source 
such as found in welding, surface hardening, laser cutting, milling process, continuous casting 
and tribological applications. The moving heat source which is independent of time, generates 
heat at a rate given by QP. The heated zone starts from the right end of the bar and begins to 
move toward the left at a constant axial velocity u along the slab. 
Assuming the tool material is isotropic and homogeneous, the thermal properties of the material 
are independent of temperature, no phase change occurs during the process, thermal boundary 
conditions are symmetrical across the manufacturing process centerline and heat transfer from 
the workpiece to the clamp is negligible, then the governing equation for the process is given 
by Eq.(1). 

       (1) 

Where 
p

k

c



 , Ar is an arbitrary selected area on the tool, V is the volume over which the 

heat the heat generated on Ar is dissipated and the term Qwor k is the rate of internal heat 
generation per unit volume of the slab/workpiece associated with the process and accounts for 
the boundary conditions 
 
2.1 Initial and Boundary Conditions 

Initial condition: t = 0,  ( , , ) oT x y z T                                 (2) 

2.2 Boundary Conditions 

The heat flux boundary condition at the moving heat source-slab interface  

0

  ,p p s
z

in the range
T

k Q R r R
z





   


                         (3) 

Where    is the fraction of heat partitioned to the slab/workpiece. 
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For the point moving heat source under investigation, term /slab workpieceQ

 
has been taken to be 

invariant of x and y. 
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Figure 1 Point source on the surface of the workpiece [11]. 
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                                        (4)                

 
At the top surface beyond the shoulder, the boundary condition for heat exchange between the 
top surface of the workpiece and the surrounding involved convective and radiative boundary 
condition.  

Where the effective heat transfer coefficient  

 3 2 2 3
effh h T T T T T T                                                            (5) 

Consequently, the boundary conditions in Eq. (4) becomes,  

0

( ),eff s
z

T
k h T T r R

z 



   


                                   (6) 

The heat loss from the bottom surface is practically heat conduction from workpiece and 
support base presents difficulty in modeling. To circumvent the problem and simplify the 
analysis, a high overall heat transfer coefficient was assured. The heat loss was model 
approximately by using heat flux by convection bq  

( )b
z d

T
k T T

z
 




  


                               (7) 

All other boundary conditions at ambient temperature which means 
 

  
y

T T


y
T T


x

T T


x
T T

                                            (8) 
 
In order to write the governing energy equation, the initial and the conditions in simpler and 
standard forms with fewer parameters so as to avoid errors in the analysis, ease the solution 
procedures as the equation and the conditions are transformed to standard forms and bring out 
dimensionless number controlling the processes as this will aid in further analysis (such as 
sensitivity and scale analysis) of the processes and the system, the following dimensionless 
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parameters are used to non-dimensionalize the governing equations, the initial and boundary 
conditions. 

2

/'''
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, , , , , ,
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, ,
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t
            (9) 

Applying the dimensionless parameters to Eqs. (1), (2), (3), (6), (7) and (8), we arrived at the 
non-dimensionalized forms of Eqs. (1) as 

2 2 2
'''

2 2 2 workQ
X Y Z

   

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   
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t
                                                (10) 

2.3 Initial condition:  

τ = 0,  ( , , ) 1X Y Z                                            (11) 

2.4 Boundary Conditions 
 

The heat flux boundary condition at the tool-workpiece interface  

0
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Also,  
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Applying Laplace transform to Eq. (10) 

'''2 2 2

2 2 21 workQ
s

X Y Z s

     
    
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                                    (15) 

Also, applying generalized finite Fourier transform on space Z-domain 
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       (16) 

After the applications of the boundary conditions in Eqs. (12), (13) and (14), the above Eq. (16) 
reduces to 

2 2 '''
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In order to amend the solution to practical solution, it is established that a solution for % that 
depends only on the radial distance from the origin, 2 2R X Y   is sought after. In that case, 
using chain rule in Eq. (17), one arrives at                                                                               
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Similarly 
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On substituting Eqs. (18) and Eq. (19) into Eq. (17), it was given that 

2 2 2 2 2 2
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Which reduces to 
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The complementary solution of Equ. (21) is given as 

  2 2
0( , , ) ( ) ( )C m m o mR s AI s R BK s R            

                        (22) 

Where  I0  and Ko are the modified Bessel functions of the first and second kind of order zero. 

The particular integral of Equ. (21) is given as   



                            Iranian Journal of Mechanical Engineering                                Vol. 18, No. 1, March 2017 
 

50 

'''
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Therefore, the complete solution of Equ. (21) is  
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In order to make use of this solution in Eq. (24), it is helpful to understand the characteristics 
of the two modified Bessel functions of the first and second kind of order zero. Io increases 
indefinitely as R increases and Ko tends to zero as R increases. 
For large values of R, the asymptotic forms of the Bessel functions give the solution as   
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(25)    
As 0R  , the coefficient of A tends to infinity as R  tends to infinity far downstream of the 
heat source. Since this is inconsistent with the normal conditions of the problem under 
investigation, the coefficient A must be zero. Therefore, Equ. (25) reduces to  
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Resolving into partial fraction, Eq. (26) becomes 
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The next step is the application of inverse Laplace transform to the above Eq. (27). Although, 
it is a trivial issue to find the inverse Laplace transforms of the second and the third terms in 
the RHS of the equation, the inverse Laplace transforms of the first term in the RHS of Eq. (27) 
proves somehow not straight-forward and nontrivial. However, with the use of convolution 
theorem as shown in the proceeding analysis, helps in establishing the required inverse Laplace 
transform.  
Let the first term in Eq. (27) be given as  ( , , )mM R s , i.e. 
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The above Eq. (28) could be written as  
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The inverse Laplace transform of ( , , )m R s  is given as  
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i.e.  
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While the inverse Laplace transform of ( )s  is given as  
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By convolution theorem,  
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Therefore, the inverse Laplace transform of Eq. (27) is given as  
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The constant B in the above equation is found from Qp, which is the energy input into the 
slab/workpiece from the translation, rotation, and downward forces i.e. total heat input from the 
heating source. Repenting the point moving heat source roughly by a row of line sources over 
the segment -l<x<+l. If the total power per unit depth is QP/w. 
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                             (35) 

Applying inverse finite Fourier transform to Eq. (35), one arrives at 
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The above Eq. (36) can also be written as 
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Where  m  are the positive roots of   2
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For the case where the heat generated in the work is neglected and the initial temperature of the 
workpiece is the same as the atmospheric, it is given as 
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(39) 

For the case where the temperature at a point , ,( )P X Y Z  at time t in the infinite plate subjected 
to an instantaneous point heat source of intensity Qp at point , ,'( ' ' 0)P X Y  at time '  is found 
as  
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(40) 

When the heat generated in the work is neglected as in previous researches and when the initial 
temperature of the workpiece is the same as the atmospheric, one arrives at 
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In many problems of material processing it is extremely convenient to use a coordinate system 
that is fixed with respect to the power source. The reason is that after a time, conditions may 
become quasi-steady if the power of the source remains constant. In such a coordinate system, 
any function of the coordinate vector R and time  is the value of the function at that particular 
point and that particular time [2]. The steady state solution is found as   . There From Eq. 
(26), for the steady-state problems, after applying integral transforms on the developed 
governing equation for the time-invariant problems and their respective initial and boundary 
conditions, one arrives at  
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Application of inverse Fourier and Laplace transform to Eq. (42) gives 

 

   

2 2

2 2

2 2 '''

2

2 2 2 2 2 22 2 0

( ') ( ')
( )[ ( )

2 ( ') ( ')( )]

( , )
( ) ( )2 ( ') ( ')

m

m bc m

workeff m

p mp

m m eff m bc bc eff m bc

exp X X Y Y
cos z

X X Y Y QBi sin z
QQ

Z R
Bi BiX X Y Y


  





     





          
          

  
           





     

(43) 

Where    2 2, ( ') ( ')R X Y X X Y Y       

As before, neglecting the heat generated in the slab or workpiece and assuming that the initial 
temperature of the workpiece is the same as the atmospheric, Eq. (43) reduces to 
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(44) 

The above solutions in Eqs. (40) and (41) give the temperature at a point , ,( )P X Y Z  at time τ 
in the infinite plate subjected to an instantaneous point moving heat source whose intensity is 

pQ  at point, , ,( 0)o oP X Y at time . When considering the moving point heat source, the total 
formation of the temperature distribution with respect to the distance from the moving point 
heat source at time   is obtained by summing the respective contributions of all the instantaneous 
point moving heat sources for the time interval from ' 0   to '   [26]. Then, the temperature 
distribution in the moving coordinate , ,( )x y z  at time  due to the heat input is given as  
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(45) 
Eq. (45) reduces to Eq. (46) if one neglects the heat generated in the slab and assumes that the 
initial temperature of the workpiece is the same as the atmospheric.  
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(46) 
While for the steady state solution is found as   . 
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(47) 
Therefore, for the case of neglected heat generated in the workpiece and when the workpiece 
maintains the same initial temperature as the atmospheric 
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        


                       

(48) 

Where                                                       oX U   ' 'oX U   
 
 
5   Results and Discussion 
 
Figure (2) shows the variation of temperature with time at 2mm and 8 mm below the top surface 
and 8 mm and 16 mm from the centerline while Figure (3) shows the variation of temperature 
with time in the material at different depths and 8 mm from the centerline for a practical 
situation such as frictional stir welding of stainless steel.  

The results show typical features of the temperature profiles in that the temperature rises rapidly 
and falls slowly toward advancing and retracting from a point. This is because as process 
proceeds, the heat source comes in contact with the cold slab and leaves behind a hot slab. 
Thereby, the temperature gradient ahead of the tool is high resulting in rapid heat transfer as 
compared to behind the tool.  

Figure (4) depicts the variation of temperature with time at 16 mm below the top surface and 8 
mm from the centerline while Figure (5) shows the variation of temperature with time in the 
material at different depths and 8 mm from the centerline for a practical situation such as 
frictional stir welding of aluminum. Figure (6) depicts the computed thermal cycles at several 
monitoring locations and depths. The locations are 4, 8, 12, and 16 mm below the top surface 
of the slab and at 8, 12, 16, and 20 mm from the heat source i.e. from the centerline.  
The results show a rapid increase in temperature during heating followed by a comparatively 
slower cooling as the heat source moves away from the monitoring locations.  
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Figure 2 Temperature profiles in the material at 2mm and 8 mm below the top surface 

 and 8 mm and 16 mm from the centerline. 
 

 

Figure 3 Temperature profiles in the material at different depths and 8 mm from the centerline.  
 

 

Figure 4 Variations temperature with welding time at x=8 mm and z=8 mm 
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Figure 5 Variations temperature with welding time at x=8 mm and z=16 mm 
 

 

 
Figure 6 Temperature profiles in the material at different depths and different points from the centerline 

 
 
Figures (7, 8) and (9) display the two dimensional temperature profiles in the moving heat 
source problem of aluminum alloy (AA-6061-T6) with the dimension of 300 x 200 x 16 mm. 
It could be seen that the curve bends backward. This is due to the finite time that it takes for 
heat to flow in materials, which delays the occurrence of the peak temperature at points along 
the y-axis. The shape of the curve depends on both the traverse speed and the thermal diffusivity 
of the material. The peak temperature at a given point is experienced by the point shortly after 
it is passed by the heat source. This is evident from an isotherm (locus of points with the same 
temperature) of the temperature distribution. At any position of the heat source, the isotherms 
of various temperatures are oval shaped. Higher temperatures have smaller size ovals.  
The point on any isotherm that is furthest from the x-axis (or line of motion of the heat source) 
is at its peak temperature at that instant. The initial steep heating is observed as the monitoring 
locations encounter compressed thermal contours ahead of the heat source.  
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Figure 7 Temperature rise profiles without pre-heating along welding  

direction  at different welding positions y 
 
 

 

Figure 8 Temperature contour/profiles plot in x-y full-plane  
at x=0 mm with -50 mm from the edge 

 
 
As the point heat source moves ahead of the monitoring locations, the expanded temperature 
contours lead to slow cooling. The higher the heat source velocity, the faster the temperature 
changes during both heating and cooling. The three dimensional plot that depicts peak 
temperature at the different locations in the material is shown in Figure (10) and (11) it is shown 
that increasing the initial workpiece temperature reduces the cooling rate, and is more effective 
than increasing the heat input or reducing the traverse velocity. 
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Figure 9 Temperature contour/profiles plot in x-y full-plane 
 at x=0 mm with -150 mm from the edge 

 

6 Conclusion 
 

In this work, analysis of three-dimensional transient heat transfer in a moving heat source 
problem has been carried out using integral transforms methods. The computed results at 
different monitoring locations show typical features of the temperature profiles and they afford 
a close analysis of the factors governing the heat flow in a point moving heat source.   
Therefore, the model can serve as benchmark for numerical solutions for the determination of 
temperature profiles in a point moving heat source problem. 
 
 
 

 
 

Figure 10 Three-dimensional D-plot Temperature rise profiles without 
 pre-heating along welding direction  
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Figure 11 Three-dimensional D-plot Temperature rise profiles without 
 pre-heating along welding direction 
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Nomenclature 
 
Ar   Arbitrary selected area on the tool 
Bi  Biot number 

bcBi  Biot number at the base 

effBi  Effective Biot number 
cp Heat capacity 
H    Height of the point heat source    
k  Thermal conductivity 
Q  Heat source surface area 
Qwor k   Rate of internal heat generation per unit volume of the slab/workpiece  
Rp   radius of the pin/inner radius of the point heat source 
Rs   radius of the shoulder/outer radius of the point heat source 

pQ
t

  internal heat generation by the pin in the tool 
R  dimensionless radius 
T  Temperature at any arbitrary point 
T∞  ambient temperature 
v  Heat source speed 
V  volume    
 dimensionless temperature  

, ,X Y Z dimensionless distances 
 dimensionless time 
  is the fraction of heat partitioned to the slab/workpiece. 
 σ  Stefan-Boltmann constant 
 ε   emmisivity                                                                                                 
heff  effective heat transfer coefficient     
α Thermal diffusivity 
ρ   Density 

b  heat transfer coefficient at the base 
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  چكيده
  

در يك باريكه با منبع حرارتي داخلي كه بوسيله يك منبع حرارتي  ي سه بعديدر اين مقاله، انتقال حرارت گذرا
 روش تبديل انتگرالي مورد تحليل قرار گرفته بكار گرفتنشود، با گرم مي شاي متحرك در راستاي طولنقطه

ورودي به باريكه يا قطعه كار توسط منبع حرارتي متحرك در مدل در نظر گرفته شده است.  رتاست. حرا
كند در حالي كه زمان دهند كه درجه حرارت ماده در طي مراحل انتقال حرارت كاهش پيدا مينتايج نشان مي

  كند. ز، افزايش پيدا ميبا افزايش فاصله از خط مرك درجه حرارت مورد نياز براي رسيدن به ماكزيمم
كند. نتايج محاسبه شده در همچنين نرخ حرارت و نرخ خنك شدن با افزايش فاصله از مركز افزايش پيدا مي

تحليل نزديكي از هاي درجه حرارت است و  هاي خاص پروفيل مورد بررسي نشان دهنده ويژگيمختلف نقاط 
 دهد.اي بدست ميعوامل موثر بر جريان حرارتي در يك منبع حرارتي متحرك نقطه

   


