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Elasticity Solution Approach for
Functionally Graded Spherical Shell

with Piezoelectric Properties

In this paper, an analytical method is adopted, based on
elasticity approach to analyze the hollow FGM sphere with
piezoelectric properties. The electro-mechanical properties
except the Poisson’s ratio are assumed to be power
functions of radius. Loading is a combination of pressures
and a distributed electric field. For axisymmetric problem,
3-D governing equations are reduced to a 1-D second
order nonlinear Cauchy-type differential equation, in
terms of radial displacement. The solution of nonlinear
differential equation is opted as a power law function. By
satisfying five sets of boundary conditions and
incorporating them into governing equation, a system of
algebraic equations is obtained that delivers the unknown
constants. Static responses of FG shell to electro-
mechanical loads with different ‘»’ and the effect of size
are investigated. The induced radial and circumferential
stresses of an imposed electric potential are compared to
the residual stresses locked in the homogeneous sphere.

Nonlinear differential equation.

1

Piezoelectric materials have been widely used as distributed sensors and actuators in the field
of smart structures and active structural control. A smart structure typically comprises of one
or more active (or functional) materials. The lightweight high-strength shells with
piezoelectric properties are famous for their capability of providing the expected behaviour at
the smart structures level. Crawley [1] reported an overview of applications of piezoelectric
materials for intelligent and aerospace structures. Functionally graded materials (FGMs) are
microscopically inhomogeneous composites usually made from a mixture of metals and
ceramics. By gradually varying the volume fraction of consistent materials, their material
properties exhibit a smooth and continuous change along one or more directions to obtain
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Niino [2] introduced the concept of functionally graded material to satisfy the demand of
ultra-high-temperature environment and to eliminate the stress singularities. Yamada et al. [3]
presented a functionally graded piezoelectric plate created by forming a temperature variation
across the plate with relatively low Curie temperature. Chen et al. [4] presented the static
analysis of a steadily rotating piezoelectric spherical shell with a functionally graded property.
Electromechanical responses of compositionally graded piezoelectric layers were analysed by
Lim and He [5]. Sinha [6] obtained the solution of the problem of static radial deformation of
a piezoelectric spherical shell and under a given voltage difference between these surfaces,
coupled with a radial distribution of temperature from the inner to the outer surface. Three-
dimensional elasticity static analysis of a multilayered elastic spherical hollow shell with
spherical isotropy was presented by Chen and Ding [7].

Two independent state equations were derived after introducing three displacement functions
and two stress functions. Ghorbanpour et al. [8] investigated the stress and electric potential
fields in piezoelectric hollow spheres. The stress field in piezoelectric hollow sphere under
thermal environment was developed by Saadatfar and Rastgoo [9]. Shao et al. [10] derived
analytical solutions for mechanical stresses of a functionally graded circular hollow cylinder
with finite length. In-homogenity was considered in a number of studies. Elastic analysis of
internally pressurized thick-walled spherical pressure vessels of functionally graded materials
(FGMs) investigated by You et al. [11]. Sladek et al. [12] derived Local integral equations for
numerical solution of 3-D problems in linear elasticity of FGMs viewed as 2-D axisymmetric
problems. The meshless local Petrov—Galerkin method was applied to transient dynamic
problems in 3D axisymmetric piezoelectric solids with continuously non-homogeneous
material properties subjected to mechanical and thermal loads by Sladek et al. [13]. Wang and
Xu [14] studied the effect of material inhomogeneity on electromechanical behaviors of
functionally graded piezoelectric spherical structures. Magnetothermoelastic problems of
FGM spheres are studied by Ghorbanpour et al. [15].

Transient analysis of ordinary functionally graded cylindrical shells subjected to internal
dynamic pressure was presented by Setoodeh et al. [16], implementing a power law
distribution function in the thickness. Ghorbanpour Arani et al. [17] solved hollow sphere
made from functionally graded piezoelectric material, using unnecessary dimensionless
quantities. They considered a particular solution, not satisfying the governing equation and an
exponential function for general solution of Cauchy-Euler equation, instead of a power law
function, which is given in mathematical Handbooks (e.g. [18]). Buckling of shallow
functionally graded spherical shells with surface-bonded piezoelectric actuators under thermal
load was studied by Sabzikar Boroujerdy and Eslami [19]. It was assumed that properties of
the functionally graded material vary through the thickness according to a power law
distribution of the volume fractions of the constituent materials. The static and dynamic
responses of a simply-supported, thick laminated orthotropic cylindrical shell with
piezoelectric actuator and sensor layers, based on a 3-D elasticity solution approach was
published by Shakeri et al. [20]. Hafezalkotob and Eslami [21] presented the thermo-
mechanical buckling of simply supported thin shallow spherical shells made of functionally
graded material. In this paper, the first-order shell theory of Love and Kirchhoff, the Donnell-
Mushtari-Vlasov kinematics equations, and the calculus of variations was used.

Therefore, in conjunction with the previous works, new applications of piezoelectric sensors
and actuators are being introduced for a new geometric configuration. This research attempts
to analyse a hollow sphere composed of a radially polarized transversely isotropic
functionally graded piezoelectric material, subjected to uniform static load together with a
potential difference induced by electrodes attached to the inner and outer surfaces of the
annular sphere.
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All mechanical and piezoelectric properties of the FGM hollow sphere, except for the
Poisson’s ratio, are assumed to depend on the radius r and expressed in terms of its power
function with material in-homogeneity level ‘n’. The 3-D governing equilibrium equations of
radially polarized sphere are reduced to a system of second-order ordinary differential
equations, yielding a 1-D second order nonlinear Cauchy-type differential equation in terms
of radial displacement, which then is solved analytically. By satisfying four different sets of
boundary conditions and incorporating them into governing equation, a system of algebraic
equations is obtained that delivers the unknown constants. The accuracy and computational
efficiency of the proposed approach are verified by comparing the results with those obtained
for homogenous material in the literature.

2 Formulation and theory

Consider a hollow FGPM sphere with inside radius Ri , outside radius Ro, and total shell
thickness H. The shell geometry exposed to uniform internal and external pressures P; and Po,
and distributed electric potential V is shown in Figure (1). Because of the closed geometry,
the electrodes have to be attached to the outer and inner surfaces during the manufacturing
process. This leads to having an electric field in radial direction. Furthermore, the direction of
polarization is established during the induction process by means of the electric field applied
between two electrodes and its quantity is determined by electric displacement. So, in a
thickness-wise polarized piezoelectric sphere, there will be only radial components of electric
field and displacement. Details with respect to definition and determination of the constants
describing these materials have been standardized by the Institute of Electrical and
Electronics Engineers [22]. For centre-symmetric stress and displacement conditions, the
linear constitutive relations for an orthotropic material, with radially polarized piezoelectric
property can be written as follows, [23], [24]:

O, Ci Cp Gsllé €
Oy =|Cu Cpn Cyu[y&sp—EF<Ey, (1-a)
Oy Ci Gy Ca (8 €13
gr
ED, = [ell € e13] & ¢+ AE, (1-b)
&

Where cjj , 4ij , and ejj are the elastic, dielectric, and piezoelectric constants, respectively,
which relate the components of stress (o), strain (¢), electric field (EF) and electric
displacement vectors (ED). It is assumed that the functionally graded material has
transversely isotropic properties with respect to axis of rotation oriented in the radial
direction, the elasticity and piezoelectric coefficient tensors are expressed as

Cip =Cp =Ci3=Ca1,  Cpp =Cg3  Cgp =Cg3,  €p =63 (2-2)

Hence, it has only three independent material parameters, in addition to a piezoelectric
coefficient. In case of having the mechanical properties (directional elastic moduli and
poisson's ratios), by using micro-mechanics, rule of mixtures or experiment, the elastic
coefficients for thickness-wise FGM sphere are obtained as follows, [23]
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External Pressure P,

Internal Pressure
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Figure 1 FGPM shell geometry subject to uniform pressure and applied voltage.
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where, Poisson’s ratio is assumed to be constant through the shell thickness For isotropic
properties, the FGM elastic coefficients are summarized to the following relations, [7]

C“(r)zc”(”:c%“):a(i};(%?v) |
(2-c)
i (1) = Ca1 (1) = C13(r) = €5y () = Co3(r) = Cp (1) = mﬁ%b)

The centre-symmetric equations of motion (a% = a% =0) in the absence of body force are

26. -0, —
60} " Oy — 0y J¢ -0 (3'3.)
or r
The charge equation of electrostatics is given by Tiersten [24].
OED, N 2ED, 0 (3-b)

or r

The centre-symmetric strain-displacement and the electric field-electric potential relations of
the piezoelectric elastic medium are written as

_au, p— u

—_r
gr ar ’ ¢_Ta 89_ r

, (4-a)

EF, = _aa_w (4-b)
r
By combining Egs. (4) with Egs. (1), the stress and electrical displacement component will be
obtained as follows

u 0
o, =Cy—+(Cpy +013)( r]+ena—!ﬁ/
ou u 0
Oy =Cpp a_rr +(Cp + Czs)(Trj € a_l):,/ (5-a)
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ou u 0
ED, =&, G_rr + (e, + e13)(7rj — 4y a_li,/ (5-b)

After substituting these components into the governing Egs. (3) and factorizing the similar
derivatives of ur and y, the equations of equilibrium in terms of displacement and electric
potential for spherical shell become:

- E;zruzr +(2011(r) N dcll(r)jai . g[dclz(r) Cpa(r) +Cp(n) - clz(r)Jur

r e o r (6-a)
+e,(r) azyz/ + (z(ell(r) - elz(r)) N dell(r)Ja—W 0
or r dr ar
€(") azuzr +(2(e11(r) +e(n) + de“(r)j ou, +E[delz(r) + e, (r) ilu
or r dr o r dr r 6

02 da,,(r) 24,,(r)]o
— 4,,(r) ‘/2/_[ i ( )+ 4 ( )}_‘//:0
or dr r or

For isotropic FG material, the mechanical equation of motion is simplified as

2
C“(r)5 Ur | ZCll(r)+dC11(r) %4_3 dey, (r)  cu(r) u,
or? r dr Jor r{ dr r

2 —
+e11(r)a ‘/2/+[2(911(r) elz(r))+dell(r)j6_l//zo
or r dr or

By substituting components of the elastic constants from the above equations (2) into Eq. (6-
a), the equilibrium equation is developed in terms of the displacement and electric potential
field of the functionally graded spherical shell, while the electrical equilibrium Eq. (6-b)
remains the same, as follows:

E(r)(v_—l) azu2r L 20, —%ur .\ 1_ ((V_l)%_zvlurjdE(r)
@+v)@-2v){ ar2 ror r A+v)1-2v) or dr

2 —
+en(r)a v e (r) 2912(r)+d311(r) a_l//zo
or? r dr ) or

(7)

On the other hand, the FGM properties change through the r-direction, which can be a
combination of ceramics and metals. The mixing ratio is varied continuously and smoothly
across the thickness. The following model is taken for material property distribution [13], [19]

q(r)=q{ﬂ (8)

1

q(r) is material property that is controlled by volume fraction as a function of r, ‘»’ is the
none-negative power-law exponent and subscripts i and o stand for inner and outer surfaces.
g(r) can be substituted for Young's modulus E(r), shear modulus G(r), electric coefficients
e1(r), ew(r) and mass density p(r). Poission's ratio is considered constant through the
thickness. Variation of material properties in terms of volume fraction of external / interior
material with normalized radial distance in thickness direction for different values of n are

shown in Figure (2).
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2.1 Boundary conditions

Because of symmetric geometry, there is no essential boundary condition in this problem.

The loading condition of the outer/ inner surface of the shell is considered to be free of shear/
in plane traction and the electro-static potential is assumed to be zero on the outer surface.
Under these circumstances, four sets of mechanical and electrical loading boundary
conditions of the FGP sphere are written as follows:

) o R)=R, o (R)=0, w(R)=0 w(R,)=0 (9-a)
1) o,(R)=0, 0,(R,)=0 w(R)=Vi;, w(R,)=0 (9-b)
) o, (R)=0, o, (R)=R, w(R)=0y(R,)=0 (9-c)
V) o (R)=R, o(R)=0 w(R)=V;, w(R,)=0 (9-d)
V) o (R)=PR, o(R)=0, w(R)=0 w(R,)=V, (9-e)

In case I, the FGPM hollow sphere is subjected to an internal uniform pressure without any
imposed electric potential and external pressure. However, in this case the induced electric
potential is existed across the thickness. In this case, the sphere acts as a sensor. In the second
case, an electrical potential difference is applied between the inner and outer surfaces of the
sphere without any internal and external pressures. In this case, the sphere acts as an actuator.
In case Ill, the FGPM hollow sphere is exposed to an external uniform pressure without any
imposed electric potential and internal pressure. Cases IV and V are the superposition of cases
I and 11, along with an electrical potential on the external electrode on the shell surface.

3 Analytical solution method

The trivial solution of electric equilibrium Eg. (3-b) is as follows, [17]

D
ED, (r) =3 (10)
where, D is an unknown constant that should be determined using boundary conditions.
Using this solution, combining equations (6-a) and (6-b) and collecting he similar derivatives

of radial displacement, yields as follows

dey, () + e (r) {2 dey, (r)  ey(r) dAll(r)}
[ 9121(V)J52Ur dr Ay,(r) dr Au(r) dr Jlau,
Cp(n+—=|—"+

43(r) ) or® | 2 €+ ey () 4,(r) o
r 4, (r)
e, (r) de,(r)] ,e5(r) dc,(r)
+£ Clz(r)—cz3(r)—022(r)+Allll(r){elz(rhr ;2'_ }_ZAllzl(r)+r t;r ) (11-a)
r? ir ep(r) dey(r) r ep(r)ey, (r) day, (r) r
A, (r) dr A5(r) dr
+E e (r) dd,(r) 1 den(r)+§elz(f) _
r2\ 44(r) dr Ay (r) dr r 4,,(r)
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Figure 2 Material property variation in terms of exponent n

For isotropic FG material, the mechanical static equilibrium is simplified as

Z{M{E(O_rdan}_ea(n}
[ E(r)@-v) _efl(r)jazur+ r@+v)d-2v) 2 dr | 4,(r)] |ou,

LCnE-2) ) or T ed(r) day(r) ) e(r) dey, (1) or
A5 (r) dr A, (r) dr
el22(r) _ 1 |:E(r)(l—1/) +rv dE(r)j| _ ell(r)EIZ(r)
+£ A,(r)  @+v)A-2v) dr 4,(r) y
re _r ey, (r) dey,(r) + e, (r) deyy (r) ey (r)e,(r) day,(r) r
4 (r) dr Ay(r) dr 45(r) dr

(11-b)

ey(r)dd,(r) 1 dell(r)+gelz(r) ~0
r?\ 45(r) dr Ay, (r) dr r 4, (r)

At this stage, the elasticity and electricity coefficients are obtained from Eq.(8)
ci(N= Cii(r/R)", E(r)= E(r/Ri)", e11(r)= e (r/Ri)", e12(r)= e12(r/Ri)" , A11(r)= A11(r/Ri)" (12-a)

The Poisson’s ratios (v;;) are assumed constant in different directions.

2
where, C,, = g E11(1_V23) , Cpp= ZEzz‘/lz (L+vys) , (12-b)
1-vys = 2vivy (14 Vy3) 1-vis =2V (1+Vy3)
for isotropic case: 1-v)E C.. = vE

Cu= iy ML+v)L-2v)

By substituting Egs. (12) into Eq. (11-a), the following non-linear partial differential equation
emerges
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2 2 n 2
r Cll+i ol Cll+ei (2+n) oy
Ay )or® or A or
11 11 (13-a)
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For isotropic FG material, the non-linear partial differential equation is written as

2 2 2
r”[ ElL-v) +&Ja u, +r"1[(1_V)E(2+”)+ei(2+n)Jaai
oy — TN oy ;

Q+v)1-2v) Ay ) orl rl @+v)-2v) Ay (13-h)

2
w2 [;[v(h n) -1+ @+ n)@—zeiJur +2—D[&]=O
r

2| @+v)d-2v) Ay Ay *lag

Multiplying Eq.(13-a) with r®™, yields a non-homogeneous Cauchy-Euler type differential
equation as follows

o°u ou
2 r r _ —(n+1)
r +y, I +y,U. ==yDr (14)
arz 1 ar 2 Yr 3
where,
71 =(2+n)
(Clz (1+n)-C,, -Cy,3 )All +(1+n)ey e, - 26122 (15-a)
V2= 2 2
CiA ten
2e
V3= 12

CiAy +e7)
For isotropic FG material, these multipliers are

71 =(2+n)
E Aplv@+n) -1]+ @+ )@ 20)(L+ n)eyyey, - (Lt 20)ed,) (15-b)
EAL(L-v)+@+v)1-2v)ed
B 2e,(1+v)1-2v)
EAL,A—v)+(1+v)A-2v)ed

72 =2

V3

The general solution for Eq. (14) has the following well known form, [18]:

U =Upgy +Upgp = Ky 1+ K, 172 (16)
1—y, (-2 -4
where . 7 (7/12 ) V2

Subsequently, the particular solution of Eq. (14) can be developed by employing the method,
so called variation of parameter [18], as

Up = Rl(r)urg1+R2(r) U2 (17)

R1 and Rz can be determined by substituting Eq. (17) into equilibrium Eq. (14) as
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Rl(r)sz(r).urgjz dr, R, (r):-jF(r)urgl dr
W) - dug, duyg, (18)

Where W(r) is the expression on the right hand side of Eq. (14) . Substituting Eq. (18) into
Eq. (17), the overall solution is found as follows

u =K rt+K,r’z - 75D rt (19)
(n+D)(N+2)—y,(N+D) +y,

Where K, K> are unknown constants that are determined using boundary conditions. Now,
by substituting the displacement from Eq. (19) into Egs. (5) the radial stress is obtained. Also,
substituting ur into Eq. (5-b), then combining with Eq. (4-b) and performing integration,
electric potential along with radial stress are written as

Kq
{Gr(r)}:|:All(r) Ap(r)  Ap(r) 0} K, (20-a)
w(r) Api(r) Ay(r) Ay(r) 1] D

C!

1 .
A,(r)= A _(C11A11 + elzl)j4 +2(CppAy + e1le12)]ril+n !
11

1 e
A,(r)=— _(C11A11 + e121 )12 +2(CppAq; + 911‘312)]"22 "
Ay
A (r) = 117 [(CllAll + eizl)(1+ n) —2(CppA + ellelz)] ey, |1
Ay (n+D)(n+2)—py,(n+1) + 7, (20-b)
1 2e
Au(r)=-——| ey ——2|r"
Ay 4
1 2., )
Agy(r)=——| €y ——= [r™?
Ag\ "t 4
1 73 [ell(n +1) + 2e12] rot
Ay M+)(n+2)—p,(n+D)+y, Jn+1

C’ is the integration constant. For all the four load cases mentioned in boundary conditions,
the system of linear algebraic equations for the constants K, K, D and C' of Egs. (20) can be
written in the following from

Ki] [AsR) Au(R) As(R) 0] [o/(R)
Kol | AuRe) Ap(R) As(Ry) 0f Jor(R,) 21)
D AZl(Ri) AZZ(Ri) AZS(Ri) 1
C, A21(Ro) A22(Ro) A23(RO) 1
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The components of vector on the right side are defined in boundary condition Egs. (9). Once
the vector of constants is calculated, by using Egs. (19) and (20) the displacement, electric
potential and stress would be obtained. Consequently, the circumferential stress is calculated
by using the following relation

K —
0_6 (r) = Ail [(Clell + ellelz )Z/I + (C22 + C23)A11 + Zefz)]rﬂl-#n 1
11
- : (22)
+ Aiz [(C12A11 +€4,615 )12 + (C22 + C23)A11 + Zelzz)]rlﬁn 1

11

D [73 [(ClgAll +€148p5 kl"‘ N) = (Cg +Cp3)A1 — 29122] _e j -2
12

Ay (+)(n+2) -y (n+D +7,

4 Evaluation and Numerical results

The effectiveness of the developed formulation has been demonstrated through the analysis of
examples and making comparisons with the published results in benchmark problems. In the
first step, a spherical shell with Ro/Ri= 2, and made of homogenous isotropic material with the
following steel-like properties is considered, while putting the piezoelectric related constants
equal to a negligible value: E= 207 GPa, v = 0.29. The shell is subjected to an external
uniform pressure (load case Ill). In Figures 3(a) and (b) the distributions of the non-
dimensional radial stress or /P, and normalized radial displacement ur E / (2 (1+ v) Ro Po),
respectively are compared to the results obtained by Chen and Ding [7]. Secondly, the
following transversely isotropic shell is investigated:

Shell A) Spherical shell made of piezoelectric ceramic PZT-5 with the material properties
given in Table (1), [8]. In the first step, the results obtained for four different static loadings of
shell A are compared to the reported results [8].

Three geometrical properties of the symmetric sphere are considered: Ro/Ri= 1.3, 2.4 and 4.0.
In Table (2), the values of radial stress, circumferential stress and electric potential on the
mid-radius of the shell ((Ro / Ri)/2) are compared to those obtained by Ghorbanpour et al. [8].
Without surprise, it is seen that there is a good agreement between the present results and the
reported ones. The reasons for these differences are dissimilar formulation and computational
approach. In the present work, the Maple software has been implemented to solve the
governing equations in parametrical form, consuming less time and computational effort. It is
seen that the present approach, to some extent overestimates the results. Having done the
aforementioned study, the capability of the proposed formulation and developed computer
code to analyse the FGPM spherical shell has been assessed.
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Table 1 Material properties of piezoelectric PZT-5
Elastic Constants, Gpa

Cu Ciz Cis Cn  Coz Css Cas Css
111.0 75.1 75.1 1200 75.2 120.0 22.6 21.1
Piezoelectric Constants, C/m? Permittivity,10-°C%/ Nm?
en e eis ess An
1578 -535 -535 127 1700

Table 2 Comparison between results in the middle of shell thickness for Shell A

mftl:'legr:?cal Ro/Ri Or 94 v
Loading present Ref [7] present Ref [7] present Ref [7]
13 -0.439 -0.367 1.435 1.411 -0.338x10°  -0.412x10°
Case | -0.238 -0.185 0.311 0.307 -0.894x10%  -1.097x10°
-0.041 -0.038 0.048 0.057 -1.256x10°  -1.528x10°
13 -0.972 -0.936 22.452 22.310 0.431 0.415
Case Il -1.611 -1.538 6.377 6.294 0.329 0.325
-1.274 -1.219 1.820 1.612 0.204 0.191
13 -1.194 -1.173 23.367 23512 0.439 0.447
Case Il 2 -1.753 -1.681 6.814 6.735 0.332 0.333
4 -1.205 -1.147 1572 1.543 0.201 0.203
13 -0.629 -0.642 -2.433 2521 0.203x105  0.175x10°
Case IV 2 -0.783 -0.795 -1.230 1147 | 1.152x10°  1.129x10°
4 -0.932 -0.928 -0.986 -0.815 6.337x10°  6.251x10°

0.0

113

Secondly, radial displacements of shell A corresponding to the above last three load cases are
presented in Figures (4(a)) to (4(d)). As it is expected, the radial displacements for Case I are
positive, while radial displacements of the other cases are negative, having incremental
variation trends. Thin shell (Ro/Ri= 1.3) has a different deformation pattern from the thicker
ones. It is inferred from Figures (4(c)) and (4(d)) that load Cases Ill and IV deliver very
similar results, due to the shrinking effect of electric load. Next, the following spherical shell
is investigated:
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Shell B) FGPM made of piezoelectric ceramic PZT-4, which has been selected because of its
technical applications. Mechanical and electrical properties of piezoelectric material, PZT 4
are tabulated in Table (3). Presented results are related to the five cases of different boundary
conditions with aspect ratio Ro/Ri= 1.3. The numerical results are drawn in Figures (5) to (9),
showing the variation of stresses, electric potential and displacement across the thickness of
the FGPM sphere for different material inhomogenity parameter n.

Table 3 Material properties of piezoelectric PZT-4
Elastic Constants, Gpa

Cu Crp Cis Ca Cas Cas Cas Css
115.0 74.3 74.3 139.0 77.8 139.0 30.6 25.6
Piezoelectric Constants, C/m? Permittivity,10-°C%/ Nm?
en e e ess A1 ApY)

15.1 -5.2 -5.2 12.3 3.87 491

Case |

Results of the first case are illustrated in Figures (5). Radial stresses for different material in-
homogeneity parameters n are shown in Figure (5(a)). Radial stresses satisfy the mechanical
boundary conditions at the inner and outer surfaces of the FGPM sphere. The maximum
absolute values of radial stresses belongs to a material identified by in-homogeneity
parameter n = 1.5 the minimum absolute values of which belong to n = -1.5. In this case there
is no imposed electric potential. However, the induced electric potentials for different material
in-homogeneity parameters n are shown in Figure (5(b)). Electric potentials satisfy the
grounded electrical boundary conditions at the inner and outer surfaces of the shell B.

It is also obvious that higher induced electric potentials belong to higher absolute values of
compressive radial stresses. Hoop stresses (Figure (5(c))) are highly tensile through thickness.
Radial displacements are illustrated in Figure (5(d)) for all material properties. Displacements
are positive throughout the thickness and they smoothly decrease from their maximum value
at the inner surface to their minimum value at the outer surface of the shell B. Maximum
values of displacements belong to n=-1.5 and minimum values belong to n = 1.5.

2511 T —————
2e-114 - huRel3 c -2e-101
————— ---=  Ro/Ri=2.0 -
£
15e-114  — Ro/Ri=4.0 5 ]
L] -4e-10 Ra/Ri=1.3
rot 2 1 /s Ro/Ri=2.0
=20 e T e—— L
-_g a0 Ro/Ri=4.0
Ge-12] T
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 8e-101
1 15 2 25 3 35 4 1 15 2 25 3 35 4
radius, m radius, m

(a) Case | (b) Case Il



radial displacernent, m

Elasticity Solution Approach for Functionally Graded ... 115

e-111 -le-114
12611 128119
et Adet1 S
8 = 5
-1Be-117 = 1Be11]
5
1.8e-113 £ 18111
2
26111 —_———  Ro/RiE3 = Ze114
oy
2726111 Ro/Ri=2.0 D 228117 —————  RoREFI13
aetr] Ro/Ri=4.0 2 oserd /0 e Re/Ri=2.0
----------------------------------------------------- Ro/Ri=4.0
-2Ge-117 -2Fe-117
-2.8e-114 -2.8e-114
1 15 2 25 3 35 1 1 15 2 25 3 35
radius, m radiug, m
(c) Case Il (d) Case IV (Vo=Vi=0)
Figure 4 Through thickness variation of radial displacements, Ro/ Ri = 1.3, 2, 4,
04 04
000014
0.2
= -0.00027
& =
0.4 = -0.0003
g £
T £ .0.0004]
E 0.6 2
=) —
e 5 -0.0005
=1}
0.8 -0.0006
-0.0007 9
-1+ . . . . . . . r T T
1 1.05 1.1 1.15 12 125 13 1 1.05 11 118 12 125 13
radius, m radius, m
(a) Radial stress (b) Electric potential
n=-15
1.3e-117 o o o o hn=-04a
......... n=0.0001
& E1-28-111%% ------------------------------------- nfu.5
o = oa, n=15
8 29 1e117 "o
..a g Lle-
£ g
IS = Te1]
B =
E =
§ -c.é 9e-124
Be-12]
1 : , : : :
1 1.05 11 115 12 125 13 1 1.05 11 1.15 12 125 13
radius, m radius, m
(c) Hoop stress (d) Radial displacement

Figure 5 Through thickness variation of results for five exponents n, Ro/ Ri = 1.3, Case I, AV = Ovolt

Case Il

Results of the fully actuator case are illustrated in Figures (6(a)) to (6(e)). In which, there is
no applied pressure at the inner and outer surfaces of the sphere however the induced
compressive radial stresses satisfy the traction free mechanical boundary conditions.
Interestingly, the maximum absolute values of the induced compressive radial stresses belong
to the same maximum value of electric potential. In this case, the imposed electric potential
satisfies the electrical boundary conditions at the inner and outer surfaces of the sphere. This
means that the difference between electric potentials on inner and outer surfaces (AV=V, - Vi)
are important rather than their individual values. That is, V, =0, Vi =1 produces the same
results as Vo = -1, Vi =0. It is observed that the greater electric potentials belong to n = -1.5,
while the smaller values of which belong to n = 1.5.
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Circumferential induced stresses are both tensile and compressive throughout thickness for
different material in-homogeneity parameters n. However, for negative parameters n the
minimum values of circumferential stresses are located at the inner surface, while for positive
parameters of n their minimum values are located at the outer surface of the FGPM sphere.
This stress tends to vanish on the mid-radius for all parameters n. The induced radial
displacement is negative across the thickness for all material parameters and about ten times
larger than those of Case | (Figure 5(d)), in spite of which, the minimum values are located at
the inner and their maximum values are at the outer surfaces of the shell B. It is observed
from Fig. 6(e) that the overall behavior of induced radial and circumferential stresses locked
in the sphere during the autofrettage process of spheres made of uniform material [25] are
typically similar to thickness-wise stress distributions for load case Il (Fig. 6(c)), in which
radial stress caused by electric field vanishes at free surfaces of FGPM sphere.
Circumferential induced stress is compressive on the inner radius and has a smaller tensile
value on the outer radius. For negative parameters n, the minimum values of circumferential
stress are located at the inner surface, while for positive parameters of n its minimum values
are located at the outer surface of the FGPM sphere. This stress tends to vanish on the mid-
radius for all parameters n.

Case IlI

Results of the third load case are illustrated in Figures (7(a)) to (7(d)). Radial stresses for
different material in-homogeneity parameters n are shown in Figure (7(a)). Radial stresses
satisfy the mechanical boundary conditions at the inner and outer surfaces of the shell B. The
largest absolute values of radial stresses belong to a material identified by n = -1.5 and the
smallest values of which belong to n = 1.5. In this case, there is no external electric potential,
however, the induced electric potentials for different material in-homogeneity parameters n
are shown in Figure (7(b)). Electric potentials satisfy the fully grounded electrical boundary
conditions at the inner and outer surfaces of the shell B.
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It is also clear that higher induced electric potentials correspond to those with larger absolute
values of compressive radial stresses. Circumferential stresses are completely compressive
across the thickness for different material in-homogeneity parameters n (Figure (7(c))).
However, for negative parameters n the minimum values of circumferential stresses are
located at the inner surface, while for positive ones their minimum values are at the outer
surface of the FGPM sphere. It is interesting to see that the compressive circumferential
stresses in this case is very similar to the induced circumferential stresses resulted from
imposing an electric potential (Case 11). Radial displacements are illustrated in Figure (7(d))
for all material properties. Displacements are again negative throughout the thickness and
they smoothly change from their less value at the inner surface to their relatively constant
values at the outer surface of the shell B. Maximum values of displacements belong to n = -
1.5 and minimum values belong to n = 1.5.

Case IV

Case four is superposition of the Cases | and Il. The results of this case are given in Figures
(8(a)) to (8(d)). Radial stresses and the electric potentials satisfy the mechanical and electrical
boundary conditions. A positive electric potential is applied on the internal surface, which is
equal to imposing a negative electric potential on the external surface. The maximum
compressive values of radial stresses belong to a material identified by n = -1.5 the minimum
values of which belong to n = 1.5.

It is also clear that higher electric potentials correspond to those with less value of
compressive radial stresses. Circumferential stress distribution is similar to those of Case Il for
different material in-homogeneity parameters n. However, for negative parameters n the
minimum values of circumferential stresses located at the inner surface while for positive
parameters ¢ their minimum values located at the outer surface of the shell B.
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Radial displacement is negative across the thickness for all material parameters, resembling
Figure (6(d)), except that the inward displacement is reduced slightly. Their minimum values
located at the inner and their maximum values located at the outer surfaces of the shell B.

Case V

The aforementioned electrical loadings are not very practical, because it is more realistic to
actuate the electrode installed on the external surface of the closed shell. Figure (9(a)) shows
that although mechanical pressure is like the previous case, radial stress distribution has the
opposite trend for different material parameters n. Similarly, electric potential demonstrates
behaviours opposite to those given in Figure (8(b)). Circumferential stress distribution is
similar to those of Case | for different material in-homogeneity parameters n.

However, a ten times increase is induced in this stress (Figure (9(c))), due to applied voltage.
Despite all the previous cases, radial displacements are positive throughout the thickness and
they vary closely from their maximum value on the inner surface to their minimum values on
the outer surface. Comparing Figure (9(d)) with Figure (5(d)) infers that the positive electric
load on the outer surface bucks the variation trend in radial displacement with regard to
material exponent n, as well as intensifying the expansion of spherical shell B due to
mechanical pressure, more than ten times and this might not be really desired in terms of
shape control.
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5 Conclusion

An analytical approach is developed for the analysis of functionally graded piezoelectric
spherical shells with piezoelectric properties subjected to different load. This study helps to
deepen understanding of the behaviour of radially polarized FGPM smart structures. The
effects of the geometrical parameters, boundary conditions and volume fraction exponent 7’
on static behaviour of the FGPM sphere are demonstrated. Correlations between yielded
results and existing solutions support the accuracy and versatility of developed formulations.
Variation of stresses, electric potential and displacement of five sets of boundary conditions
for different material in-homogeneity parameters n are plotted against radius. In general,
radial stresses and electric potentials satisfy the mechanical and electrical boundary conditions
at the inner and outer surfaces of the FGPM sphere. Higher absolute values of compressive
radial stresses are associated with the higher induced electric potentials throughout the
thickness in all cases. The other observations of this research can be outlined as follows:

1. The exact solution is only responsible to capture the correct through-thickness distributions
of displacement. While, the constitutive equations are accountable for the overall accuracy of
the stress components.

2. The present formulation is capable for static analysis of both thin and thick FGPM speres,
as well as preventing shear locking in thin shells.

3. Meaningful less amount of computational effort of the developed approach, with respect to
the finite element method is witnessed.

4. It is seen that the compressive radial stress due to internal pressure tends to become tensile
by imposing a negative electric potential, for shell with higher FGM exponents.

5. Electric excitation has a significant effect on the distribution of stress and displacement
fields in a FGPM shell. So that, hoop stress becomes compressive on the internal radius and
the amount of this stress resulted from internal pressure in FGPM sphere can be reduced
(instead of being positive) by applying a proper amount of electric field as well as applying an
external pressure, which can be substantial in terms of durability and surface fatigue crack
growth in the shell. This scenario brings about very similar radial displacements for load
Cases Il and IV.
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Nomenclature

cij ()= elastic constants at radius r

Cij = material constant for elastic constants

{ED} = electric displacement vector

eij (r)= piezoelectric constants at radius r

eij= material constant for piezoelectric coefficients
{EF}=electric field vector

Eii (r) = directional modulus of elasticity at radius r
E = material constant for modulus of elasticity

Gij (r) = shear modulus at radius r

H= total shell thickness

K1, K2, D and C’ = constants in solutions of equations
n = power-law exponent

Pi and Po= internal and external pressures

Ri = inside radius,

Ro = outside radius

ur (r) =radial displacement

V = distributed electric potential

Greek symbols

{ o} = stress vector

{&} = strain vector

w = electric potential

Aij (r)= dielectric constants at radius r

Aij = material constant for dielectric constant
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