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1 Introduction 

 

Piezoelectric materials have been widely used as distributed sensors and actuators in the field 

of smart structures and active structural control. A smart structure typically comprises of one 

or more active (or functional) materials. The lightweight high-strength shells with 

piezoelectric properties are famous for their capability of providing the expected behaviour at 

the smart structures level. Crawley [1] reported an overview of applications of piezoelectric 

materials for intelligent and aerospace structures. Functionally graded materials (FGMs) are 

microscopically inhomogeneous composites usually made from a mixture of metals and 

ceramics. By gradually varying the volume fraction of consistent materials, their material 

properties exhibit a smooth and continuous change along one or more directions to obtain 

optimum response to externally applied loads.  
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In this paper, an analytical method is adopted, based on 

elasticity approach to analyze the hollow FGM sphere with 

piezoelectric properties. The electro-mechanical properties 

except the Poisson’s ratio are assumed to be power 

functions of radius. Loading is a combination of pressures 

and a distributed electric field. For axisymmetric problem, 

3-D governing equations are reduced to a 1-D second 

order nonlinear Cauchy-type differential equation, in 

terms of radial displacement. The solution of nonlinear 

differential equation is opted as a power law function. By 

satisfying five sets of boundary conditions and 

incorporating them into governing equation, a system of 

algebraic equations is obtained that delivers the unknown 

constants. Static responses of FG shell to electro-

mechanical loads with different ‘n’ and the effect of size 

are investigated. The induced radial and circumferential 

stresses of an imposed electric potential are compared to 

the residual stresses locked in the homogeneous sphere.  
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Niino [2] introduced the concept of functionally graded material to satisfy the demand of 

ultra-high-temperature environment and to eliminate the stress singularities. Yamada et al. [3] 

presented a functionally graded piezoelectric plate created by forming a temperature variation 

across the plate with relatively low Curie temperature. Chen et al. [4] presented the static 

analysis of a steadily rotating piezoelectric spherical shell with a functionally graded property.  

Electromechanical responses of compositionally graded piezoelectric layers were analysed by 

Lim and He [5]. Sinha [6] obtained the solution of the problem of static radial deformation of 

a piezoelectric spherical shell and under a given voltage difference between these surfaces, 

coupled with a radial distribution of temperature from the inner to the outer surface. Three-

dimensional elasticity static analysis of a multilayered elastic spherical hollow shell with 

spherical isotropy was presented by Chen and Ding [7].  

Two independent state equations were derived after introducing three displacement functions 

and two stress functions. Ghorbanpour et al. [8] investigated the stress and electric potential 

fields in piezoelectric hollow spheres. The stress field in piezoelectric hollow sphere under 

thermal environment was developed by Saadatfar and Rastgoo [9]. Shao et al. [10] derived 

analytical solutions for mechanical stresses of a functionally graded circular hollow cylinder 

with finite length. In-homogenity was considered in a number of studies. Elastic analysis of 

internally pressurized thick-walled spherical pressure vessels of functionally graded materials 

(FGMs) investigated by You et al. [11]. Sladek et al. [12] derived Local integral equations for 

numerical solution of 3-D problems in linear elasticity of FGMs viewed as 2-D axisymmetric 

problems. The meshless local Petrov–Galerkin method was applied to transient dynamic 

problems in 3D axisymmetric piezoelectric solids with continuously non-homogeneous 

material properties subjected to mechanical and thermal loads by Sladek et al. [13]. Wang and 

Xu [14] studied the effect of material inhomogeneity on electromechanical behaviors of 

functionally graded piezoelectric spherical structures. Magnetothermoelastic problems of 

FGM spheres are studied by Ghorbanpour et al. [15].  

Transient analysis of ordinary functionally graded cylindrical shells subjected to internal 

dynamic pressure was presented by Setoodeh et al. [16], implementing a power law 

distribution function in the thickness. Ghorbanpour Arani et al. [17] solved hollow sphere 

made from functionally graded piezoelectric material, using unnecessary dimensionless 

quantities. They considered a particular solution, not satisfying the governing equation and an 

exponential function for general solution of Cauchy-Euler equation, instead of a power law 

function, which is given in mathematical Handbooks (e.g. [18]). Buckling of shallow 

functionally graded spherical shells with surface-bonded piezoelectric actuators under thermal 

load was studied by Sabzikar Boroujerdy and Eslami [19]. It was assumed that properties of 

the functionally graded material vary through the thickness according to a power law 

distribution of the volume fractions of the constituent materials. The static and dynamic 

responses of a simply-supported, thick laminated orthotropic cylindrical shell with 

piezoelectric actuator and sensor layers, based on a 3-D elasticity solution approach was 

published by Shakeri et al. [20]. Hafezalkotob and Eslami [21] presented the thermo-

mechanical buckling of simply supported thin shallow spherical shells made of functionally 

graded material. In this paper, the first-order shell theory of Love and Kirchhoff, the Donnell-

Mushtari-Vlasov kinematics equations, and the calculus of variations was used.  

Therefore, in conjunction with the previous works, new applications of piezoelectric sensors 

and actuators are being introduced for a new geometric configuration. This research attempts 

to analyse a hollow sphere composed of a radially polarized transversely isotropic 

functionally graded piezoelectric material, subjected to uniform static load together with a 

potential difference induced by electrodes attached to the inner and outer surfaces of the 

annular sphere.  
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All mechanical and piezoelectric properties of the FGM hollow sphere, except for the 

Poisson’s ratio, are assumed to depend on the radius r and expressed in terms of its power 

function with material in-homogeneity level ‘n’. The 3-D governing equilibrium equations of 

radially polarized sphere are reduced to a system of second-order ordinary differential 

equations, yielding a 1-D second order nonlinear Cauchy-type differential equation in terms 

of radial displacement, which then is solved analytically. By satisfying four different sets of 

boundary conditions and incorporating them into governing equation, a system of algebraic 

equations is obtained that delivers the unknown constants. The accuracy and computational 

efficiency of the proposed approach are verified by comparing the results with those obtained 

for homogenous material in the literature. 

 

2 Formulation and theory 

 

Consider a hollow FGPM sphere with inside radius Ri , outside radius Ro,  and total shell 

thickness H. The shell geometry exposed to uniform internal and external pressures Pi and Po, 

and distributed electric potential V is shown in Figure (1). Because of the closed geometry, 

the electrodes have to be attached to the outer and inner surfaces during the manufacturing 

process. This leads to having an electric field in radial direction. Furthermore, the direction of 

polarization is established during the induction process by means of the electric field applied 

between two electrodes and its quantity is determined by electric displacement. So, in a 

thickness-wise polarized piezoelectric sphere, there will be only radial components of electric 

field and displacement. Details with respect to definition and determination of the constants 

describing these materials have been standardized by the Institute of Electrical and 

Electronics Engineers [22]. For centre-symmetric stress and displacement conditions, the 

linear constitutive relations for an orthotropic material, with radially polarized piezoelectric 

property can be written as follows, [23], [24]:    
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Where  cij , Δij , and eij are the elastic, dielectric, and piezoelectric constants, respectively, 

which relate the components of stress (), strain (), electric field (EF) and electric 

displacement vectors (ED). It is assumed that the functionally graded material has 

transversely isotropic properties with respect to axis of rotation oriented in the radial 

direction, the elasticity and piezoelectric coefficient tensors are expressed as 

 

                      
13122332332231132112        ,      ,     , eecccccccc                               (2-a) 

 

Hence, it has only three independent material parameters, in addition to a piezoelectric 

coefficient. In case of having the mechanical properties (directional elastic moduli and 

poisson's ratios), by using micro-mechanics, rule of mixtures or experiment, the elastic 

coefficients for thickness-wise FGM sphere are obtained as follows, [23] 
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Figure 1 FGPM shell geometry subject to uniform pressure and applied voltage. 
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where, Poisson’s ratio is assumed to be constant through the shell thickness For isotropic 

properties, the FGM elastic coefficients are summarized to the following relations, [7] 
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The centre-symmetric equations of motion ( 0
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







) in the absence of body force are 
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The charge equation of electrostatics is given by Tiersten [24]. 
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The centre-symmetric strain-displacement and the electric field-electric potential relations of 

the piezoelectric elastic medium are written as 
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By combining Eqs. (4) with Eqs. (1), the stress and electrical displacement component will be 

obtained as follows 
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After substituting these components into the governing Eqs. (3) and factorizing the similar 

derivatives of ur and ψ, the equations of equilibrium in terms of displacement and electric 

potential for spherical shell become: 
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For isotropic FG material, the mechanical equation of motion is simplified as  
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By substituting components of the elastic constants from the above equations (2) into Eq. (6-

a), the equilibrium equation is developed in terms of the displacement and electric potential 

field of the functionally graded spherical shell,  while the electrical equilibrium Eq. (6-b) 

remains the same, as follows: 
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On the other hand, the FGM properties change through the r-direction, which can be a 

combination of ceramics and metals. The mixing ratio is varied continuously and smoothly 

across the thickness. The following model is taken for material property distribution [13], [19]  
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 q(r) is material property that is controlled by volume fraction as a function of r, ‘n’ is the 

none-negative power-law exponent and subscripts i and o stand for inner and outer surfaces. 

q(r) can be substituted for Young's modulus E(r), shear modulus G(r), electric coefficients 

e11(r), e12(r) and mass density ρ(r). Poission's ratio is considered constant through the 

thickness. Variation of material properties in terms of volume fraction of external / interior 

material with normalized radial distance in thickness direction for different values of n are 

shown in Figure (2).  
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2.1 Boundary conditions 

 

Because of symmetric geometry, there is no essential boundary condition in this problem.  

The loading condition of the outer/ inner surface of the shell is considered to be free of shear/ 

in plane traction and the electro-static potential is assumed to be zero on the outer surface. 

Under these circumstances, four sets of mechanical and electrical loading boundary 

conditions of the FGP sphere are written as follows: 

 

I)      0)(      ,0)(      ,0)(      ,)(  oioriir RRRPR                          (9-a) 

II)      0)(      ,)(      ,0)(      ,0)(  oiiorir RVRRR                          (9-b) 

III)  0)(      ,0)(      ,)(      ,0)(  oioorir RRPRR                         (9-c) 

IV) 0)(      ,)(      ,0)(      ,)(  oiioriir RVRRPR                         (9-d) 

V)      
ooioriir VRRRPR  )(      ,0)(      ,0)(      ,)(                         (9-e) 

 

In case I, the FGPM hollow sphere is subjected to an internal uniform pressure without any 

imposed electric potential and external pressure. However, in this case the induced electric 

potential is existed across the thickness. In this case, the sphere acts as a sensor. In the second 

case, an electrical potential difference is applied between the inner and outer surfaces of the 

sphere without any internal and external pressures. In this case, the sphere acts as an actuator. 

In case III, the FGPM hollow sphere is exposed to an external uniform pressure without any 

imposed electric potential and internal pressure. Cases IV and V are the superposition of cases 

I and II, along with an electrical potential on the external electrode on the shell surface. 

 
3 Analytical solution method 

 

The trivial solution of electric equilibrium Eq. (3-b) is as follows, [17] 
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where, D is an unknown constant that should be determined using boundary conditions.  

Using this solution, combining equations (6-a) and (6-b) and collecting he similar derivatives 

of radial displacement, yields as follows 
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Figure 2 Material property variation in terms of exponent n 
 

 
For isotropic FG material, the mechanical static equilibrium is simplified as 
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At this stage, the elasticity and electricity coefficients are obtained from Eq.(8) 

 

cij(r)= Cij(r/Ri)n , E(r)= E(r/Ri)n , e11(r)= e11(r/Ri)n , e12(r)= e12(r/Ri)n , 11(r)= 11(r/Ri)n   (12-a)    

 

The Poisson’s ratios (υij) are assumed constant in different directions.  
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By substituting Eqs. (12) into Eq. (11-a), the following non-linear  partial differential equation 

emerges  
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For isotropic FG material, the non-linear partial differential equation is written as 
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Multiplying Eq.(13-a) with r(2-n), yields a non-homogeneous Cauchy-Euler type differential 

equation as follows   
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For isotropic FG material, these multipliers are 
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The general solution for Eq. (14) has the following well known form, [18]: 
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Subsequently, the particular solution of Eq. (14) can be developed by employing the method, 

so called variation of parameter [18], as 

   

                                     2211  )( )( rgrgrp urRurRu                                                         (17)   

 

R1 and R2 can be determined by substituting Eq. (17) into equilibrium Eq. (14) as 
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Where  W(r) is the expression on the right hand side of Eq. (14) . Substituting Eq. (18) into 

Eq. (17), the overall solution is found as follows 
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Where  K1, K2 are unknown constants that are determined using boundary conditions.  Now, 

by substituting the displacement from Eq. (19) into Eqs. (5) the radial stress is obtained. Also, 

substituting ur into Eq. (5-b), then combining with Eq. (4-b) and performing integration, 

electric potential along with radial stress are written as 
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C  is the integration constant. For all the four load cases mentioned in boundary conditions, 

the system of linear algebraic equations for the constants K1, K2, D and C  of Eqs. (20) can be 

written in the following from 
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The components of vector on the right side are defined in boundary condition Eqs. (9). Once 

the vector of constants is calculated, by using Eqs. (19) and (20) the displacement, electric 

potential and stress would be obtained. Consequently, the circumferential stress is calculated 

by using the following relation 
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4 Evaluation and Numerical results  

 

The effectiveness of the developed formulation has been demonstrated through the analysis of 

examples and making comparisons with the published results in benchmark problems . In the 

first step, a spherical shell with Ro/Ri= 2, and made of homogenous isotropic material with the 

following steel-like properties is considered, while putting the piezoelectric related constants 

equal to a negligible value: E= 207 GPa, υ = 0.29. The shell is subjected to an external 

uniform pressure (load case III). In Figures 3(a) and (b) the distributions of the non-

dimensional radial stress σr /Po and normalized radial displacement ur E / (2 (1+ υ) Ro Po), 

respectively are compared to the results obtained by Chen and Ding [7]. Secondly, the 

following transversely isotropic shell is investigated: 
 

Shell A) Spherical shell made of piezoelectric ceramic PZT-5 with the material properties 

given in Table (1), [8]. In the first step, the results obtained for four different static loadings of 

shell A are compared to the reported results [8]. 

Three geometrical properties of the symmetric sphere are considered: Ro/Ri= 1.3, 2.4 and 4.0. 

In Table (2), the values of radial stress, circumferential stress and electric potential on the 

mid-radius of the shell ((Ro / Ri)/2) are compared to those obtained by Ghorbanpour et al. [8]. 

Without surprise, it is seen that there is a good agreement between the present results and the 

reported ones. The reasons for these differences are dissimilar formulation and computational 

approach. In the present work, the Maple software has been implemented to solve the 

governing equations in parametrical form, consuming less time and computational effort. It is 

seen that the present approach, to some extent overestimates the results. Having done the 

aforementioned study, the capability of the proposed formulation and developed computer 

code to analyse the FGPM spherical shell has been assessed.  
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                                    (a) radial displacement                                                  (b) radial stress 

Figure 3 Comparison of thickness-wise variations, Case III 

 

Table 1 Material properties of piezoelectric PZT-5 

Elastic Constants, Gpa 

C11 C12 C13 C22 C23 C33 C44 C55 

111.0 75.1 75.1 120.0 75.2 120.0 22.6 21.1 

Piezoelectric Constants,  C/m2 Permittivity,10-9C2/ Nm2  

e11 e12 e13 e35 Δ11   

15.78 -5.35 -5.35 12.7 1700   

 
 

Table 2   Comparison between results in the middle of shell thickness for Shell A 

Electro-

mechanical 

Loading  

Ro / Ri r      
present Ref [7] present Ref [7] present Ref [7] 

Case I 

1.3 -0.439 -0.367 1.435 1.411 -0.33810-5 -0.41210-5 

2 -0.238 -0.185 0.311 0.307 -0.89410-5 -1.09710-5 

4 -0.041 -0.038 0.048 0.057 -1.25610-5 -1.52810-5 

Case II 

1.3 -0.972 -0.936 22.452 22.310 0.431 0.415 

2 -1.611 -1.538 6.377 6.294 0.329 0.325 

4 -1.274 -1.219 1.820 1.612 0.204 0.191 

Case III 

1.3 -1.194 -1.173 23.367 23.512 0.439 0.447 

2 -1.753 -1.681 6.814 6.735 0.332 0.333 

4 -1.205 -1.147 1.572 1.543 0.201 0.203 

Case IV 

1.3 -0.629 -0.642 -2.433 -2.521 0.20310-5 0.17510-5 

2 -0.783 -0.795 -1.230 -1.147 1.15210-5 1.12910-5 

4 -0.932 -0.928 -0.986 -0.815 6.33710-5 6.25110-5 

 

 

Secondly, radial displacements of shell A corresponding to the above last three load cases are 

presented in Figures (4(a)) to (4(d)). As it is expected, the radial displacements for Case I are 

positive, while radial displacements of the other cases are negative, having incremental 

variation trends. Thin shell (Ro/Ri= 1.3) has a different deformation pattern from the thicker 

ones. It is inferred from Figures (4(c)) and (4(d)) that load Cases III and IV deliver very 

similar results, due to the shrinking effect of electric load. Next, the following spherical shell 

is investigated:  
 



                            Iranian Journal of Mechanical Engineering                                 Vol. 18, No. 1, March 2017 114 

Shell B) FGPM made of piezoelectric ceramic PZT-4, which has been selected because of its 

technical applications. Mechanical and electrical properties of piezoelectric material, PZT_4 

are tabulated in Table (3). Presented results are related to the five cases of different boundary 

conditions with aspect ratio Ro/Ri= 1.3. The numerical results are drawn in Figures (5) to (9), 

showing the variation of stresses, electric potential and displacement across the thickness of 

the FGPM sphere for different material inhomogenity parameter n.  

 
Table 3 Material properties of piezoelectric PZT-4 

Elastic Constants, Gpa 

C11 C12 C13 C22 C23 C33 C44 C55 

115.0 74.3 74.3 139.0 77.8 139.0 30.6 25.6 

Piezoelectric Constants,  C/m2 Permittivity,10-9C2/ Nm2  

e11 e12 e13 e35 Δ11 Δ22  

15.1 -5.2 -5.2 12.3 3.87 4.91  

Case I 

Results of the first case are illustrated in Figures (5). Radial stresses for different material in-

homogeneity parameters n are shown in Figure (5(a)). Radial stresses satisfy the mechanical 

boundary conditions at the inner and outer surfaces of the FGPM sphere. The maximum 

absolute values of radial stresses belongs to a material identified by in-homogeneity 

parameter n = 1.5 the minimum absolute values of which belong to n = -1.5. In this case there 

is no imposed electric potential. However, the induced electric potentials for different material 

in-homogeneity parameters n are shown in Figure (5(b)). Electric potentials satisfy the 

grounded electrical boundary conditions at the inner and outer surfaces of the shell B.  

It is also obvious that higher induced electric potentials belong to higher absolute values of 

compressive radial stresses. Hoop stresses (Figure (5(c))) are highly tensile through thickness. 

Radial displacements are illustrated in Figure (5(d)) for all material properties. Displacements 

are positive throughout the thickness and they smoothly decrease from their maximum value 

at the inner surface to their minimum value at the outer surface of the shell B. Maximum 

values of displacements belong to n= -1.5 and minimum values belong to n = 1.5. 

 

 

 

       
                                       (a) Case I                                                                                 (b) Case II 
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                                       (c) Case III                                                                  (d) Case IV (Vo=Vi=0) 

Figure 4 Through thickness variation of radial displacements, Ro/ Ri = 1.3, 2, 4, 
 

 

     
                              (a) Radial stress                                                  (b) Electric potential 

 

     
                                 (c) Hoop stress                                                     (d) Radial displacement 

Figure 5 Through thickness variation of results for five exponents n,  Ro/ Ri = 1.3, Case I, ΔV = 0volt 

 

Case II 

Results of the fully actuator case are illustrated in Figures (6(a)) to (6(e)). In which, there is 

no applied pressure at the inner and outer surfaces of the sphere however the induced 

compressive radial stresses satisfy the traction free mechanical boundary conditions. 

Interestingly, the maximum absolute values of the induced compressive radial stresses belong 

to the same maximum value of electric potential. In this case, the imposed electric potential 

satisfies the electrical boundary conditions at the inner and outer surfaces of the sphere. This 

means that the difference between electric potentials on inner and outer surfaces (ΔV= Vo - Vi) 

are important rather than their individual values. That is, Vo =0, Vi =1 produces the same 

results as Vo = -1, Vi =0. It is observed that the greater electric potentials belong to n = -1.5, 

while the smaller values of which belong to n = 1.5.  
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Circumferential induced stresses are both tensile and compressive throughout thickness for 

different material in-homogeneity parameters n. However, for negative parameters n the 

minimum values of circumferential stresses are located at the inner surface, while for positive 

parameters of n their minimum values are located at the outer surface of the FGPM sphere. 

This stress tends to vanish on the mid-radius for all parameters n. The induced radial 

displacement is negative across the thickness for all material parameters and about ten times 

larger than those of Case I (Figure 5(d)), in spite of which, the minimum values are located at 

the inner and their maximum values are at the outer surfaces of the shell B. It is observed 

from Fig. 6(e) that the overall behavior of induced radial and circumferential stresses locked 

in the sphere during the autofrettage process of spheres made of uniform material [25] are 

typically similar to thickness-wise stress distributions for load case II (Fig. 6(c)), in which 

radial stress caused by electric field vanishes at free surfaces of FGPM sphere. 

Circumferential induced stress is compressive on the inner radius and has a smaller tensile 

value on the outer radius. For negative parameters n, the minimum values of circumferential 

stress are located at the inner surface, while for positive parameters of n its minimum values 

are located at the outer surface of the FGPM sphere. This stress tends to vanish on the mid-

radius for all parameters n. 

 

Case III 

Results of the third load case are illustrated in Figures (7(a)) to (7(d)). Radial stresses for 

different material in-homogeneity parameters n are shown in Figure (7(a)). Radial stresses 

satisfy the mechanical boundary conditions at the inner and outer surfaces of the shell B. The 

largest absolute values of radial stresses belong to a material identified by n = -1.5 and the 

smallest values of which belong to n = 1.5. In this case, there is no external electric potential; 

however, the induced electric potentials for different material in-homogeneity parameters n 

are shown in Figure (7(b)). Electric potentials satisfy the fully grounded electrical boundary 

conditions at the inner and outer surfaces of the shell B. 
 

        
                                (a) Radial stress                                                              (b) Electric potential 

 

      
                                 (c) Hoop stress                                                                (d) Radial displacement 
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                                                        (e) Hoop and radial residual stress, [24] 

Figure 6 Through thickness variation of results for five exponents n,  Ro/ Ri = 1.3, Case II, ΔV = -1volt 

 

It is also clear that higher induced electric potentials correspond to those with larger absolute 

values of compressive radial stresses. Circumferential stresses are completely compressive 

across the thickness for different material in-homogeneity parameters n (Figure (7(c))). 

However, for negative parameters n the minimum values of circumferential stresses are 

located at the inner surface, while for positive ones their minimum values are at the outer 

surface of the FGPM sphere. It is interesting to see that the compressive circumferential 

stresses in this case is very similar to the induced circumferential stresses resulted from 

imposing an electric potential (Case II). Radial displacements are illustrated in Figure (7(d)) 

for all material properties. Displacements are again negative throughout the thickness and 

they smoothly change from their less value at the inner surface to their relatively constant 

values at the outer surface of the shell B. Maximum values of displacements belong to n = -

1.5 and minimum values belong to n = 1.5.  

 

Case IV 

Case four is superposition of the Cases I and II. The results of this case are given in Figures 

(8(a)) to (8(d)). Radial stresses and the electric potentials satisfy the mechanical and electrical 

boundary conditions. A positive electric potential is applied on the internal surface, which is 

equal to imposing a negative electric potential on the external surface. The maximum 

compressive values of radial stresses belong to a material identified by n = -1.5 the minimum 

values of which belong to n = 1.5.  

It is also clear that higher electric potentials correspond to those with less value of 

compressive radial stresses. Circumferential stress distribution is similar to those of Case II for 

different material in-homogeneity parameters n. However, for negative parameters n the 

minimum values of circumferential stresses located at the inner surface while for positive 

parameters c their minimum values located at the outer surface of the shell B. 
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                                 (a) Radial stress                                                                 (b) Electric potential 

 

     
                                 (c) Hoop stress                                                                  (d) Radial displacement 

Figure 7 Through thickness variation of results for five exponents n,  Ro/ Ri = 1.3, Case III, ΔV = 0 volt 

 

       
                                    (a) Radial stress                                                             (b) Electric potential 

 

       
                                   (c) Hoop stress                                                             (d) Radial displacement 

 

Figure 8 Through thickness variation of results for five exponents n,  Ro/ Ri =1.3, Case IV,  ΔV = -1volt  
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Radial displacement is negative across the thickness for all material parameters, resembling 

Figure (6(d)), except that the inward displacement is reduced slightly. Their minimum values 

located at the inner and their maximum values located at the outer surfaces of the shell B. 

 
Case V 

The aforementioned electrical loadings are not very practical, because it is more realistic to 

actuate the electrode installed on the external surface of the closed shell. Figure (9(a)) shows 

that although mechanical pressure is like the previous case, radial stress distribution has the 

opposite trend for different material parameters n. Similarly, electric potential demonstrates 

behaviours opposite to those given in Figure (8(b)). Circumferential stress distribution is 

similar to those of Case I for different material in-homogeneity parameters n.  

However, a ten times increase is induced in this stress (Figure (9(c))), due to applied voltage. 

Despite all the previous cases, radial displacements are positive throughout the thickness and 

they vary closely from their maximum value on the inner surface to their minimum values on 

the outer surface. Comparing Figure (9(d)) with Figure (5(d)) infers that the positive electric 

load on the outer surface bucks the variation trend in radial displacement with regard to 

material exponent n, as well as intensifying the expansion of spherical shell B due to 

mechanical pressure, more than ten times and this might not be really desired in terms of 

shape control.   

    

 
 

       
                                 (a) Radial stress                                                                  (b) Electric potential 

 

      
                                   (c) Hoop stress                                                             (d) Radial displacement 

 

Figure 9 Through thickness variation of results for five exponents n,  Ro/ Ri = 1.3, Case V, ΔV = 1volt 
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5  Conclusion 

 

An analytical approach is developed for the analysis of functionally graded piezoelectric 

spherical shells with piezoelectric properties subjected to different load. This study helps to 

deepen understanding of the behaviour of radially polarized FGPM smart structures. The 

effects of the geometrical parameters, boundary conditions and volume fraction exponent ‘n’ 

on static behaviour of the FGPM sphere are demonstrated. Correlations between yielded 

results and existing solutions support the accuracy and versatility of developed formulations. 

Variation of stresses, electric potential and displacement of five sets of boundary conditions 

for different material in-homogeneity parameters n are plotted against radius. In general, 

radial stresses and electric potentials satisfy the mechanical and electrical boundary conditions 

at the inner and outer surfaces of the FGPM sphere. Higher absolute values of compressive 

radial stresses are associated with the higher induced electric potentials throughout the 

thickness in all cases. The other observations of this research can be outlined as follows: 

1. The exact solution is only responsible to capture the correct through-thickness distributions 

of displacement. While, the constitutive equations are accountable for the overall accuracy of 

the stress components. 

2. The present formulation is capable for static analysis of both thin and thick FGPM speres, 

as well as preventing shear locking in thin shells. 

3. Meaningful less amount of computational effort of the developed approach, with respect to 

the finite element method is witnessed. 

4. It is seen that the compressive radial stress due to internal pressure tends to become tensile 

by imposing a negative electric potential, for shell with higher FGM exponents. 

5. Electric excitation has a significant effect on the distribution of stress and displacement 

fields in a FGPM shell. So that, hoop stress becomes compressive on the internal radius and 

the amount of this stress resulted from internal pressure in FGPM sphere can be reduced 

(instead of being positive) by applying a proper amount of electric field as well as applying an 

external pressure, which can be substantial in terms of durability and surface fatigue crack 

growth in the shell. This scenario brings about very similar radial displacements for load 

Cases III and IV. 
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Nomenclature 
 

 cij (r)= elastic constants at radius r 

Cij = material constant for elastic constants 

{ED} = electric displacement vector 

eij (r)= piezoelectric constants at radius r 

eij= material constant for piezoelectric coefficients 

{EF}= electric field vector  

Eii (r) = directional modulus of elasticity at radius r 

E = material constant for modulus of elasticity 
Gij (r) = shear modulus at radius r 

H= total shell thickness  

K1, K2, D and C= constants in solutions of equations  

n = power-law exponent 

Pi and Po= internal and external pressures  

Ri = inside radius, 

Ro = outside radius 

ur (r) =radial displacement 

V = distributed electric potential 
 

Greek symbols 

{} = stress vector 

{} = strain vector 

 = electric potential 

Δij (r)= dielectric constants at radius r 

Δij = material constant for dielectric constant 
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 چکيده

 

 صورت به دفمندتوخالی ساخته شده از ماده ه كروي مخزن ه،تیسیالاست حل ویکردر براساس

 صورت تابعه در راستاي شعاعی بررسی شده است. تغییرات خواص مکانیکی برحسب نسبت حجمی ب تحلیلی

بار  یا خارجی و داخلی فشار مزبور تحت مخزناز مختصه راستاي شعاعی كنترل می شوند.  توانی مدل

 .ستا گرفته قرار همزمان و مجزا صورت بهو  فیمن یا مثبت پتانسیل الکتریکی الکتریکی گسترده با گرادیان

می  ضخامت امتداد دربه جز نسبت پواسون  مکانیکیالکترو خواص تغییرات گرفتن نظر در براي توانی مدل

برحسب دیفرانسیل غیر خطی كوشی اویلر  همعادلیک معادلات سه بعدي حاكم به براي تقارن محوري، . باشد

حل عمومی معادله دیفرانسیل  این معادله بصورت تحلیلی حل شده است. جابجایی شعاعی تبدیل می شوند.

  بصورت تابع توانی و حل خصوصی متفاوت از كارهاي قبلی چاپ شده می باشد.

رزي مختلف و اعمال آنها به حل بدست آمده براي معادله مذكور، یک دستگاه معادلات شرط م پنجبا نوشتن 

جبري برحسب چهار ثابت مجهول بدست می آید. بدین ترتیب میدان جابجایی و تنش در كره حل می شود. 

جهت  و ابعاد هندسی مختلف به بارهاي مکانیکی و الکتریکی موادپاسخ استاتیکی كره با 

 پاسخ كره با توان هاي تابع هدفمندي و ابعاد هندسیمقایسه با مراجع موجود استفاده شده است. سپس 

نوع بررسی شده است. تنشهاي بوجود آمده در اثر بار الکتریکی متمختلف تحت بارهاي مکانیکی و الکتریکی 

ر قابل مقایسه با تنشهاي پسماند محبوس در یک كره ساخته شده از مواد غی


