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1 Introduction  

 

Ancient models in computational fluid dynamics (CFD) are founded on the straight 

discretization of conservation of momentum and energy equations. These techniques have a 

macroscopic approach in the field of fluid dynamics simulations. On the other hand, the kinetic 

techniques for CFD, like the lattice Boltzmann method, take a microscopic approach and are 

derived from the Boltzmann equation [1-4]. One particular application of the lattice Boltzmann 

method is to simulate fluid under the influence of body force. Some cases of such flows are 

magneto-hydrodynamic fluid flow [5], buoyancy driven flow [6], multi-phase  or multi-
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Various numerical boundary condition methods have been 

proposed to simulate various aspects of the no-slip wall 

condition using the Lattice Boltzmann Method. In this 

paper, a new boundary condition scheme is developed to 

model the no-slip wall condition in the presence of the body 

force term near the wall which is based on the Bennett 

extension. The error related to the new model is smaller 

than those of other boundary condition methods existing in 

the last studies. Based on the computational results, the 

body forces method which representing minimum error has 

been illustrated. Finally, the effect of the variation of 

diffusion coefficients on Rayleigh-Benard convection was 

studied. The critical Rayleigh number, which is obtained by 

current method, are in good agreement with the results 

calculated by the linear stability theory. It has been revealed 

that the proposed model is capable of computing the effect 

of high nonlinearity in the conservative equation in the 

presence of variable diffusion coefficients. 
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component fluid flows [7, 8] and the flow of non-ideal gases obeying a van der Waals type  of 

equation of state [9, 10]. Different schemes which is used to simulate the body forces are 

allocated into three groups. The first approach, called Scheme 1 in this study, is based on the 

suggestion of Luo [11] in which the effect of body forces are considered in the collision term 

as  

i 2

1
F .i i

s

w c F
c

   (1) 

Another method, referred to as Scheme 2 in the current study, is based on the work of Shan and 

Chen [12]. In order to account for body forces, they employed Newton’s second law and 

modified the fluid and equilibrium velocities as follows.  
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It seems to be more accurate if both the collision term and the velocity equations are modified 

in order to account for external forces. This idea has been employed by Guo et al. [13] and 

forms what is called Scheme 3 in this study. This method leads to the same conservation 

equations reached by macroscopic solutions. To obtain the Navier-Stokes equations, Guo et al. 

[13] applied the following modifications in the force and velocity equations. 
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More recently, Mohamad and Kuzmin [14] examined a good number of formulations suggested 

by various investigators to assess the accuracy of different schemes. They showed that the 

method of Guo et al. [13] is noticeably more accurate than those of others.  

One of the best examples of body force is buoyancy force. To study a buoyancy-driven flow, 

the temperature distribution necessities to be calculated. The kinematic viscosity and the 

thermal diffusivity is considered changing with temperature in current study. Hazi and Markus 

[15] used Scheme 1 to investigate convective heat transfer to a supercritical fluid. The fluid 

thermal diffusivity varied with the temperature near the critical region. More recently, 

Varmazyar and Bazargan [16] used a Chapman-Enskog analysis and illustrated that this model 

can simulate the influence of nonlinearity due to the variation of thermal diffusivity in the 

energy equation. Recently, the effects of the body forces schemes has been investigated by 

Varmazayar et al. [17].The boundary conditions, as well as the body forces schemes necessity 

to be adjusted accordingly. The set of boundary conditions may be classified in terms of the 

order of magnitude of the error produced [18]. Since the accuracy of the LBM is of the second 

order inside the mesh points, the first order boundary conditions degrade the lattice Boltzmann 

method. Many efforts have been made to present higher order schemes for boundary conditions 

[19-23]. The bounce-back approach satisfies the mass conservation on the wall and assures the 

zero velocity on the boundary. However, a problem appears once the body forces are present. 
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They may cause a jump in the distribution function on the boundary. This has also been 

addressed by Li and Tafti [24] and Varmazyar et al. [17].  

They showed that applying the common bounce-back boundary condition leads to an erroneous 

velocity jump at the wall in the presence of local forces due to liquid-vapor interactions. They 

developed a mass-conserving velocity-boundary condition in order to eliminate the unwanted 

velocity component. In current study, a new boundary condition proposed to remove the effect 

of the body forces near the wall which is based on the Bennett method. 

To accomplish the goals mentioned above, the following steps are taken. First, the mathematical 

models for the fluid motion and the thermal heat transfer are presented. Then, numerical 

examples are applied to show the capability of the models. Next, the accuracy of the introduced 

boundary condition in the current study as well as various schemes used for body forces is 

evaluated in Poiseuille flow and Rayleigh-Benard convection case studies. Finally, the effect of 

variable kinematic viscosity on primary instability is investigated.   

 

2   Governing Equations and Modeling  

 

The LBM for an incompressible gas and corresponding thermal LBM have been described 

below. The variation of thermal diffusivity with temperature has been considered. Multi 

relaxation time scheme has been used to increase the stability and accuracy of the model. 

 

2.1.    Lattice Boltzmann Method  

 

The lattice Boltzmann equation (LBE) is directly derived from the Boltzmann equation by 

discretization in both time and phase space [25]. The general form of the lattice Boltzmann 

equation in the ith direction with body forces included is 

i i i if ( +   ,t+1)-f  ( ,t)= +Fir c r 

 

(7) 

where  r , t  and 
iF  are the location vector, time and body forces respectively. The term 

if  is 

the particle distribution function traveling with velocity 
ic . The collision operator 

i  

represents the rate of change of 
if  due to collision of particles. The particle distribution after 

propagation is relaxed towards the equilibrium distribution eq

if ( , )r t . The formulation of the 

Bhatnagher-Gross-Krook method (BGK) [26] for collision operator has been used in this study 

as 

eq

i i i

1
(f ( , ) f ( , ))r t r t


  

 

(8) 

The relaxation parameter    has been calculated from the kinematic viscosity   , which is 

varied by temperature, according to the following equation [16].  

1
3

2
  

 

(9) 

The equilibrium density fi
eq(x, t) is calculated as [16] 
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(10) 

where sc  is the speed of sound, and iw  is the corresponding equilibrium density for 0equ  . 

Taking the moment of the distribution function, the density and microscopic velocity may be 

obtained as follows [16]. 
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The body force in the lattice Boltzmann model is calculated as below. 

 mF G  

 

(13) 

where m  and G  are the average fluid density and gravity acceleration respectively. Using the 

Boussinesq approximation, the body force (buoyancy) term in Rayleigh-Benard convection will 

be 

( )mF T T G  

 

(14) 

where mT  and   are the average fluid temperature and volumetric thermal expansion 

coefficients respectively. 

 

2.2. Multi-Relaxation Time Scheme 

 

A Multi-Relaxation Time (MRT) scheme has been applied in which the collision operator has 

the form of a diagonalizable matrix 
ij . The MRT collision operator interacts with equilibrium 

particle distribution functions as below. 

 eq

i i j j if ( +   ,t+1)-f  ( ,t) f ( ,t)-f  ( ,t) +Fi ij

j

r c r r r    (15) 

It has been claimed that the MRT scheme proposes a higher stability and accuracy than a single 

relaxation time scheme [27]. Hence, Equation (15) can be converted to the following equation. 

 1 eq

i i j j if ( +   ,t+1)-f  ( ,t) f ( ,t)-f  ( ,t) +Fir c r M r r    (16) 

where jf ( ,t)r  and 
eq

jf ( ,t)r  are the vectors of the moment. The mapping between the 

distribution function and moment vectors can be stated by the linear transformation shown 

below. 

f( ,t) f( ,t)r M r  (17) 

The Gram-Schmidt orthogonalization procedure may be employed to calculate the 

transformation matrix M. The general form of the transformation matrix has been suggested by 

Ginzburg [28]. Consequently, the transformation matrix M for a D2Q9 type of lattice using an 

MRT model is expressed as below. 

1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 0 1 0 1 1 1 1

0 2 1 2 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 2 0 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

M

         
 
        
 
         
 

      
       
 

      
      
 

    
     

 
(18) 
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The relaxation matrix   used in Equation (14) is a diagonal matrix and is described as below 

[29]. 

4 6

2 2
0.0, 1.63, 1.14, , 1.92, , 1.92, ,

1 6 1 6
DIAGONAL

 

 
    

  
 (19) 

where   is the viscosity. Here, 4 and 6  are arbitrary values. The values of equilibrium of 

the moment f eq
 are listed below. 

1f
eq   

 2f 2 3 '. 'eq u u    

 3f 3 '. 'eq u u   

4f 'eq

xu  

5f 'eq

xu   

6f 'eq

yu  

7f 'eq

yu   

   
22

8f ' 'eq

x yu u    

2

9f ' 'eq

x yu u  

(20) 

where 'xu
 
and 'yu

 
are the components of microscopic velocity. 

 

2.3. Thermal LBM with Variable Thermal Diffusivity 

 

To simulate the energy equation with variable thermal conductivity, the general form of the 

LBE has been used. To account for variations in conductivity in the heat transfer equation, the 

equilibrium distribution function needs to be modified as below [16]. 

i 2 2

1
g ( , ) . .eq

i i i

s s

D
r t w T c u c T

c c


 
    

 
 (21) 

where D is the variable part of the thermal diffusivity and T is the temperature. The relaxation 

time ( ) is related to the constant part of the diffusion coefficient with equation (22). 

02

1 1

2sc
    (22) 

where 0  is the constant part of thermal diffusivity. The Temperature is calculated by equation 

(23). 

i

i

g ( , )T r t  (23) 

2.4. Boundary Conditions 

 

For the Dirichlet boundary condition in thermal LBM, it is assumed that the flux is balanced in 

any direction (
eq eq

i i j jg g g g   ). The subscript i shows the direction of particles after being 

reflected back to the domain. Subscript j shows the corresponding mirror direction of particles. 

For nodes on the wall, the balanced flux can be written as 
eq

i ig ( ) gi j ww w T    in which wT

is the wall temperature. 
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The introduced hydrodynamic boundary condition in this study is based on the Bennett 

extension.  The moment-based model of Bennett [30] is a generalization of the method of Noble 

et al. [22] which formulates the boundary conditions in terms of the moments of the distribution 

functions, rather than on the distribution functions directly. In the moment-based approach, the 

nine independent moments can be defined as below. 

 0 , , , , , , , ,X Y XX Y Y XY XY Y XXY XXY Ym            (24) 

 

where  m  may be expressed in the computational scale as ' fm M   and 'M  is a transform 

matrix defined as follows. 

 

1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 1 0 1 0 1 1 1 1

' 0 0 1 0 1 1 1 1 1

0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 1 1 1

M

 
 

   
   
 
 
 
 

  
  
 

  
 
 

 
(25) 

 

  

By this approach, the boundary condition method can be categorized. In the current study, a 

new boundary condition based on Allen and Reis approach [31] are proposed by using the 

moment-based model of Bennett method. In this scheme, it is assumed that the solid boundaries 

are impermeable, rigid and stationary, and subjected to the no–slip condition. For calculating 

the three unknowns in each horizontal wall in terms of the moment constraints and the known 

distributions, it is required to consider three equations. The unknown values of f2, f5, and f6 

pointing outwards with respect to the southern wall are to be calculated by using the after 

streaming values of f0, f1, f3, f4, f7, f8. 

      In order to implement the conservative momentum equations in computational domain, it 

is required to take the hydrodynamic moments.  It consists of two components of momentum (

,X Y  ) and the remaining independent component of the momentum flux ( XXY ).  

In current boundary condition scheme, to simulate the zero velocity on the wall, a bounce-back 

type of boundary condition on the non-equilibrium part of the distribution function is 

implemented. Figure (1) is presented to explain the boundary condition used in the current 

study. The south wall is coinciding with the x-axis and is shown by the dotted line in Figure 

(1). Accordingly, the equations are set as below to obtain the unknown variables in the current 

scheme. 

 

 0X   / 2Y yF    / 2XXY yF    (26) 

By considering the southern boundary and using the above system of equations, we can 

calculate the unknown distribution function at the south wall. Finally, the equations above are 

employed to determine f2, f5, and f6 as follows.  

 

2 4f f 2 / 3yu   (27) 
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 5 7 1 3f f f f / 2 / 4yF     

 6 8 1 3f f f f / 2 / 4yF     

 

3  Results and Discussion  

 

To illustrate the capabilities of the present model, two examples are numerically simulated. At 

first case, the three schemes of body forces are applied in a Poiseuille flow with modified 

boundary condition which have been studied and the errors of all results are compared. In the 

next case, a Rayleigh-Benard convection problem is simulated. Stability analysis in various 

conditions as well as the accuracy of solution in each simulation are investigated. In this case 

study, thermal diffusivity is considered varied with temperature.  

 

3.1. Poiseuille Flow Case Study  

 

One of the best case studies could be selected for the assessment of the present model was a 

Poiseuille flow driven, due to its known analytical solution.  From the Navier-Stokes equations 

for incompressible Poiseuille flow, the velocity profile could be extracted as follows. 

 
2

0

2
1y

y
u u

Ly

  
      

 (28) 

where in  2

0 4du F Ly  , Fd is the driving force and Ly is the channel width. The effect of 

channel width on error variations is studied. Various grid resolutions from Ly=8 to Ly=64 have 

been tried. The constant Reynolds number Re=u0Ly/υ has been considered. The product u0Ly 

remained constant because the kinematic viscosity depends only on τ. The no-slip boundary 

condition on the top and bottom boundaries is used. Also periodic boundary condition along 

flow direction is assigned to inlet and outlet boundaries.  The error function is defined as 

Equation (29). 

 

 
2

i i n

i

err UN UE N   (29) 

 

Where  Nn is the number of points, iUE  and iUN are
 
correspond to the analytical and numerical 

normalized velocity for the ith node, respectively. The velocity is normalized with the velocity 

in the canter of channel. Figure (2) shows that the numerical error decreases by increasing the 

channel width. However, the values of resulted error of the present model are approximately 

same as the results obtained in [17] and too smaller in comparison with the errors obtained by 

Chen et al [18].  

 

 
Figure 1 Distribution function for D2Q9 configuration on the upper wall 
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3.2. Rayleigh-Benard Convection Case Study  

 

A two-dimensional simulation of steady Rayleigh-Benard natural convection has been 

considered to assess the present models. The diagram of the flow between two parallel plates 

and the macroscopic boundary conditions are illustrated as a schematic in Figure (3). The walls 

at y = 0 and y = Ly are heated and cooled respectively. Other walls are in periodic conditions. 

The fluid is initially at rest. Thermodynamic equilibrium at constant temperature T0 is 

maintained. T0 is the average of the heated and cooled wall temperatures. The variation of the 

thermal diffusivity has been estimated by a linear equation as stated below. 

 
 

 0

0 0 1 bottom

p

k k T
D T T T

c
  




        (30) 

 

 
Figure 2 Error respected to channel width for Poiseuille flow 

 
Figure 3 Distribution function for D2Q9 configuration on the upper wall 
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In the Equation (30),  k T ,   and 
pc

 
are the thermal conductivity, the density and the specific 

heat capacity respectively. To calculate the temperature distribution and velocity profiles, the 

D2Q9 is used. To investigate the independency of the numerical solution from the number of grids, 

different lattice sizes from 31×61 to 151×301 are examined. It was observed that there is no significant 

difference in the results with the number of grids larger than 111×221. Calculations at different Rayleigh 

numbers are accomplished on a 111×221 lattice with a Prandtl number of 0.71.  

The simulation is taking place from the static conductive state, starting with Ra=2,000. The Nusselt 

numbers simulated under the steady-state situations and constant diffusion coefficient are illustrated in 

Table (1). Two flows with different Rayleigh numbers are studied. The results of different schemes for 

modeling body forces as well as the various models for boundary condition including the one proposed 

in this study are presented in This Table. The results of a semi-empirical correlation, 

Nu=1.56×(Ra/Rac)0.296 with critical Rayleigh number (Rac) equal to 1707, are also showed for the sake 

of comparison. Comparison of the calculated results with the semi-empirical correlation show that 

applying scheme 3 for the current boundary condition yields the least amount of error.  
For a wide range of Rayleigh numbers, the steady-state streamlines and isotherms are shown in 

Figure (4). As it is observable, increasing the Rayleigh number leads to the smaller thickness 

of thermal boundary layer. Also, the rising and falling fluid layers become narrower. The 

Rayleigh number is increased to magnitudes as high as 1,000,000. Unlike the thermal LBE 

model [32], the present model remains numerically stable.   

In the next assessment, the variation of thermal diffusivity has been taken into account. The 

calculations have been carried out by considering various values of the thermal diffusivity 

coefficient,  = 0.2, 0.4 and 0.6. The Ra and Pr numbers are assumed to be 1,000,000 and 0.71 

respectively. The isotherms for various values of   are illustrated in Figure (5). The calculated 

corresponding Nusselt Numbers for Ra=500,000 and Ra=1,000,000 are presented in Table (2) 

with   = 0.0, 0.1, 0.3, 0.5 and 0.7. As illustrated in the Figure (5), an increment in the thermal 

diffusivity coefficient leads to the narrower thermal boundary layer. The high nonlinearity in 

the heat transfer equation causes to the high-temperature region near the cold wall becoming 

larger. Results show that the present thermal LBM can simulate highly nonlinear energy 

equations acceptably.  
 

3.3 Primary Instability of Rayleigh Benard Convection 

 

At first, the presented lattice Boltzmann method was validated by considering the case of the 

primary instability of Rayleigh-Benard convection with constant properties. Using the linear 

stability theory, the exact values of critical wave number and critical Rayleigh number, for 

constant property Rayleigh–Benard convection with rigid bodies are obtained to be 3.117 and 

1707.8 respectively [33].  

 
Table 1 Nusselt number calculated by numerical schemes and semi empirical correlation for a Rayleigh-Benard 

convection problem 

Scheme used to model 

body  force 
Boundary condition modeling 

Nusselt Number 

Ra=20,000 Ra=30,000 

Scheme 3 First Order Bounce-Back 3.247 3.564 

Scheme 3 Second Order Bounce-Back 3.210 3.565 

Scheme 1 Current model 3.228 3.607 

Scheme 2 Current model 3.791 4.219 

Scheme 3 Current model 3.236 3.639 

Semi empirical correlation:    1.56×(Ra/Rac)0.296 3.232 3.644 
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According to this critical wave number, the aspect ratio AR = Lx/Ly is considered 

2 / 3.117 2  . To investigate the grid independency, several different grid sizes, 81x41, 

161x81, 321x161 and 641x321 have been examined. The estimated critical Rayleigh numbers 

at different grid sizes are calculated. It can be deduced that the increase of the grid size beyond 

81x41 does not have a significance effect on the accuracy of the results and the critical Rayleigh 

number is obtained 1707. The critical Rayleigh number is calculated by the interpolation 

between the growth rate and the decay rate of maximum vertical velocity in various Rayleigh 

numbers. The same grid size has been employed in previous studies [34-36] for 2D channel 

flow discretized by the square lattice using D2Q9 model. From the results calculated, it also 

can be seen that the value of critical Rayleigh number is independent of the Prandtl number.  

Richardson and Straughan [37] employ a nonlinear energy stability theory for the onset of 

convection for a fluid with kinematic viscosity depending linearly on temperature. They prove 

that the eigenvalue models which is obtained from the nonlinear theory is exactly the same as 

the one of linear instability theory arising from the conservation equations and thus the critical 

Rayleigh numbers that are resulted from the linear instability and the nonlinear energy stability 

are the same. They solved numerically the eigenvalue problem with the compound matrix 

method for free surface boundary condition and state that their results have good agreement 

with the previous experimental data such as Richter et al. [38]. Capone and Gentile [39] 

repeated Richardson and Straughan study for fluids with viscosity depending exponentially on 

temperature. They also consider the free surface boundary condition same as Richardson and 

Straughan study. At first, the rigid body boundary condition has been chosen by Rajagopal et 

al. [40]. They employ the Galerkin method, which is utilized by Chandrasekhar [41], to study 

the thermal-convection instability for the fluid with a viscosity that depends exponentially on 

the temperature and pressure. By neglecting the pressure effect, the viscosity is assumed has an 

analytic function of the temperature as below:  

 

 0 exp ' coldT T                                                                        (31) 

 

By considering the Ra<Rac, above equation will convert to the following equation 

0 exp 1
y

Ly
 

  
    

  
 (32) 

Where    is equal to the '( )hot coldT T  . They obtained that the critical wave number is about 

3.117 to 3.072 for   which is equal from 0 to 2. 

 

 
Table 2 Nusselt number values calculated by numerical scheme with variation of thermal diffusivity 

 Nusselt Number 

Ra=500,000 Ra=1,000,000 

γ = 0.0 7.641 8.719 

γ = 0.1 7.726 9.139 

γ = 0.3 8.168 9.694 

γ = 0.5 8.614 10.173 

γ = 0.7 9.103 10.787 
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Ra=30,000 

  
Ra=70,000 

 
 

Ra=150,000 

  
Ra=500,000 

  
Ra=1,000,000 

 

 

Figure 4 Two-dimensional simulation streamlines and isotherms at steady states for 

 wide range of Rayleigh numbers 
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 = 0.2 

 
 = 0.4 

 
 = 0.6 

Figure 5 Two-dimensional simulation Isotherms at steady states for Ra=1,000,000  

with variation of thermal diffusivity 

 

Table 3  Critical Rayleigh number versus different  reported by Rajagopal et al. [40] compared with current 

calculated results 

 critical Rayleigh number 

Rajagopal et al. [40] current results (Pr=0.7) 

2.0    5026.42 5015±1 

1.5    3790.86 3781±1 

1.0    2885.93 2877±1 

0.5    2217.33 2213±1 

0.5    1344.88 1349±1 

1.0    1061.67 1069±1 

1.5    845.855 854±1 

2.0    680.252 696±1 
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Therefore, the aspect ratio about 2.0 is until true. They used the linear as well as the non-linear 

stability theorem to obtain the approximations to the critical Rayleigh number for different 

values of the dimensionless parameter Γ. By considering the aspect ratio equal to 2, the 

calculated results of the lattice Boltzmann method can be comparable with the Rajagopal et al. 

[40] results. The critical number which is obtained from lattice Boltzmann method is divided 

by the Rajagopal et al. [40] results and is shown in Table (3). In Rajagopal et al. study, the fluid 

diffusion properties in Rayleigh number are calculated at the 0  .  

 
4   Conclusions  

 

In this paper, a modified no-slip wall condition model has been proposed to reduce the error 

initiated by applying regular boundary condition method. For this purpose, a body force term 

near the wall has been taken into account. As demonstrated in results, the presented boundary 

condition method, same as the model is suggested in [17], is more accurate than previous 

methods in the literature.  

A wide range of Rayleigh numbers has been examined in the simulation of steady-state 

Rayleigh-Benard convection problem by the current method. Furthermore, the effect of high 

nonlinearity is considered in the conservative equation by simulations applying the proposed 

model. To assess the current schemes, the Rayleigh-Benard convection problem simulated by 

considering the variable thermal diffusivity. The stability conditions obtained for flows with a 

large variation of thermal conductivity ( = 0.7) and Rayleigh numbers up to 1,000,000. At the 

last assessment, the variable kinematic viscosity has been applied to investigate the primary 

instability of Rayleigh-Benard convection. The calculated results demonstrated that the current 

method is capable to estimate the critical Rayleigh number with high accuracy within the 

variation of the diffusion coefficient. 
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Nomenclature 

 

ic  lattice velocity vector in the direction i, m/s 

pc  specific heat capacity, kJ/kg.K 

sc  the speed of sound, m/s 

D  the variable part of the thermal diffusivity, m2/s 

err numerical error 

f ( , )i r t
 

particle distribution function traveling with velocity ic , kg 

f ( , )eq

i r t
 

equilibrium distribution function traveling with velocity ic , kg 

 f ,r t ,

 f ,eq r t  

vectors of moment corresponding to f ( , )i r t and f ( , )eq

i r t

respectively 

dF
 

driving force, kg/m.s2 

https://www.google.com/search?rlz=1C1GCEA_enIR775IR775&q=North+Chelmsford+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MC4wzi5KVuIEsU0rM5JztbSyk63084vSE_MyqxJLMvPzUDhWGamJKYWliUUlqUXFAI1a2hlFAAAA&sa=X&ved=0ahUKEwis-u6B8s_aAhWFL1AKHWGdA68QmxMIqQEoATAM
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iF  effect of the body force ( F ) in the collision term, kg/s 

g ( , )i r t  particle distribution function in the ith direction, K 

eq

ig ( , )r t  equilibrium distribution function in the ith direction, K 

G  
gravity acceleration, m/s2 

 k T
 

the variable part of thermal conductivity,W/m.K 

0k  
the constant part of thermal conductivity, W/m.K 

Lx, Ly rectangular geometry dimensions, m 

m  hydrodynamic moments 

M , 'M  transformation matrix 

nN  number of nodes 

Pr Prandtl number (
0




 ) 

r  location vector (x,y), m 

Ra Rayleigh number 

Re Reynolds number 

t  time, s 

T  temperature, K 

0T  
an average of the heated and cooled wall temperature, K 

mT  
average fluid temperature, K 

wT  wall temperature, K 

u  fluid velocity vector with xu
 
and 

yu
 
components, m/s 

'u  microscopic velocity, m/s 
equ  

equilibrium velocity, m/s 

UEi analytical normalized velocity for ith direction node 

UNi numerical normalized velocity for ith direction node 

iw  lattice constant in the direction i 

x, y coordinate axis directions 
 

Greek symbols 
 

0  the constant part of the thermal diffusivity, m2/s 

  Volumetric thermal expansion coefficient, 1/K 


 variable thermal conductivity parameter, 1/K 

  relaxation time in the energy equation, s 
  dynamic viscosity, m2/s 

  density, kg/m3 

m  
average fluid density, kg/m3 

  relaxation time in the momentum equation, s 

  kinematic viscosity, m2/s 

  relaxation matrix 

  components of hydrodynamic moments 

  collision operator 
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 چکیده
 

تاکنون اسکیم های متعددی در روش شبکه بولتزمن برای مدل سازی شرط عدم لغزش بر روی دیواره معرفی 

بر اساس عدم لغزش بر روی دیواره شرط جدید جهت اعمال  مدلیک به معرفی مطالعه حاضر ده است. ش

خطای شرط معرفی شده کمتر از خطای نشان داده شد که . می پردازددرحضور نیروی حجمی روش بنت 

 ط مرزی معرفی شده در مطالعات گذشته می باشد. وشر

شرط مرزی مذکور مورد بررسی  با لحاظتاثیر اسکیم های اعمال نیروی حجمی نیز در روش شبکه بولتزمن 

 اثر ضریب پخش متغیر بر روی جریان نهایتا به بررسی د.گردیکمترین خطا معرفی اسکیم دارای قرار گرفت و 

. عدد رایلی بحرانی محاسبه شده در توافق خوبی با پرداخته شدرایلی بنارد با استفاده از اسکیم های مذکور 

اری خطی است. لذا می توان گفت این اسکیم قابلیت مدلسازی اثرات نتایج محاسبه شده به کمک تیوری پاید

  غیرخطی از جمله تغییرات شدید ضریب پخش را دارا می باشد.   
 

 


