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Hollow Piezoelectric Cylinder
under Transient Loads
S.M. Mousavi”

M.sc. @ In this paper, transient solution of two dimensional
asymmetric thermal and mechanical stresses for a hollow
cylinder made of piezoelectric material is developed.
Transient temperature distribution, as function of radial
and circumferential directions and time with general
thermal boundary-conditions, is analytically obtained,
using the method of separation of variables and
generalized Bessel function. The results are the sum of
transient and steady state solutions that depend upon the
initial condition for temperature and heat source,
respectively. The general form of thermal and mechanical
M.A. Kiani* fboundary conditions is considered on the piezoelectric
M.Sc. @ cylinder. Material properties of piezoelectric cylinder are
the same along the thickness. A direct method is used to
solve the Navier equations, using the Euler equation and

complex Fourier series.
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1 Introduction

Piezoelectric materials are widely used due to their direct and inverse effects. The use of
piezoelectric layers as distributed sensors and actuators in structures to control noise and
deformations and suppress vibrations is quite common. Several research works have been
contributed to model and investigate the basic structural responses of piezoelectric materials
i.e. in the pioneering researches of Tiersten [10]. Alashti et al. [1] carried out three-dimensional
thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by
differential quadrature method. Alibeigloo and Chen [2] obtained the elasticity solution for an
FGM cylindrical panel integrated with piezoelectric layers.

Chu and Tzou [3] presented the transient response of a composite finite hollow cylinder heated
by a moving line source on its inner boundary and cooled convectively on the exterior boundary
using eigen function expansion method and the Fourier series. Fesharaki et al. [4] presented 2D
solution for electro-mechanical behavior of functionally graded piezoelectric hollow cylinder.
By using the separation of variables method and complex Fourier series, the Navier equations
in term of displacements are derived and solved.
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He et al. [5] derived the active control of FGM plates with integrated piezoelectric sensors and
actuators. Mohazzab [6] presents the analytical solution of one-dimensional mechanical and
thermal stresses for a hollow cylinder made of functionally graded material. VVaghari et al. [7]
presented an analytical method to obtain the transient thermal and mechanical stresses in a
functionally graded hollow cylinder subjected to the two-dimensional asymmetric loads.
Khoshgoftar et al. [8] presented the thermoelastic analysis of a thick walled cylinder made of
functionally graded piezoelectric material by using the separation of variables. Poultangari et
al. [9] presented a solution for the functionally graded hollow spheres under nonaxisymmetric
thermomechanical loads.

This paper present an analytical method to obtain the transient thermal and mechanical stresses
in a piezoelectric hollow cylinder subjected to the two-dimensional asymmetric loads.
Temperature distribution is assumed to be a function of radial and circumferential directions
and time. The Navier equations are solved analytically using a direct method of series
expansion.

2 Governing equation
2.1 Stress distribution

Consider a piezoelectric hollow cylinder of inner radius and outer radius b. Asymmetric
cylindrical coordinates (r, 8) are considered along the radial and circumferential directions,
respectively. The governing two-dimensional strain-displacement relations in cylindrical
coordinates and electric field-electric potential relations are
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in which u, v, and ¥ as displacement components along the radial and circumferential
directions, and the electric potential, respectively. The constitutive relations describing the
electrical and the mechanical interaction for the piezoelectric material are

o, =Cué&, +Ce, —€,E, —, T (r,6,1)

04 =C6r +C 6, —€,E, —,T (r,6,1)

0 =Culie —€uE, )
D, =e,é&, +€,&, +n,E, +P.T(r,6,t)

D, =€,7,, +1,E, +P,T(r,0,1)

Where oy, €;(i,j =r,8)and T(r,6,t) are the stress, strain tensors and the temperature
distribution Cj; and e;;, n;j, D;, B and «; are elastic and piezoelectric coefficients, dielectric
constants, electric displacements, pyroelectric constant and thermal modulus respectively for
the piezoelectric material. The equilibrium equations in the radial and circumferential
directions, disregarding the body forces and inertia terms and equation of electrostatic are
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2.2 Heat Conduction Problem

The heat conduction equation in two-dimensional problem for piezoelectric cylinder leads to
T —L[T +1T LT%} R(r,0.1) (4)
pC " pC
A comma denotes partial differentiation Wlth respect to the space variable. The symbol dot ()
denotes derivative with respect to time. The initial and mixed boundary conditions are

X T (a,0t)+X T, (a6t)=0g,(6t) (5-a)
X, T(0,0t)+X,T (b,60t)=g,(61) (5-b)
T(r,0,0)=0,(r,0) (5-¢)

where X;;(i,j = 1,2) are Robin-type constants related to the thermal boundary condition

parameters, and g5(r, ) is the known initial condition. The solution of the heat conduction
equations for temperature distribution in piezoelectric cylinder may be assumed to be of the
form

T (r.6t)=W (r,6,t)+Y (r,6,t) (6)
where W (r, 6,t) isconsidered in a way that the boundary conditions of Y (r, 6, t) become zero.
Thus W (r,0,t) isassumed a second order polynomial as

W (r,0t)=At,0) r’ +B(t,0)r (7)
Substituting Eq. (7) into Egs. (5-a), (5-b) yields

A(X 11a2 +2X 12a)+ B (X 11a+X12) = gl(e’t) (8)
A(X21b2+2X22b)+B(X21b+X22)292(9't) (9)

Substituting Eqg. (7) into Egs. (5-a), (5-b) yields

9, (0.)(X b +X,,)—

(X @® +2aX , )(X b +X ) -
9, (0.)(X % +2aX 1, ) — g, (O.)(X b + 20X 5, )

(X p@® +2aX 1, )(X o + X 5 ) = (X pa+X 1, ) (X 0% +20X ,, )

gZ( )(Xlla+X12)
(Xpa+Xp,)(X 4%+ 20X 5, )

AO,1) =

(10)
B(6,t) =

and substituting Egs. (6), (7) into the heat conduction equation Eqg. (4) yield

Y —L[Y Ly +1Y%} R, (11)
pC r r

25
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Where
RFM—AtrZ—Btr+L{4A+A%+£(B +ng)} (12)
PC ’ ’ PC ’ r ’
The solution of Egs. (11) may be obtained by the method of separation of variables. For the
general solution, Eq. (13) is substituted into Eq. (11) and using the generalized Bessel function
leads to

N=+00 oo

Y (o= 3 Fuu(f)G o t)e™ (13)
Fon (1) =C o (Al (14)

Where F,,(r) is derived from the general solution of energy equation without heat source and
Substituting Eq. (13) into the Eq. (11) yields

R'()
27 [1C (1) I

G., (t)zefjfdt b, +I e/ ™ gt (15)

where 7 = %Aﬁnn and ||C (A mnr)Il is the norm of the cylindrical function as

1C P 1= [ [Coy (2 1] rele (16)
R'®)=]."[ T R,Cp (ApF)e "drdo (17)

and b,,,,, is derived from the initial thermal boundary condition defined by Eqg. (5-c) as

1 2 pb o .

b, = PTIRZROT IO j r[g4(r,0)-W (r,0,0)]C ., (A, F)e ™drd 0 -G *(0) (18)
* _ R*(t) Irdt

G'(t)= e’ dt 19

()I%wcmumnw (19)

where C ., (A7) is the mathematical Cylindrical Function given by

Cmn (ﬂ’mnr)z‘]n(ﬂ‘mnr)+cmnYn(ﬂinnr) (20)

Cmn :_Xll‘]n(/’tmna)—i_XlZ‘]n(/lmna) (21)
X 11Y n (ﬂ“mna) +X 12Y n,(ﬂ‘mna)

Here, J,, is the Bessel function of the first kind of order n, Y, is the Bessel function of the second
kind of order n, the symbol (') denotes derivative with respect to r, and the eigenvalue A,,,, is
the positive roots of

[X 11"]n (/lmna) + X 12‘]r: (ﬂ'mna)]Y n (/Imnb) _[X 11Y n (/Imna) + X lZY n,(ﬂ'mna)] ‘]n (ﬂ’mnb) = 0

22
m=123,. (22)

3 Solution of the problem

Using the relations (1), (2) and (3) the Navier equations in term of the displacements are
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To solve the Navier equations (23) consider the complex Fourier series for displacements
u(r,8,t) and v(r, 6,t) and electric potential ¥ (r, ) as

nN=+0 © N=+0 © N=+0 oo

ur,g,t)="> >u(rt)e™ v(r,ot)=> dv (rt)e™ prot)=> >y, (rt)e" (24)

n=-om=1 n=-com=1 n=-om=1

Substituting Egs. (24) into Egs. (23) yield

n=+o0

r

n=—om=1

i ur'rlm +1ur,nn — w izumn +M3Vén _Mizvmn
r Cll Cll

e e, -6, 1 n,, 1 o O a, —a, 1
+C_1ll//rlr,m + llC “ _l//r:wn - C “ 2 ¥mn }elnﬁ :_rT,r +[ - HJ_T
11 11 11 r 1

r C, C, Jr
L& 1 n’c 1 . C, |1 . C 1
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N=t00 o e 1 nze 1 in(e,, +e 1 . e 1
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Eqgs. (25) are a system of ordinary differential equations with non-constant coefficients having
general and particular solutions. The general solutions for n # 0 are assumed as

ud(r)=Rr” vI(r)=Sr" wo(r)=Wr”" (26)
Where R,S,W are the unknown constants and by using the specified boundary conditions are
determined. Substituting Egs. (26) into Egs. (25) yield
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2 _ 2
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Cy Cy Cyu Cy Cy

i thij;ﬁ[b(ﬁﬂm {nz _CutnCy +n2C22}S +i K—ez“ +e21j77+ei}nw =0 (27)
Cu Cu Cu Cu Cu
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Egs. (27) are a system of algebraic equations. For obtaining the nontrivial solution of the
equations, the determinant of system should be equal to zero. So the six roots n, ton, . for the
equations are achieved and the general solution is

6 6 6
UP ()= Rur™, vi(r) =2 MyRyr™, yp(r)=3N,R,r™ (28)
k=1 k=1 k=1

Where M, is the relation between constants R, and S, and N, is the relation between
constants R,,; and W, respectively and are obtained from Eq. (38) as

! [y ’ ’
T . L N P T i L S S PO S 1)

M
' ' ' 2 '
bnkcnk +bnkcnk an bnkcnk +bnkcnkcnk

nk

Where a,i, buk » Cnix @Nd @ 'y, b ni » € ni @re given in the appendix. Forn = 0 Egs. (25) are
independent of each other, which yield

2 1 C,.1 e e,—e,. 1 - 1

Z{u;w—u;o—i—zumo#wgﬁ o Zl—w;no}irr{“f “"]—T (30)

m=1 r Cll r Cll Cll r Cll Cll r
Z{v;o#v:no—%vmo}:ﬁi , (31)
mo1 r r Cur

Z{u;:o +[1+e£]1u:no Sy, —@iw;o}?irr Srlrokir (@)

m=1 11 r ell ell r e11 ell r ell r

Two equations (30) and (32) are a system of ordinary differential equations. The general
solution of this case is considered as

4 6 4
ur?wo(rat):ZRokr%k anio(r’t)ZZROkr%k ‘//ngio(rvt):ZZOkRokr”Ok (33)
k=1 k =5 k=1
Where

2
7711C 22 + eZl

ello TEu7l 4
: =k Trahic =y 4 (34)
2;11:11 ell

v Noga = 0, os.6 =1l Z, 2
Thallok

Mo =%

The particular solutions v , v? and P of Egs. (25) for n # 0 are assumed as
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urgn (r't):rZ[Dmnkl‘]n(ﬂ’mnr)—i_Dmnkz ( r)]G (t)+Dmn3 Dmnk4r3
=0

0

(r t Z mnkSJn(ﬂ'mnr)J'-DmnkG r)]G (t)-i-Dmn7r +Dmn8 (35)

l/lnﬁn (r’t)zrZ[DmnkQ‘]n(ﬂ’mnr)*—DmnklO ( r)]Gmn (t)_|_Dmn11r2+Dmn12r3
k=0

we consider the definition of Bessel function of the first and second type as

) 1 2k +n
i(_l) (ZEmnr) Y (ﬂ r)=Jn(ﬂmnr)cosnﬂ_(_l)n‘]n(im”r)

= kIT'(k +n+1) sinnz

(36)

Substituting Egs. (35) and (36) and using heat distribution in piezoelectric layers into Egs. (25)
yield
D

X1+ DisX o + DiegX 3 =X, Dk 2X1 + D 6X 2 + D 10X 3 =C X

mnk 1 mnk 5 mn” 4
DnkiX11 + DicsX 12 + Dy oX 13 =X 4 Dk 2X 11 + Dinnic6X 12 + Dk 10X 13 =Crnn X 14 (37)
DX 21 + DinnicsX 22 + D oX 23 = X 54 Dk 2X 21 + DX 22 + D 10X 23 :CmnX24
DinsXs + Dipn7Xe + DX, =0 DinaXs + DingXg + DippipXyo =0
DinaXis + Din7Xss + DippiaXy7 =0 DinaXis + DinngXig + DippioX 50 =0 (38)
DinaX s + DippX g6 + DX 5 =0 DinaX2s + DingX o9 + DippioX 30 =0

Egs. (37) and (38) are four systems of algebraic equations. The determinant of coefficients Egs.
(38) are zero, so the obvious answer is the only possible. x; t0 x3¢ and Dyppx1 10 Dypniz are
given in the Appendix. The particular solutions of Egs. (30)-(32) for n = 0 are u? ,(r, ),
vh (r,t), ¥ (r,t) are given in the appendix and substituting these equations into Egs. (30) -
(32) lead to algebraic equation systems. x(; t0 x50 are x; t0 x3o forn = 0 and xp3; t0 Xp36
and D,0x1 10 D12 are given in the appendix. The complete solutions u(r, 6, t), v(r, 6, t) and
y(r, 6, t) are the sum of the general and particular solutions and are

n=+o0

(r Ht Z ZRnkr']rlk +ZR r%k +Z<rZ[Dmnk1‘] (j“mnr)+Dmnk2 (ﬂ“mnr)]Gmn(t)

n=-w | k=1 1
,n=0

+D, 0 >+ D, 0l >}e‘”9

n=+00

r gt Z ZlvlnkRnkrm‘k +ZR r%k +i<ri[Dmnk5‘]n(/’i’mnr)+DmnkeYn(/lmnr)]
m=1

=-w | k=1 k=0
Nn=0 N=0

xG, (t)+D, o +D, el >}e‘”‘9
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r Ht nzm ankRnkr”k +ZZOkR0kr’] +i<ri mnkg‘]n(lmnr)-I'DmnklO (j’mnr)]
n=-ow [ k=1 m=1\ k=0
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Substituting Egs. (39) into Eq. (1), (2) the stress are obtained as

n=-+w 6 4
O = z Z(Cllnnk +C,, (in M +1)+e11N nk Tk )Rnk P4 Z(Cn%k +C o, +euZ o Mok )
n=—oo | k=1 k=1
,n=0

0
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0

6
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n=+w 6
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xROkmk1+i<Z[( 12(2k 0 +1)+C D1 d, (A ) +(Crp (2K +n+1)+C o, )Y (AT ) ]
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XGmn(t)+(2C12+C22)Dm03r+($12+C22 moa¥ > ZInCZZROkr%k_l mCZZZ<Z[Dmnk5

m=1 \k=0
n=0

X‘]n(ﬂ“ r)+ Dmnk6 ﬂ’mnr)]Gmn (t)—}_DmO?r—i_DmOBr-2 >+e21i<i|:Dmnk9(2k +n+1)‘]n(/1mnr)

m=1 \k=0

N=+00 o0

+ Dmnklo(2k +n +1)Yn(/1mnr):|Gmn (t)+2Dm011r ~|_3Dm012r2 >} " —069 z Zcmn(

=—com=1
y e—Irdt |:bn+J. R(t) Ze“d‘dt} e —q,Ar*—a,B r
277 |1C oy (A D |l

(40)
It is recalled that R, (k = 1, ...,6) are six unknown constants and therefore to determine these
constants, six boundary conditions that may be either the given displacements or stresses, or
combinations are required.

@0 =) u0O=LO) a2t 0. 0.0)=1,0)
V@0 =1,0) vb.0)=1.0) (41)

v@0)=t,0) yb.o)=t,e) °@?=O eul.0=10)

Expanding these boundary conditions into complex Fourier series and select from the list of
Egs. (41) and using the continuity conditions between layers lead to a system of six linear
equations to be solved for the constants R, (k = 1, ...,6).

4 Numerical results and discussion

The analytical solutions obtained in the previous section are checked. Assume piezoelectric
material properties PZT-4 from following table

Table 1 Material properties of piezoelectric

Material Elastic constants, Gpa
PZT-4 Cir  Cp2 Ci3 Cz2 Cz3 C33  Cyy

139 78 74 139 74 115 5.6

Piezoelectric constants, C/m? Permittivity,10°C/Nm?
Pyroelectric constants, 10~°C/Km? Coefficient of thermal expansion, 1/K
o e Uy = Qg
— 11 €1y 22 N11 N2z p.=p, _— a
=P,

-5.2 151 12.7 6.5 6.5 5.4 2.62

31
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Figure 1 Transient temperature distribution in hollow cylinde

Let us consider a thick hollow cylinder of radii a = 0.64 m and b = 0.68 m and thermal
conductivity, density and specific heat capacity are k = 1.5W/mK, p = 7500 kg/m3 and
c = 350 J/kg K respectively. As the example, Consider a hollow cylinder where the inside
boundary is fixed with zero temperature and the outside boundary is assumed to be traction-
free with given temperature distribution g,(6,t) = 20sin(t) cos(26) K.

Therefore, the assumed boundary conditions result in u(a,8) = 0, v(a,6) =0, 0,(b,0) =
0, g,9(b,0) =0 and g,(8,t) = 0. In this example the electrical boundary conditions
arey(a,0) =0 and Y(b,0) = 30cos (26) v and. The initial temperature is zero. The
cylinder is heated by the rate of energy generation per unit time and unit volume of (r,6,t) =

6 % Lg; v
6 X 10° x rsm(t)cos(ZG) —

Figure. (1) illustrates the cylinder temperature at & = —m over the course of 10 seconds. The
temperature on the vertical axis is plotted against the time in seconds on the horizontal axis.
The results are the sum of transient and steady state solutions that depend upon the initial
condition for temperature and heat source, respectively. With small range of radius, the
temperature distribution in the piezoelectric layers is close, but as may be seen temperature
increases as radius increase.

Figure. (2) shows temperature distribution for different radius r and time t at & = —m . Radial
and shear stresses distribution along the thickness and for a specific angle over the course of 10
seconds are show in the Figures. (3),(4), can easily be seen from these figures which radial and
circumferential stresses decreases when the radius increases. To verify the proposed method,
consider the piezoelectric cylinder with similar boundary conditions and inner radius a =
0.64 m and outer radius and b = 0.68 m. Figure (5) illustrates radial stress in piezoelectric
cylinder along the thickness by present and finite element method. The results are in good
agreement with obtained results from finite element method.
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Figure 4 Hoop stress Figure 5 The comparison of Hoop stress along the

thickness by present and the finite element method

5 Conclusions

This paper presents a direct method of solution to obtain the transient mechanical and thermal
stresses in a piezoelectric cylinder with heat source. The advantage of this method, compared
to the conventional potential function method, is its mathematical strength to handle more
general types of the mechanical and thermal boundary conditions. More complicated
mechanical and thermal boundary conditions may be handled using the proposed method.

The curves associated with the non-zero heat source follow the sine-form pattern of the assumed
heat source. Temperature distribution are zero at t=0 due to the initial temperature. According
to the given mechanical boundary conditions, stresses at the outside and displacements at the
inside surface are zero and temperature increases as radius increase.
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Nomenclature

a,b inner and outer radius of the hollow cylinder
T, temperature distribution

¢ thermal conductivity

£ mass density

C; specific heat capacity

R energy source

r radial coordinate
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X, (i, =12)
g.(0.t)
g9,(6.)

gs(ri)

mn

J. Y

n'' n

u,v

circumferential coordinate

time

Robine-type constants

ambient temperature inner the cylinder
ambient temperature outer the cylinder
initial temperature for the cylinder
eigenvalues for the cylinder

Bessel functions for the first and the second kinds of order n

Displacement components
Elastic coefficient

Piezoelectric coefficient
Dielectric constant

Pyroelectric constant
Thermal modulus

Poisson's ratio
Strain tensor (i, j)=(r,6)

Stress tensor (i, j)=(r,6)
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