
 
 

 
 
 
 
 
 
 
 
 

 

 

 

Keywords: Mixed mode, Dynamic stress intensity factors, Multiple cracks, Distributed 
dislocation technique 
 
1   Introduction  
 
In manufacturing processes a large number of materials in the form of composites, orthotropic 
and isotropic materials are utilized. Orthotropic materials, due to their wide usage in industries 
and their wide accessibilities in nature, for instance woods, rolled metals, and diverse crystals, 
are used in structures and have drawn a great deal of attention in the last several decades. These 
materials, however, are not produced perfectly and contain a good deal of imperfections such 
as dislocations, pores as well as vacancies making them vulnerable to cracking.  
Unfortunately, cracks, as one of the most important kind of imperfections, cause materials to 
fail catastrophically. Cracks, also, have a devastating effect on structures which restricts their 
lives and might cause safety issues. As a result, the study of fracture mechanics in orthotropic 
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Analysis of Multiple Yoffe-Type Moving 
Cracks in an Orthotropic Half-Plane 
under Mixed Mode Loading Condition 
The present paper deals with the mixed mode fracture 
analysis of a weakened orthotropic half-plane with 
multiple cracks propagation. The orthotropic half-plane 
contains Volterra type glide and climb edge dislocations. 
It is assumed that the medium is under in-plane loading 
conditions. The distributed dislocation technique is used 
to obtain integral equations for the dynamic problem of 
multiple smooth cracks which are located in an 
orthotropic half-plane. At first, with the help of Fourier 
transform the dislocation problem is solved and the stress 
fields are obtained. The integral equations are of Cauchy 
type singularity and are solved numerically to obtain the 
dislocation densities on the surface of several cracks to 
determine the dynamic stress intensity factors on the 
crack tips. Several numerical examples are solved to 
evaluate mode I and mode II dynamic stress intensity 
factors to show the effects of the orthotropy parameters, 
crack lengths, and crack speed on the dynamic stress 
intensity factors. 
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materials is very significant which boils down to the investigation of the crack propagation, 
including the dynamic problems.  
The study of the dynamic problem has drawn a great attention which has been tackled by many 
researchers in the last decades. For instance, Rubio-Gonzalez and Mason [1] studied the stress 
intensity factors for a semi-infinite crack in an infinite orthotropic material under impact loads. 
As expected, they have found that the stress intensnity factors are proportional to the square 
root of time. Wang et al. [2] have studied the transient elastodynamic response of an orthotropic 
material under concentrated shear impact loads and have found the DSIFs for the orthotropic 
materials as well as for an isotropic material. Li and Guo [3] investigated the effects of 
nonhomogeneity parameter on the DSIFs under anti-plane shear impact loads. It is indicated 
that the SIFs are highly dependent on the nonhomogeneity parameter. Itou [4, 5] has 
investigated the transient stresses around a cylindrical crack in an infinite elastic medium 
subject to impact loads and a crack at interface between half-planes and layers with continuous 
material properties. Xu et al. [6] studied the plane strain problem of semi-infinite cracks in an 
infinite functionally graded orthotropic material under uniform impact loading. Dynamically 
analysis of a crack in an infinite functionally graded strip for anti-plane crack problem under 
impact loading was investigated by Zhao et al. [7].  
In this investigation, they have found that by decreasing inhomogeneous coefficients and 
increasing the gradient parameter, the DSIFs goes down dramatically. Transient problem of 
weakened mediums were also of great interests among researchers. As an example, Rubio-
Gonzalez and Mason [8, 9] have investigated the elastodynamic response of an infinite 
orthotropic material with finite crack under normal and tangent concentrated loads and also 
investigated the crack propagation at constant speed. Ma and Chen [10] studied the transient 
problem of a half-space weakened by a inclined semi-infinite crack under dynamic anti-plane 
loading. The DISFs were obtained numerically. The transient stress intensity factors for mode 
I of a penny-shaped crack in an infinite poroelastic solid has been investigated by Jin and Zhong 
[11] in which it is found that the dynamic stress intensity factor of poroelastic medium is smaller 
than that of elastic medium. Zhang et al. [12] studied a transient dynamic crack analysis for 
functionally graded material. In this work, they have analyzed the effects of the material 
gradients on the transient DSIFs. Itou [13] studied the transient dynamic stresses around three 
stacked parallel crack in an infinite elastic plate for an incident impact stress wave impinging 
normal to the cracks. Antipov and Smirnov [14] studied the two dimensional transient problem 
of a semi-infinite crack which is propagating at constant speed under time independent loading 
in the interface of an isotropic infinite strip and an isotropic half-plane. The effects of boundary 
conditions and weight functions on stress intensity factors were discussed. Ma et al. [15] 
investigated a Yoffe type finite crack with constant length propagating in the FG strip under the 
plane loading. In this paper, the effects of material properties, the thickness of the FG strip, and 
speed of the crack propagating on the dynamic fracture behavior are investigated. In another 
work, Ma et al. [16, 17] have studied a Yoffe type finite crack propagating in the FG orthotropic 
medium as well as a strip under plane and anti-plane loading conditions respectively. They have 
shown that the effects of material properties and the speed of the crack propagating upon the 
dynamic fracture behavior are significant. Song and Paulino [18] investigated the DSIFs for 
both homogeneous and nonhomogeneous mediums under dynamic loadings. Ashbaugh [19] 
determined the stress intensity factors for a finite crack, with an arbitrary orientation and 
distance from the boundary, under uniform pressure and uniform shear stress. Aijun [20] 
studied a dynamic stress intensity factors of circular disk with a radial edge crack under 
impulsive pressure. It is found that the stress intensity factors vary periodically with time under 
sudden step external pressure.  
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Malekzadeh Fard et al. [21] investigated the DSIFs for a half-plane which is weakened by 
multiple finite moving cracks. In this investigation, the influence of crack length and crack 
running velocity on the stress intensity factors found to be significant.  
Wang et al. [22] have investigated the DSIFs for homogenous and nonhomogeneous materials 
under dynamic loadings which is shown that these parameters have important effects on the 
DSIFs. Ma et al. [23] analyzed the DSIFs for a Griffith crack in functionally graded orthotropic 
materials under time harmonic loading. In this study, material properties and the crack 
configuration on the DSIFs are shown to be highly effective. Monfared and Ayatollahi [24, 25] 
have investigated the DSIFs of multiple cracks in the functionally graded orthotropic half-plane 
and strip with FGM coating under time-harmonic loadings. In these studies they have found 
that the material properties and crack configurations play a momentous role on the DSIFs. Itou 
[26, 27] investigated the dynamic stresses around two equal collinear cracks in an infinite elastic 
medium and found stresses around a crack in an infinite elastic strip based on linearized couple-
stress theory under time-harmonic stress waves and uniform tension loadings. In another study, 
Itou [28] investigated the DSIFs around three collinear cracks in an infinite orthotropic plate 
under time harmonic elastic waves impinging perpendicularly to the cracks.  
The aim of this paper is to study the mixed mode dynamic stress intensity factors for cracks 
propagation in an orthotropic half-plane under in-plane loadings analytically. The Fourier 
transform is employed to obtain integral forms for the displacements and stress fields. The 
distributed dislocation technique is utilized to analyze multiple cracks propagation with various 
speeds and lengths. Then, singular integral equations for multiple cracks propagation are 
obtained. Several numerical examples are solved to study the effects of material properties, 
crack length and the velocity of crack on the DSIFs 
 
2   Stress analysis under edge dislocations 
 
A half-plane made of orthotropic materials weakened by Volterra types climb and glide edge 

dislocations is shown in Figure (1) under the in-plane deformation, the constitutive equations 

of the orthotropic materials in a fixed Cartesian coordinate system (X, Y) may be expressed as 
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Figure 1 Geometry of an orthotropic half plane with glide and climb dislocations 
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In the above equalities, 11 22 12, ,C C C  and 66C stand for the elastic stiffness constants. By virtue 

of Eq. (1) and the equations of motion, ,ij j iu   , we have 
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Where    is the elastic material density. For a propagating dislocation depicted in Figure (1), 

the transformed coordinates can be written as follows. 
2 2
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In the above mentioned equation ( , )x y  is the translating coordinate system, which is connected 

to the crack surface, and V is the crack speed along the X-axis. By view of Eq. (3), Eq. (2) can 

be written in terms of the moving coordinate system ( , )x y  as 
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in which 
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Where  shc V C  and shC  is the shear wave speed of the orthotropic half-plane which is given 

by 

66shC C       (5) 

The dislocation cut created along the positive direction of the x -axis. Also, climb and glide 

edge dislocations are shown with Burger vectors yb  and xb  respectively, which have been 

located at the origin of the coordinate system. Therefore, the conditions representing the 

dislocation may be written as 

( ,0 ) ( ,0 ) ( ),yv x v x b H x    

).()0,()0,( xHbxuxu x       (6) 

Where (.)H is the Heaviside step function. The stress components must be continuous along the 

dislocation cut, consequently, we have 



Analysis of Multiple Yoffe-Type Moving Cracks… 43
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The traction-free conditions on the boundary of half-plane yields 
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By applying complex Fourier transform to the system of Eq. (4) we have 
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Where  s is the transform variable and  
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Since the displacement components must vanish for y , the solution of Eq. (9) may be 

expressed as follow 
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in which ( ), 1,2,3,4jA s j  and ( ), 1,2,3,4j s j  are unknown functions and the roots of the 

following characteristic equation derived from Eq. (9), respectively 
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The roots of the characteristic equation are given by 
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The coefficients ( ), 1,2,3,4jm s j   for roots ( )j s  can be expressed as  
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By applying the Fourier transform to the aforementioned conditions, Eqs. (6) to (8), we have 
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Where  sgn(.)  is the sign function, (.)  is the Dirac delta function and 
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and 4 22 22 1d m   . By solving Eqs. (16), six unknown functions ( ), 1,2,...,6iB s i  will be 

determined which are given in Appendix A. 

Substituting the determined functions into Eqs. (11) and applying Fourier inverse transform the 

displacement fields are obtained as the follow 
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in which ij
uT  and ij

vT  are given in Appendix B. 

By using Eqs. (18) and Eq. (1) the stress components may be stated as 
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where functions ; , , ; , 1,2kl
ij i j x y k lS    are given in Appendix C. 

From Eq. (18), we may observe that stress components exhibit the familiar Cauchy-type 

singularity at dislocation location. 
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3   Half-plane under point load 
 
In this section, the orthotropic half plane is subjected to in plane point load with magnitude 0  

and 0  applied on the boundary. As a consequence, the boundary conditions may be written as 

0 0( , ) ( ) , ( , ) ( ) .y y x yx h x x h x           (19) 

where (.)  is the Dirac delta function. By applying the Fourier transform to the above 

mentioned conditions, and solving Eq. (9) by virtue of Eq. (11), performing a procedure similar 

to the dislocation solution will result in the following displacements 
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And the stress components become: 
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4   Formulation of multiple moving straight cracks 
 
Distributed dislocation technique is a method to analyze a medium containing multiple cracks. 

In this technique, the dislocations are distributed in the locations of the crack and the stress 

fields are determined for the cracked medium. Consider an orthotropic half-plane weakened by 

N moving straight cracks which can be described in parametric form as 

0

0

,
, 1 1, {1,2,3,... }.

i i i

i i

x x a s

y y s i N

 
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    (22) 

Where ),( 00 ii yx and iaare the center coordinates and half-length of the ith crack, respectively. 

Suppose climb and glide edge dislocations with unknown densities )(tByk  and )(tBxk , 

respectively, are distributed on the segment ka dt  at the surface of kth crack, where 11  t . 

Covering the cracks surfaces by dislocations, the principal of superposition may be invoked to 

obtain traction on the crack surfaces 
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The kernels 111211 ,, xyikyyikyyik kkk and 12
xyikk in integral Eqs. (24) are coefficients of xb and yb in stress 

components yy and xy in Eq. (18), respectively. For more details regarding the solution of 

singular integral equations with Cauchy type see Hills et al. [29]. The kernels in Eq. (23) exhibit 

Cauchy type singularity for i k  as t s  and may be represented as 
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The coefficients of singular terms , 1 , , 1,2pm kq p m   may be obtained by means of the Taylor 

series expansion of ( )ix s and ( )iy s in the vicinity of t   
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            (25) 

in which , , {1,2}, {1,2}, {1,2,...,7}km
ijS i j k m    are given in Appendix C. By virtue of the 

Buckner’s principle, Hills et al. [29], the left hand side of Eqs. (23), after changing the sign, is 

the traction caused by external loading on the uncracked medium at the presumed surfaces of 

cracks. Employing the definition of dislocation density function, the equations for the crack 

opening displacement across the ith crack yields  
 

1
( ) ( ) ( ) ,

s

i i i xiu s u s a B t dt


    

 s

1
( ) ( ) ( ) , {1,2,..., }.i i i yiv s v s a B t dt i N


     (26) 

The displacement field is single valued out of an embedded crack surface. Consequently, the 

dislocation densities are subjected to the following closure requirements 
 1

1
( ) 0,xiB t dt


  

 1

1
( ) 0, {1,2,..., }.yiB t dt i N


     (27) 

It is worth mentioning that the devised procedure despite its simplicity is capable of handling 
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complicated crack arrangements. To evaluate the dislocation density, the Cauchy singular 

integral Eqs. (23) and Eqs. (27) ought to be solved simultaneously. The stress fields near the 

crack tips behave as r/1 where r is the distance from a crack tip. Therefore, the dislocation 

densities are taken as 

,
1

)()(
2t

tg
tB xi

xi


  

}.,...,2,1{,11,
1

)(
)(

2
Nit

t

tg
tB yi

yi 


   (28) 

Substituting Eqs. (28) into Eqs. (23) and (27) as well as utilization of the numerical solutions 

of integral Eqs. with Cauchy-type kernel developed by Erdogan et al. [30] )(tgxi  and )(tgyi  can 

be obtained. The modes I and II stress intensity factors can be calculated based on the 
dislocation density functions which is derived by Fotuhi et al. [31]: 

    
12

2 2 1 2466 1 4 3 2

3 1 2

( 1) /[( 1) ( 1) ] ( 1) ( 1) ,
( 1)2 ( )

niIL
i i

IIL si

g r rK C
x y

K gr r

   


                 
 

    
12

2 2 1 2466 1 4 3 2

3 1 2

(1) /[( 1) ( 1) ] ( 1) ( 1) .
(1)2 ( )

niIR
i i

IIR si

g r rK C
x y

K gr r

   


                  
 (29) 

where  

1 2,r r  and H are defined 

2
1 1 4 3( 1)r H H        , 2

2 1 4 3( 1)r H H        , 

2
1 4 3 2 3[( 1) 1] 2H          , respectively. It should be mentioned subscript L and R  are 

the left and right crack tips respectively. 

 
5   Numerical results and discussion  
 
Diverse numerical results will be examined to analyze the effect of velocity, material properties, 
multi parallel and collinear cracks as well as their lengths on the dynamic stress intensity 
factors. However, at first, by setting the velocity of cracks to zero, we will analyze the static 
crack problem in an isotropic half-plane. The stress intensity factors given by Ashbaugh [19] 
are compared with the present investigation. A great agreement can be observed with the above 
mentioned study which are given in Table (1) in which 0 0K a .  
It is worth mentioning that the material properties used in this analysis are given in Table (2) 
[17]. Obviously, the only difference between orthotropic I and II is that the principle directions 
are perpendicular to each other. In the following examples the analysis of DSIFs for diverse 
crack length and diverse crack velocities are examined while the dimensionless crack velocity 
is considered to be 0.3c   and dimensionless crack length is allocated to be a/h=1. Also, the 
medium is under an equal tensile and shear moving point loads with 0 1   and 0 1   , and 
dimensionless stress intensity factors for point loads is 

0 0K a . 
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Table 1 Comparison of SIFs for a straight crack in an isotropic half-plane for right and left crack tips 
respectively 
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Table 2 Mechanical properties [17] 
 2

11( / )C N m  2
12( / )C N m  2

22( / )C N m  2
66( / )C N m  3( / )Kg m  

Isotropic 112.198 10  106.593 10  112.198 10  107.692 10  7840 

Orthotropic I 101.578 10  93 .248 10  101.048 10  97 .070 10  1580 

Orthotropic II 101.048 10  93 .248 10  101.578 10  97 .070 10  1580 
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5.1 Medium weakened by one crack propagation 
 
In the first example, Figure (2), dynamic stress intensity factors for mode I and mode II for 
various material properties versus the dimensionless crack velocities is considered. It is evident 
that DSIFs rise gradually as long as crack velocity increases for mode I. It can be seen that 
DSIFs values for crack tipL are roughly one half more than the ones for crack tip R .  
Also, DSIFs for orthotropic II and orthotropic I are almost quadrupled and doubled in values 
respectively compared to isotropic material. In stark contrast, mode II DSIFs values for 
isotropic material increases dramatically and DSIFs values for orthotropic II and I almost triple 
and double respectively as dimensionless crack velocity increases. 
In the next example, a straight crack with a constant crack velocity under in plane loadings is 
considered. Results given in Figure (3) illustrate that by increasing the crack length, DSIFs will 
go up steadily. It can be seen that mode I DSIFs almost triples in value for orthotropic II as 
crack length increases. Moreover, according to the given diagram, crack tip L has allocated 
more values than the crack tip R . What is more, DSIFs for crack tips L and R .have higher and 
lesser values for orthotropic II and I respectively. On the other hand, mode II DSIFs shows an 
upward trend in which crack tip R  has far more values than the other tip. Besides, mode II 
DSIFs have the same values for both crack tips due to symmetry in the static case; however, as 
crack length grows, DSIFs for crack tips diverges from each other. 
 
 

 

 
Figure 2a Mode I normalized stress intensity factors versus dimensionless crack velocity 
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Figure 2b Mode II normalized stress intensity factors versus dimensionless crack velocity 

 
Figure 3a Mode I normalized stress intensity factors versus dimensionless crack length 

 
Figure 3b Mode II normalized stress intensity factors versus dimensionless crack length 
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5.2 Medium weakened by three parallel cracks propagation 
 
Last but not least, three parallel cracks are taken into consideration as another example whose 
centers are set to have an equal distance of 0.6h with each other. The provided graph, Figures 
(4), represents contrasts between crack tips for diverse materials. It can be seen that the values 
of mode I DSIFs have an upward trend when crack velocity increases, especially for orthotropic 
II whose values almost triples as dimensionless crack velocity reaches 0.35. Besides, 
orthotropic I has lower values than isotropic material for each crack tips. According to the 
provided results, crack tips 2L , 3L , 1R  and 2R  have far more DSIFs values than the other crack 

tips due to their significant interaction with other cracks. It is evident that crack tips 1L  and 3R  
have far less DSIFs compared to two other crack tips. On the other side, mode II DSIFs values 
increase considerably while crack velocity increases. It can be seen that crack tips 2R  and 3L  
have by far the most DSIFs values which is due to the significant interaction between cracks. 
Furthermore, it is depicted that orthotropic II and I have allocated higher and lesser DSIFs 
values than isotropic material respectively. 
Moreover, the results provided for the next example in Figures (5) presents variation of DSIFs 
for three parallel cracks versus crack length. According to the graphs, mode I DSIFs increase 
and almost quadruple as crack length doubles in value. In this case, 3L  and 1R  tips have the 
most values of DSIFs. Besides, DSIFs for orthotropic II has higher values than isotropic which 
also has more DSIFs values than orthotropic I.  
The results in the provided graphs reveal that by increasing the crack lengths, interaction 
between cracks increases which has a significant impact on DSIFs. On the other side, the mode 
II DSIFs increase significantly in value while cracks lengths growth (Figures (5c) and (5d)). 
The DSIFs for orthotropic I and II, however, have the most variation as cracks lengths doubled. 
It is seen that crack tip 2L  and 2R  have the most values of DSIFs compared to other crack tips 
due to the considerable interaction between cracks.  
 
 

 
Figure 4a Variation of mode I normalized stress intensity factors of three parallel cracks 

 with dimensionless crack velocity 
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Figure 4b Variation of mode I normalized stress intensity factors of three parallel cracks 

 with dimensionless crack velocity 

 
Figure 4c Variation of mode II normalized stress intensity factors of three parallel cracks 

 with dimensionless crack velocity 

 
Figure 4d Variation of mode II normalized stress intensity factors of three parallel cracks 

 with dimensionless crack velocity 
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Figure 5a Variation of mode I normalized stress intensity factors of three parallel cracks 

 with dimensionless crack length 

 
Figure 5b Variation of mode I normalized stress intensity factors of three parallel cracks 

 with dimensionless crack length 

 
Figure 5c Variation of mode II normalized stress intensity factors of three parallel cracks  

with dimensionless crack length 

0.25 0.3 0.35 0.4 0.45 0.5

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a/h

K 
I
 /K

0

 

 

L
1
 , Isotropic

L
2
 , Isotropic

L
3
 , Isotropic

L
1
 , Orthotropic I

L
2
 , Orthotropic I

L
3
 , Orthotropic I

L
1
 , Orthotropic II

L
2
 , Orthotropic II

L
3
 , Orthotropic II

0.25 0.3 0.35 0.4 0.45 0.5

0.1

0.15

0.2

0.25

0.3

0.35

0.4

a/h

K 
I
 /K

0

 

 

R
1
 , Isotropic

R
2
 , Isotropic

R
3
 , Isotropic

R
1
 , Orthotropic I

R
2
 , Orthotropic I

R
3
 , Orthotropic I

R
1
 , Orthotropic II

R
2
 , Orthotropic II

R
3
 , Orthotropic II

0.25 0.3 0.35 0.4 0.45 0.5

−0.05

0

0.05

0.1

a/h

K 
II

 /K
0

 

 

L
1
 , Isotropic

L
2
 , Isotropic

L
3
 , Isotropic

L
1
 , Orthotropic I

L
2
 , Orthotropic I

L
3
 , Orthotropic I

L
1
 , Orthotropic II

L
2
 , Orthotropic II

L
3
 , Orthotropic II

0σ
0τ

1 1

2 2

3 3

h h

0σ
0τ

1 1

2 2

3 3

h h

0σ
0τ

1 1

2 2

3 3

h h



Iranian Journal of Mechanical Engineering                             Vol. 18, No. 2, Sep. 2017  54

 
 Figure 5d Variation of mode II normalized stress intensity factors of three parallel cracks  

with dimensionless crack length 
 
 

6   Conclusion  
 
The in-plane stress analysis of an orthotropic half-plane weakened by edge dislocations by a 
proper arrangement of dislocations for several cracks is analyzed. For instance, in this analysis 
a single and multi collinear and parallel cracks propagation are considered. The Cauchy type 
singularity is seen at the dislocation position for the attained stress fields. The static problem 
was first compared with the cited results in the literature and great agreement was observed. 
The effect of material properties, crack velocity, crack length, number of cracks and their 
arrangement on the dynamic stress intensity factors are studied.  
The results illustrate that 
 

1) The values of stress intensity factors increases so long as dimensionless crack velocity 
escalates. 

2) By increasing the dimensionless crack the dynamic stress intensity factors increases. 
3)  While the normalized crack length rises, the interaction between cracks increases. 
4) Materials play a significant role on the values of DSIFs. In most cases, Orthotropic II 

had the most DSIFs values as opposed to Orthotropic I which allocated the least 
amounts. 
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  چكيده
  

ك شده توسط چندين ترك متحرمقاله حاضر آناليز شكست تركيبي در يك نيم صفحه ارتوروپيك تضعيف 
توتروپيك حاوي نابجايي لبه اي برشي و قائم از نوع ولترا است. محيط تحت بارگذاري باشد. نيم صفحه ارمي

ه نيم صفحروش توزيع نابجايي براي بدست آوردن معادلات انتگرالي در اي فرض گرديده است. درون صفحه
  استفاده شده است. مستقيم تضعيف شده توسط چندين ترك  ارتوتروپيك

 ها بدست آمده اند. معادلات انتگرالييل فوريه مسأله نابجايي حل شده و ميدان تنشدر ابتدا با استفاده از تبد
باشند كه با استفاده از روش عددي اين معادلات جهت بدست آوردن دانسيته داراي تكينگي از نوع كوشي مي

ها ترك اند كه در نهايت منجر به محاسبه ضريب شدت تنش در نوكها حل گرديدهنابجايي روي سطوح ترك
مكانيك شكست براي نشان دادن  IIو  Iشوند. چندين مثال عددي براي محاسبه ضرايب شدت تنش مود مي

 اثرات پارامتر ارتوتروپيك، طول ترك و سرعت ترك براي روي آنها حل شده است.

 


