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Analysis of Multiple Yoffe-Type Moving
Cracks in an Orthotropic Half-Plane
under Mixed Mode Loading Condition

R. Sourki* | The present paper deals with the mixed mode fracture
PhD Student ll@nalysis of a weakened orthotropic half-plane with
multiple cracks propagation. The orthotropic half-plane
contains Volterra type glide and climb edge dislocations.
It is assumed that the medium is under in-plane loading
conditions. The distributed dislocation technique is used
M. M. Monfared T to obtain integral equations for the dynamic problem of
Assistant Professor i multiple smooth cracks which are located in an
orthotropic half-plane. At first, with the help of Fourier
transform the dislocation problem is solved and the stress
fields are obtained. The integral equations are of Cauchy
type singularity and are solved numerically to obtain the
R. Yaghoubi * § dislocation densities on the surface of several cracks to
M.Sc. Student @ determine the dynamic stress intensity factors on the
crack tips. Several numerical examples are solved to
evaluate mode | and mode Il dynamic stress intensity
factors to show the effects of the orthotropy parameters,
crack lengths, and crack speed on the dynamic stress
intensity factors.

Keywords: Mixed mode, Dynamic stress intensity factors, Multiple cracks, Distributed
dislocation technique

1 Introduction

In manufacturing processes a large number of materials in the form of composites, orthotropic
and isotropic materials are utilized. Orthotropic materials, due to their wide usage in industries
and their wide accessibilities in nature, for instance woods, rolled metals, and diverse crystals,
are used in structures and have drawn a great deal of attention in the last several decades. These
materials, however, are not produced perfectly and contain a good deal of imperfections such
as dislocations, pores as well as vacancies making them vulnerable to cracking.

Unfortunately, cracks, as one of the most important kind of imperfections, cause materials to
fail catastrophically. Cracks, also, have a devastating effect on structures which restricts their
lives and might cause safety issues. As a result, the study of fracture mechanics in orthotropic
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materials is very significant which boils down to the investigation of the crack propagation,
including the dynamic problems.

The study of the dynamic problem has drawn a great attention which has been tackled by many
researchers in the last decades. For instance, Rubio-Gonzalez and Mason [1] studied the stress
intensity factors for a semi-infinite crack in an infinite orthotropic material under impact loads.
As expected, they have found that the stress intensnity factors are proportional to the square
root of time. Wang et al. [2] have studied the transient elastodynamic response of an orthotropic
material under concentrated shear impact loads and have found the DSIFs for the orthotropic
materials as well as for an isotropic material. Li and Guo [3] investigated the effects of
nonhomogeneity parameter on the DSIFs under anti-plane shear impact loads. It is indicated
that the SIFs are highly dependent on the nonhomogeneity parameter. Itou [4, 5] has
investigated the transient stresses around a cylindrical crack in an infinite elastic medium
subject to impact loads and a crack at interface between half-planes and layers with continuous
material properties. Xu et al. [6] studied the plane strain problem of semi-infinite cracks in an
infinite functionally graded orthotropic material under uniform impact loading. Dynamically
analysis of a crack in an infinite functionally graded strip for anti-plane crack problem under
impact loading was investigated by Zhao et al. [7].

In this investigation, they have found that by decreasing inhomogeneous coefficients and
increasing the gradient parameter, the DSIFs goes down dramatically. Transient problem of
weakened mediums were also of great interests among researchers. As an example, Rubio-
Gonzalez and Mason [8, 9] have investigated the elastodynamic response of an infinite
orthotropic material with finite crack under normal and tangent concentrated loads and also
investigated the crack propagation at constant speed. Ma and Chen [10] studied the transient
problem of a half-space weakened by a inclined semi-infinite crack under dynamic anti-plane
loading. The DISFs were obtained numerically. The transient stress intensity factors for mode
I of a penny-shaped crack in an infinite poroelastic solid has been investigated by Jin and Zhong
[11] in which it is found that the dynamic stress intensity factor of poroelastic medium is smaller
than that of elastic medium. Zhang et al. [12] studied a transient dynamic crack analysis for
functionally graded material. In this work, they have analyzed the effects of the material
gradients on the transient DSIFs. Itou [13] studied the transient dynamic stresses around three
stacked parallel crack in an infinite elastic plate for an incident impact stress wave impinging
normal to the cracks. Antipov and Smirnov [14] studied the two dimensional transient problem
of a semi-infinite crack which is propagating at constant speed under time independent loading
in the interface of an isotropic infinite strip and an isotropic half-plane. The effects of boundary
conditions and weight functions on stress intensity factors were discussed. Ma et al. [15]
investigated a Yoffe type finite crack with constant length propagating in the FG strip under the
plane loading. In this paper, the effects of material properties, the thickness of the FG strip, and
speed of the crack propagating on the dynamic fracture behavior are investigated. In another
work, Ma et al. [16, 17] have studied a Yoffe type finite crack propagating in the FG orthotropic
medium as well as a strip under plane and anti-plane loading conditions respectively. They have
shown that the effects of material properties and the speed of the crack propagating upon the
dynamic fracture behavior are significant. Song and Paulino [18] investigated the DSIFs for
both homogeneous and nonhomogeneous mediums under dynamic loadings. Ashbaugh [19]
determined the stress intensity factors for a finite crack, with an arbitrary orientation and
distance from the boundary, under uniform pressure and uniform shear stress. Aijun [20]
studied a dynamic stress intensity factors of circular disk with a radial edge crack under
impulsive pressure. It is found that the stress intensity factors vary periodically with time under
sudden step external pressure.
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Malekzadeh Fard et al. [21] investigated the DSIFs for a half-plane which is weakened by
multiple finite moving cracks. In this investigation, the influence of crack length and crack
running velocity on the stress intensity factors found to be significant.

Wang et al. [22] have investigated the DSIFs for homogenous and nonhomogeneous materials
under dynamic loadings which is shown that these parameters have important effects on the
DSIFs. Ma et al. [23] analyzed the DSIFs for a Griffith crack in functionally graded orthotropic
materials under time harmonic loading. In this study, material properties and the crack
configuration on the DSIFs are shown to be highly effective. Monfared and Ayatollahi [24, 25]
have investigated the DSIFs of multiple cracks in the functionally graded orthotropic half-plane
and strip with FGM coating under time-harmonic loadings. In these studies they have found
that the material properties and crack configurations play a momentous role on the DSIFs. Itou
[26, 27] investigated the dynamic stresses around two equal collinear cracks in an infinite elastic
medium and found stresses around a crack in an infinite elastic strip based on linearized couple-
stress theory under time-harmonic stress waves and uniform tension loadings. In another study,
Itou [28] investigated the DSIFs around three collinear cracks in an infinite orthotropic plate
under time harmonic elastic waves impinging perpendicularly to the cracks.

The aim of this paper is to study the mixed mode dynamic stress intensity factors for cracks
propagation in an orthotropic half-plane under in-plane loadings analytically. The Fourier
transform is employed to obtain integral forms for the displacements and stress fields. The
distributed dislocation technique is utilized to analyze multiple cracks propagation with various
speeds and lengths. Then, singular integral equations for multiple cracks propagation are
obtained. Several numerical examples are solved to study the effects of material properties,
crack length and the velocity of crack on the DSIFs

2 Stress analysis under edge dislocations

A half-plane made of orthotropic materials weakened by Volterra types climb and glide edge
dislocations is shown in Figure (1) under the in-plane deformation, the constitutive equations

of the orthotropic materials in a fixed Cartesian coordinate system (X, Y) may be expressed as

ou ov
O yx (X,Y) = C11 6_X+ C12 a—Y,
ou ov
O-YY(X,Y)chza_X+sza_Ya (1)
ou ov
Oxy (X,Y)= C66(8_Y+8_X)'
1]
\ Vt \
| h | ":
Ji H— E.:..T..T..T_.i;_X".x
\'\.____’_ e \\

Figure 1 Geometry of an orthotropic half plane with glide and climb dislocations
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In the above equalities, C;,C,,,C,, and C stand for the elastic stiffness constants. By virtue

of Eq. (1) and the equations of motion, 0; ; = pU; , we have

o°u o°u o*v o’u
C,—5+C—+(C, +C)——=p—,
a2 6 Sy 2 (Ces 12)3X0Y P o @
o°v v o’u 0*v
Coo oz tCn gy * CatCu) o= =p -3

Where p is the elastic material density. For a propagating dislocation depicted in Figure (1),

the transformed coordinates can be written as follows.

2 2
X =x+Vt, y=Y, %:vz%.

In the above mentioned equation (x, y) is the translating coordinate system, which is connected

3)

to the crack surface, and V is the crack speed along the X-axis. By view of Eq. (3), Eq. (2) can
be written in terms of the moving coordinate system (x,y) as
o’u  o’u o’v
o —F+t_S+a, =
ox- oy oxoy

2

) i . 4)

oV oV ou

A 5T —+a, =0.

OX oy oxoy

in which
(24} :&_Cza a, :&4_17 a, :ﬁ’ a, :1_C2'
C
66 66 66

Where C =V/ Csh and Csh is the shear wave speed of the orthotropic half-plane which is given
by

Cs =\Ca/p (5)
The dislocation cut created along the positive direction of the x-axis. Also, climb and glide
edge dislocations are shown with Burger vectors by and bx respectively, which have been

located at the origin of the coordinate system. Therefore, the conditions representing the

dislocation may be written as
V(Xa O+) _V(X7 07) = by H (X)a
u(x,0")—u(x,07) =b,H(x). (6)
Where H(.)is the Heaviside step function. The stress components must be continuous along the

dislocation cut, consequently, we have
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0,,(X0") =0, (x,07),

0,y (X%07) =0,,(X,07), |X| < o,

(7)

The traction-free conditions on the boundary of half-plane yields
o, (x,h)=0,

8
&y (X,h) = 0. ®

By applying complex Fourier transform to the system of Eq. (4) we have

2 * *
ddU2 —isa, dv ~s’aqU" =0,
y

Ny * *
d_VZ_ isa, au s‘a V' =0.
dy dy

©)

a;

Where S is the transform variable and

o0

U™(s,y) = [ u(x, y)e™dx,

—0

o0

V(s,y) = _[ v(X, y)e™dx. (10)

Since the displacement components must vanish for Y ——00, the solution of Eq. (9) may be

expressed as follow

U’ (s,y)= Z m, (s)B,(s)e™"”, U(s,y) =Y. m(s)B,,,(s)e™”,
= 1= (11)

b

4 4
V'(s,y) =) B,(s)e",0<y<h V, (s,y) =D B, ()™, y <0.
j=1 i=3

in which AJ-(S), J =1,2,3,4and /11- (s), J =1,2,3,4are unknown functions and the roots of the

following characteristic equation derived from Eq. (9), respectively

SZ
M+l — e —a, A+ 8%t 2 (12)
a3 a3

The roots of the characteristic equation are given by

2(3) ==A4(8) =8| 41> A4(8) =—4,(8) =|3| Ay (13)

where

1 1
—E[oqoz3 ta,—a,’ —\/(051053 +ta,—a,’) —4aaa,]?,
3
(14)
1
\2a,

1
[, +a, —a, + \/(051053 ta,—-a,’) —4aaa, ).

Ay =
Ay =
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The coefficients M, (S), J =1,2,3,4 for roots /11- (S) can be expressed as

isa,4;(s)
m(s)=————— 15
J( ) ﬂ/f(S)—Szal ( )
By applying the Fourier transform to the aforementioned conditions, Egs. (6) to (8), we have
m;,B,(s) +m,, —my,B,(s)—m,,B,(s) +m,,B(s) +m,,B,(s) = isgn(s)b, (75(s) +i/s),
B,(s)+B,(s)+B;(s) + B,(s) - Bs(s) - By(s) = by (75(s)+1/9),
_dlBl (s)- dsz (s)+ dlB3 (s)+ dzB4 (s)- dlBS (s)- dZBﬁ(S) =0, (16)
d,B,(s)+d,B,(s)+d,B,(s)+d,B,(s)—d,Bs(s)—d,B,(s) =0,
—d,e "B (s)—d,e "B, (s) + d """ B,(s) + d,e*"B, (5) = 0,
d.e "B (s)+d,e ="B, (s) + d,e""B,(s) + d ,e"="B, (5) = 0.
Where sgn(.) is the sign function, §(.) is the Dirac delta function and
m. = A, _ A,
11 2 5122 2
/111 - /122 -

d, =(a, -Dm,, +a;4,,,d; =m, 4, -1,

>d1 = (0(2 _l)mll + 053/1“,

and d4 :mzzﬂzz -1. By solving Egs. (16), six unknown functions B,(S),i =12,...,6 will be

determined which are given in Appendix A.
Substituting the determined functions into Egs. (11) and applying Fourier inverse transform the

displacement fields are obtained as the follow

u(x, y) :71Z [T T2 T T Ty sin(x) + T2 [T2 4T + T2 +T2)]b cos(9¥)) s
0

v(X, ) :71[ [T 7 T 4Ty cos(90)+ T[T 4T + T2 +T b sin(sx) ds (17)
0

in which -[:j and T,ij are given in Appendix B.

By using Eqgs. (18) and Eq. (1) the stress components may be stated as

T (X, ¥) =SS = S = Syt + S + S5l = Sy by + S USK + S - S + S5 — S+ 84y

—_ Q1 12 _Ql3 _qgl4 15 16 _ Ql7y 21 22 23 _ Q24 25 _ q26 27
Ty (X, Y) = S{S, =Sy =Sy + Sy + Sy =Syt b+ S5y {Syy + S5y =Sy + Sy —Sy +851by
_ 13_ql4 L gl5, qlé 222, g2, 24, Q25 4 Q26
Oy (X, Y) = SI{SE+ S~ S+ 815+ S16 517y, +S2{S2 +S2 + S2 + S2 + 826 4527} b, (18)

where functions Si'j(' ;1L ] =%XY; K, =1,2 are given in Appendix C.

From Eq. (18), we may observe that stress components exhibit the familiar Cauchy-type

singularity at dislocation location.
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3 Half-plane under point load

In this section, the orthotropic half plane is subjected to in plane point load with magnitude G,

and 7, applied on the boundary. As a consequence, the boundary conditions may be written as

o, () = 0,5(X), o, (Gh) =1,8(x). (19)
where o(.) is the Dirac delta function. By applying the Fourier transform to the above
mentioned conditions, and solving Eq. (9) by virtue of Eq. (11), performing a procedure similar
to the dislocation solution will result in the following displacements

1 d]es;‘zz()’*h) _dzeﬂll(Y*h)
{70l
SCys

eSizz(y—h) —d e5’1|1(y—h)
4

]sin(sx) + o, [

sx)}ds
d,d,—dd, d.d —dd,  Jeos(0i

% shy(y-h) _ s (y—h) s (y=h) _ S/ (Y=h)
ux,y)=— [ Lo [SMm® dm e ginsx) + 7, 20 Ame™ T os(sx)ids
s, d.d,—dd, d.d,—dd,
(20)
And the stress components become:
o (% Y)= 1 [(Godsﬂzz(h_y)"'rodl X)(Cllmzz"'clz/lzz)_(God4mllﬂ11(h_)/)+fod2 x)(C,m, +C12}‘11)]
oY ﬁcsﬁ(dzdz _d1d4) x* +(/1zz(h_ Y))Z x? +(ﬂ11(h_ Y))Z ,
X _ 1 (o-od3/122(h—y)+rod]x)(Cl2m22 +C22Z'zz) _(O})d4ﬂll(h—y)+1'0d2X)(C]2m” +C22/1|1)
O-yy( ’y)_ ﬂcﬁé(d2d3 _d1d4)[ X2 +(/1z2(h_y))2 X2 +(/711(h_y))2 ]’
o (%)= 1 (O-od3 X—=7,0,4,, (h— y)) (M4, —1) _ (O'0d4 x—7,0,4, (h— y))(mnﬂu _1)] (2 1)
v ”(dzdz _d1d4) X2 +(/122(h_ y))z Xz +(ﬂ11(h_ )/))2 .

4 Formulation of multiple moving straight cracks

Distributed dislocation technique is a method to analyze a medium containing multiple cracks.
In this technique, the dislocations are distributed in the locations of the crack and the stress
fields are determined for the cracked medium. Consider an orthotropic half-plane weakened by
N moving straight cracks which can be described in parametric form as

X, =X, +as,

: (22)

Yi = Yio» -1<s<1, 1€{,2,3,..N}.
Where (Xio, yio) and dare the center coordinates and half-length of the ith crack, respectively.
Suppose climb and glide edge dislocations with unknown densities a/k(t) and @k(t) ,

respectively, are distributed on the segment a(dt at the surface of kth crack, where —1<t<1.

Covering the cracks surfaces by dislocations, the principal of superposition may be invoked to

obtain traction on the crack surfaces
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0, (XI (S) y| (S)) ZJ- k;ljnk xk (t) + k;l;lk (S’t) Byk (t)]akdt’

Ty (Xi(8), ¥i(8)) = Z [ [kl (5:0) B () +KEZ, (5.1) B (D]at, 23)
|_1,2,...,N,—135£1.

The kernels ki,;,,k, kxlqznk’

kly,k and kxy,kln integral Eqgs. (24) are coefficients of b and b in stress
components O, and O, in Eq. (18), respectively. For more details regarding the solution of

singular integral equations with Cauchy type see Hills et al. [29]. The kernels in Eq. (23) exhibit
Cauchy type singularity for i =k as 1 —S and may be represented as

kll k(S t) qll 1k +Zq11nk(s t) klzk(s t)— q12 1k +Zq12 nk(s t)
q q (24)
k>1<ylkk (s,t)= ;1 i[k +zq21 w(s—1)", k}(jkk (s,t) =—= ;k +ZQ22 w(s—1".

The coefficients of singular terms P,M=1,2 may be obtained by means of the Taylor

series expansion of X (S)and Yi (S)in the vicinity of {
, =SS —S -8/t +S8 +S/0—S!71, q, =SHISF +S5 — S5 +S5 —S¥ +S71,
~SUSE +S ~SHi+ 51 +S10~81TT, 0, =SHISH +SZ+SH +SE+SK +57] 23)
in which Sllj(m, I, je{l,2},ke{l,2},me{l,2,...,7} are given in Appendix C. By virtue of the

Buckner’s principle, Hills et al. [29], the left hand side of Egs. (23), after changing the sign, is
the traction caused by external loading on the uncracked medium at the presumed surfaces of
cracks. Employing the definition of dislocation density function, the equations for the crack

opening displacement across the ith crack yields

U(S)—U(S) = jl aB, (t)dt,

Y(5)-v(s)= aB,dt, iefl,2..,N}. (26)

The displacement field is single valued out of an embedded crack surface. Consequently, the

dislocation densities are subjected to the following closure requirements
1
[ Baadt=0,

ji B,(dt=0, ie{l,2,...N}. 27)

It is worth mentioning that the devised procedure despite its simplicity is capable of handling
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complicated crack arrangements. To evaluate the dislocation density, the Cauchy singular
integral Egs. (23) and Eqgs. (27) ought to be solved simultaneously. The stress fields near the
crack tips behave as 1/+/r where ris the distance from a crack tip. Therefore, the dislocation

densities are taken as

gxi (t)

B,i(t) = ,
XI() ﬁ
gyi(t)

B, (t) = :
y|() ﬂ

Substituting Egs. (28) into Eqs. (23) and (27) as well as utilization of the numerical solutions

—1<t<1l,  ie{l2,.,N}. (28)

of integral Eqs. with Cauchy-type kernel developed by Erdogan et al. [30] 0,;(t) and gyi(t) can

be obtained. The modes I and II stress intensity factors can be calculated based on the
dislocation density functions which is derived by Fotuhi et al. [31]:

{KIL }: Csl(a, —a, + Doy — (o, -1)°] ([X!(_l)]2 +[y,’(_1)]2 )Alt {gni =D/ nrz}

Ki 2a5(1 +1,) g4 (=D
KlR __Céé[(al —6‘(4+1)C{3 _(az_l)z] NG N % gni(l)/rlrz 29
{K..R}_ 2a,(5,+1,) (bee0T Lo ) {gsi(l) }'( :

where

I,I, and H are defined

N Y e e e e e
H=[(¢,—a, +]) —052 +1]/ 2at,, respectively. It should be mentioned subscript L and R are

the left and right crack tips respectively.

5 Numerical results and discussion

Diverse numerical results will be examined to analyze the effect of velocity, material properties,
multi parallel and collinear cracks as well as their lengths on the dynamic stress intensity
factors. However, at first, by setting the velocity of cracks to zero, we will analyze the static
crack problem in an isotropic half-plane. The stress intensity factors given by Ashbaugh [19]
are compared with the present investigation. A great agreement can be observed with the above

mentioned study which are given in Table (1) in which K, =00\/a.

It is worth mentioning that the material properties used in this analysis are given in Table (2)
[17]. Obviously, the only difference between orthotropic I and II is that the principle directions
are perpendicular to each other. In the following examples the analysis of DSIFs for diverse
crack length and diverse crack velocities are examined while the dimensionless crack velocity
is considered to be ¢ =0.3 and dimensionless crack length is allocated to be a’/h=1. Also, the

medium is under an equal tensile and shear moving point loads with 0; =l and 7,=1, and
dimensionless stress intensity factors for point loads is «, = &, /V/a -
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Table 1 Comparison of SIFs for a straight crack in an isotropic half-plane for right and left crack tips
respectively

o, =1 h
7,=0 - 4.0 1.0 0.4 0.1
K, /K, 1 1.045 1.511 2.905 14.01
Ashbaugh 1 1.045 1.511 2.905 14.01
[19] K, /K, 0 0.0055 0.1849 0.9940 8.812
0 -0.0055 -0.1849 -0.9940 -8.812
K, /K, 1 1.0451 1.5110 2.9056 14.01
Present 1 1.0451 1.5510 2.9056 14.01
study K, /K, 0 0.0055 0.1849 0.9940 8.8133
0 -0.0055 -0.1849 -0.9940 -8.8133
c,=0 h
7y =1 o 4.0 1.0 0.4 0.1
K, /K, 0 -0.0053 -0.1331 -0.3876 -0.8709
Ashbaugh 0 0.0053 0.1331 0.3876 0.8709
[19] K, /K, 1 1.014 1.087 1.133 1.384
1 1.014 1.087 1.133 1.384
K, /K, 0 -0.0053 -0.1331 -0.3876 -0.8710
Present 0 0.0053 0.1331 0.3876 0.8710
study K, /K, 1 1.0141 1.0873 1.1329 1.3842
1 1.0141 1.0873 1.1329 1.3842

Table 2 Mechanical properties [17]
CAN/M)  Cu(N/m’)  C,(N/m’)  Cu(N/m)  p(Kg/mr)

Isotropic 2.198x10"  6.593x10"°  2.198x10"  7.692x10" 7840

Orthotropic I 1.578x10"  3.248x10° 1.048x10"  7.070x10° 1580
Orthotropic II ~ 1.048x10"  3.248x10° 1.578x10"  7.070x10° 1580
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5.1 Medium weakened by one crack propagation

In the first example, Figure (2), dynamic stress intensity factors for mode I and mode II for
various material properties versus the dimensionless crack velocities is considered. It is evident
that DSIFs rise gradually as long as crack velocity increases for mode I. It can be seen that
DSIFs values for crack tip L are roughly one half more than the ones for crack tip R .

Also, DSIFs for orthotropic II and orthotropic I are almost quadrupled and doubled in values
respectively compared to isotropic material. In stark contrast, mode II DSIFs values for
isotropic material increases dramatically and DSIFs values for orthotropic II and I almost triple
and double respectively as dimensionless crack velocity increases.

In the next example, a straight crack with a constant crack velocity under in plane loadings is
considered. Results given in Figure (3) illustrate that by increasing the crack length, DSIFs will
go up steadily. It can be seen that mode I DSIFs almost triples in value for orthotropic II as
crack length increases. Moreover, according to the given diagram, crack tip L has allocated
more values than the crack tip R . What is more, DSIFs for crack tips L and R .have higher and
lesser values for orthotropic II and I respectively. On the other hand, mode II DSIFs shows an
upward trend in which crack tip R has far more values than the other tip. Besides, mode II
DSIFs have the same values for both crack tips due to symmetry in the static case; however, as
crack length grows, DSIFs for crack tips diverges from each other.

T
250 — Isotropic Y1 Vo
- - =R, Isotropic ‘ 1w
—L, Orthotropic | Vi
2 |- - =R, Orthotropic | 0 T
—L, Orthotropic Il L
- - -R, Orthotropic Il | oo ¥ — -

1.5
K | /Ko

| |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 2a Mode I normalized stress intensity factors versus dimensionless crack velocity
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Figure 2b Mode II normalized stress intensity factors versus dimensionless crack velocity
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Figure 3b Mode Il normalized stress intensity factors versus dimensionless crack length
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5.2 Medium weakened by three parallel cracks propagation

Last but not least, three parallel cracks are taken into consideration as another example whose
centers are set to have an equal distance of 0.6h with each other. The provided graph, Figures
(4), represents contrasts between crack tips for diverse materials. It can be seen that the values
of mode I DSIFs have an upward trend when crack velocity increases, especially for orthotropic
IT whose values almost triples as dimensionless crack velocity reaches 0.35. Besides,
orthotropic I has lower values than isotropic material for each crack tips. According to the

provided results, crack tips Lz, L3 , Rl and Rz have far more DSIFs values than the other crack

tips due to their significant interaction with other cracks. It is evident that crack tips |-1 and R3
have far less DSIFs compared to two other crack tips. On the other side, mode II DSIFs values

increase considerably while crack velocity increases. It can be seen that crack tips Rz and |-3

have by far the most DSIFs values which is due to the significant interaction between cracks.
Furthermore, it is depicted that orthotropic II and I have allocated higher and lesser DSIFs
values than isotropic material respectively.

Moreover, the results provided for the next example in Figures (5) presents variation of DSIFs
for three parallel cracks versus crack length. According to the graphs, mode I DSIFs increase

and almost quadruple as crack length doubles in value. In this case, L3 and R, tips have the

most values of DSIFs. Besides, DSIFs for orthotropic II has higher values than isotropic which
also has more DSIFs values than orthotropic I.

The results in the provided graphs reveal that by increasing the crack lengths, interaction
between cracks increases which has a significant impact on DSIFs. On the other side, the mode
IT DSIFs increase significantly in value while cracks lengths growth (Figures (5¢) and (5d)).
The DSIFs for orthotropic I and II, however, have the most variation as cracks lengths doubled.

It is seen that crack tip |-2 and Rz have the most values of DSIFs compared to other crack tips
due to the considerable interaction between cracks.
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6 Conclusion

The in-plane stress analysis of an orthotropic half-plane weakened by edge dislocations by a
proper arrangement of dislocations for several cracks is analyzed. For instance, in this analysis
a single and multi collinear and parallel cracks propagation are considered. The Cauchy type
singularity is seen at the dislocation position for the attained stress fields. The static problem
was first compared with the cited results in the literature and great agreement was observed.
The effect of material properties, crack velocity, crack length, number of cracks and their
arrangement on the dynamic stress intensity factors are studied.

The results illustrate that

1) The values of stress intensity factors increases so long as dimensionless crack velocity
escalates.

2) By increasing the dimensionless crack the dynamic stress intensity factors increases.

3) While the normalized crack length rises, the interaction between cracks increases.

4) Materials play a significant role on the values of DSIFs. In most cases, Orthotropic II
had the most DSIFs values as opposed to Orthotropic I which allocated the least
amounts.
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g2l _ a,Ce 52 _ (=d,d; +d,d;d)[(e, DM, + 4]
2 27(d,d,—d,d,)(d,—d,)" " a;
S _ (=0,d3 +d,dyd,)[(er, — DMy, + 34y, ] g2 _ 2d,d,d ,[(@, —Dmy + 34 |
E a PR (A )
g25 _ (d,d; +d,dy)[(@, =Dd,m;, +a3d, 4] g2 _ 2d,d,d[(a, =DMy, + 34y |
= aZ +(24,,h)? e a2 + (A4, h+A,h)?
S _ (d,d; +d,d,)[(, ~Ddymy, + ;034 |
’ 3 +(24,h)° '
(C5)
Sl A g1 _ (m;, 4, —1)(d,d,d, —d;d;)
* 2z(d,m,—dmy,)d,d,—-dd,)’ a;
SI3 _ (m,, 4, ~1)(d,d,d, _d12d4) gl4 _ 2d,d,d,(m;, 4, 1)
z & SR (A
gI5 _ (d;d; +d,d,d, ) (M, A, 1) gl6 _ (d,d,d; +dPd, )My, 45, —1) (c6)
AT e T @ e @hy

Sl7 — 2d1d2d3(mzzﬂ22 _1)_

o al+(4,h+ A,h)?
Ces

27(d,d, —d,d,)(d, —d;)

32251 _ 2d,dyd, (4, h+ A, A=my 4,) §25 _ (dydyd, + d1df)(2111h)(_1+ my Ay

21 22 23
S22 - ’522 - 07 822 _09

al +(4,h+4,,h)’ e al+(24,h)’ ’
526 _ 2d1d3d4(ﬂ11h +ﬂ22h)(l_ mzzﬂﬂ) g% — (d2d32 +d1d3d4)(2ﬂzzh)(_1+ mzzﬂ’zz)
2 a2 +(4,h+4,,h)? T al +(24,,h)? '

(C7)
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