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Cyclic Behavior of Beams Based on the
Chaboche Unified Viscoplastic Model
In this paper, the ratcheting behavior of beams subjected to the me-
chanical cyclic loads at elevated temperature is investigated using the
rate dependent Chaboche unified viscoplastic model with combined
kinematic and isotropic hardening theory of plasticity. A precise and
general numerical scheme, using the incremental method of solution,
is developed to obtain the cyclic inelastic creep and plastic strains.
Applying the numerical method to the equations obtained based on
the mentioned unified model, the cyclic behavior of the beam due to
the combined plastic and creep strains are obtained. Effect of load-
ing rate, creep time, and mean load on ratcheting response and stress
amplitude of the beam due to the combination of axial and bending
moments at elevated temperature are obtained. It is shown that that
increasing the loading rate, results to decrase in ratcheting rate and
increase in stress amplitude. Also the ratcheting strain increases with
increasing the creep time while the stress amplitude decreases. The re-
sults obtained using the applied method in this paper is verified with
the experimental data given in the literature search.

Keywords: Cyclic loading, Rate dependent plasticity, Creep, Viscoplasticity, Load controlled,
Strain controlled

1 Introduction

Structural problems under mechanical and thermal cyclic loadings are frequently encountered
in the design problems. The applied external load may be high enough to bring the structure into
the plastic range. The question remains in the true behavior of a structure in regard to the shake-
down or ratcheting and, in the latter case, the number of cyclic loads that the structure stands
before failure. In special cases, where the material is under high temperature environment, un-
derstanding of the material behavior under cyclic loading condition for lifetime prediction is
important.

Many criteria and models are proposed in literature to estimate the behavior of a structure
under cyclic loading condition. In (1986) J. L. Chaboche [1] proposed a time independent con-
stitutive model for cyclic plasticity which is included non-linear kinematic hardening theory
with isotropic hardening theory thats capable to estimate consequences of cyclic loading much
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Figure 1 Geometry and loading of the beam.

accurately than previous linear kinematic hardening and non-combined models. In the past
decades a several viscoplasticity constitutive models are proposed to predict the structural be-
havior under cyclic loading at high elevated temperatures. In (1983), Chaboche [2, 3] proposed
the unified viscoplastic constitutive model. In this model, the kinematic and isotropic harden-
ing theories are considered in a unified form. Contrary to 1986 Chaboche model this theory is
a time dependent model which is able to evaluate effects of rate and creep time and also it is
suitable for high temperature conditions which effects of rate are crucial. This model is widely
accepted in literature. The key problem to properly use this model is how to select the initial set
of the material properties which are used in the model. This problem is resolved and referred
in literature by a number of authors such as Tong et al. [4]. Zhan [5], Mahnken and Stein [6],
Schwertel and Schinke [7], Fossum [8, 9], and Gong and Hyde and Sun [10]. There are also
another viscoplastic constitutive models using nonlinear Armstrong Frederick [11] kinematic
hardening theory as Walker [12], Moreno and Jordan [13], ohno [14, 15], Lee and Krempl [16].

The authors have been studied the cyclic loading of beams based on the non-unified version
of Chaboche constitutive model which is a rate independent model [17]. In this study, the
Chaboche unified viscoplastic model [1, 2, 3, 18, 19] is considered, which is a time dependent
model with combined kinematic and isotropic hardening theory. The model allows to reasonably
predict the behavior of materials under cyclic loading condition. The assumed beam material is
considered to be type 316 stainless steel, where to obtain the coefficients and parameters of the
material for starting point of cyclic loading, reference [10] is used. The numerical analysis is
carried out using the experimental results of type 316 stainless steel. Loading is assumed under
isothermal condition at temperature 500 ◦C. Due to the nonlinearity of the problem and applying
the combined isotropic and kinematic hardening theory of plasticity including a model wherein
the plastic and creep strains are obtained by a unified flow rule, a numerical method is proposed
to solve the coupled and stiff differential equations of the problem. This numerical method is
the modification of the method which is proposed by Mahbadi and Eslami [20, 21, 22, 23, 17].
The novelty of present study, in comparison to the published papers reported on cyclic loading
of beams, is application of a time dependent constitutive model to obtain both of the plastic
and creep strains due to the combination of axial and bending loads in isothermal condition.
Applying this model results to evaluating the effect of loading rate and creep time on ratcheting
behavior of the beam.

2 Mathematical Formulation

A beam with rectangular cross section is considered, as shown in Fig. (1). The beam is made of
isotropic materials with height of 2c and width of h and subjected to the combination of axial
load and bending moment, as shown in this figure. The total axial mechanical strain of the beam
is obtained by adding the elastic and inelastic strains as follows

εx =
σx
E

+ εpx + εResx (1)
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In Eq. (1), the axial stress, inelastic strain (i.e. including creep and plastic strains), and the
residual strain are represented with σx, εpx and εResx , respectively. The elastic modulus is E and
the parameters are normalized for convergency of the numerical method as

S =
σx
σ0
, ex =

εx
ε0
, epx =

εpx
ε0
, eResx =

εResx

ε0
, η =

y

c
(2)

In this equation, σ0 and ε0 are the initial yield stress and yield strain, respectively, and y is layers
distance to the beam neutral axis. The dimensionless form of the compatibility equation is used
to obtain the axial strain as

∂2ex
∂η2

= 0 −→ ex = c1 + c2η (3)

In Eq. (3) c1 and c2 are constants of integration and are defined using the equilibrium condition
of the beam. Substituting ex from Eq. (3) into the normalized form of Eq. (1) and solving for S
gives

S = c1 + c2η − epx − eResx (4)

Thus, the equilibrium condition of the beam due to imposed axial load P and momentM results
in

P ∗ =

∫ 1

−1
Sdη =

P

σ0ch

M∗ =

∫ 1

−1
Sηdη =

P

σ0c2h
(5)

The constants of integration are found by substituting Eq. (4) into Eqs. (5) as follow

c1 =
P ∗

2
+

1

2

∫ 1

−1
epxdη +

1

2

∫ 1

−1
eResx dη

c2 =
3

2
M∗ +

3

2

∫ 1

−1
epxηdη +

3

2

∫ 1

−1
eResx ηdη (6)

Upon substitution, the dimensionless stress distribution in the cross section of the beam is ob-
tained as

S =
P ∗

2
+

1

2

∫ 1

−1
epxdη +

1

2

∫ 1

−1
eResx dη + η

[
3

2
M∗ +

3

2

∫ 1

−1
epxηdη

+
3

2

∫ 1

−1
eResx ηdη

]
− epx − eResx (7)

and the axial dimensionless strain is

ex =
P ∗

2
+

3

2
ηM∗ +

1

2

∫ 1

−1
epxdη +

1

2

∫ 1

−1
eResx dη +

3

2
η

∫ 1

−1
epxηdη

+
3

2
η

∫ 1

−1
eResx ηdη (8)
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3 Unified Viscoplastic Constitutive Model

The viscoplastic constitutive equations which are proposed by Chaboche [2] for inclusion of
time or strain rate using a von Mises criterion and normality rule is

dεpij =
3

2

〈
J(σij − χij)−R− σ0

Z

〉n σ′ij − χ′ij
J(σij − χij)

dt (9)

The yield criterion for the material which the above constitutive model is associated with, is

f = J(σij − χij)−R− σ0 (10)

The McCauley bracket 〈.〉 is used here to ensure that when f < 0, the state of stress is inside
the elastic domain. In equations (9) and (10), χij is the backstress tensor, n and Z are material
constants, R is associated parameter to the isotropic hardening of material and is recalled as
drag stress, σ′ij and χij are deviatoric stress and back stress tensors and J represents a distance
in the stress space which for von Mises yield criterion is

J(σij − χij) =

[
3

2
(σ′ij − χ′ij)(σ′ij − χ′ij)

]1/2
(11)

The backstress tensor χij corresponding to this viscoplastic yield criterion is defined as

dχij = dχ
(1)
ij + dχ

(2)
ij (12)

wherein

dχ
(1)
ij = C1(a1dε

p
ij − χ

(1)
ij dεp) (13)

dχ
(2)
ij = C2(a2dε

p
ij − χ

(2)
ij dεp) (14)

The parameters C1, C2, a1, and a2 are material constants for the Chaboche kinematic hardening
model and are obtained from the uniaxial test. The equivalent plastic strain dεp is

dεp =

(
2

3
dεpijdε

p
ij

)1/2

=

〈
J(σij − χij)−R− σ0

Z

〉n
(15)

For load or strain controlled cyclic loading with approximately constant strain cycling, drag
stress R is defined as

dR = b(Q−R)dεp (16)

Defining the following normalized parameters,

χ̄ =
χ

σ0
, C̄k =

Ck
E
, ā =

a

σ0
, f̄ =

f

σ0

R̄ =
R

σ0
, Z̄ =

Zε
1/n
0

σ0
, Q̄ =

Q

σ0
, b̄ =

bσ0
E

(17)

the model for uniaxial loading is normalized as follow
Normalized yield criterion:

f̄ = |S − χ̄| − R̄− 1 (18)
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Constitutive model:

depx = 〈 f̄
Z̄
〉nsgn(S − χ̄) (19)

Equivalent plastic strain (or experimental stress strain curve):

dep =

〈
f̄

Z̄

〉n
(20)

Axial component of back stress tensor:

dχ̄x =
2∑

k=1

C̄k(ākde
p
x − χ̄xdēp) (21)

and drag stress:

dR̄ = b̄(Q̄− R̄)dēp (22)

4 Numerical Solution

In this section, the numerical solution procedure for plastic analysis and cyclic loading behavior
of beams under mechanical and thermal loads is described. The numerical method described by
Mahbadi and Eslami [24] is developed for viscoplastic material to solve the problem. Due to
history dependency and nonlinearity of inelasticity problems, the proposed numerical method
is based on an incremental iterative method. This method is proposed applying the successive
coordinate systems corresponding to each cycle during the loading and unloading procedure, as
shown in Fig. (2). The solution obtained in these successive coordinate systems is transferred
to the main coordinate system located at the beginning of the first cycle of load. Thus, the
coordinate system corresponding to the first cycle of the load is identical with the main coor-
dinate system. When the number of cycles are increased, the subsequent successive coordinate
systems differ with the main coordinate system. The problem is solved in each successive co-
ordinate system independently while the parameters such as back stress and residual stresses
are initialized based on the results obtained in previous coordinate system and transferred to
the current coordinate system according to proper coordinate transformation. The detail of the
method is described in following steps:

• Step 1: Using Eqs. (5), the axial force and bending moment are normalized and the yield
load, or the critical load, is specified. Further loads result into plastic deformation of a
section of the beam. The additional applied load, the final load minus the critical yielding
load, is divided into N equal divisions. Also, divide the beam cross section across its
thickness into m layers. All the input variables are initialized and normalized. The initial
data for each layer of the beam across its thickness is set from the elasticity solution and
the plastic strains of all layers are set to zero. The yield stress k for the first cycle is the
value of initial yield stress.

• Step 2: The load is advanced one step and the induced stresses in each layer are calculated
using Eq. (7).

• Step 3: For each layer, the yield criteria from Eq. (18) is checked to determine if the layer
is in plastic zone. For the layers that are in plastic range, a value for the plastic strain
increment ∆ep is assumed and is added to the accumulated plastic strain from previous
step of loading (i.e.for the first increment of plastic strain the accumulated plastic strain
is zero) to obtain the total plastic strain.
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Figure 2 Subsequent coordinate systems.

• Step 4: The value of plastic strain for each layer is substituted into Eq. (7) to obtain
the axial stress for each layer. To calculate the integral functions of epx one may use any
numerical integration method [24]. As a typical method, the trapezoidal method may be
used as follows:∫ b

a

f(epij(ρ))dρ =
∆η

2
[f(epij(a)) + 2Σρ−1

k=2f(epij(ρk)) + f(epij(b))] (23)

• Step 5: Increments of back stress and drag stress are obtained using Eqs. (21) and (22).

• Step 6: A new value for equivalent plastic strain is obtained using the experimental stress
strain curve shown in Eq. (20).

• Step 7: a new value for axial plastic strain increment is obtained using Eq. (19).

• Step 8: Steps 3 through 7 are repeated until the increment of plastic strain ∆ep converges.

• Step 9: The steps 2 through 8 are repeated up to the final amount of load.

• Step 10: For unloading, a second coordinate system in reverse direction is mounted at the
current state of stress and strain values.

• Step 11: All the values of stress, strain, accumulated and total plastic strains are set to
zero. The values for back stress and drag stress are transferred to the unloading coordinate
system as follow:

χ̄accx = S2
x − χ̄x (24)

R̄acc = R̄ (25)

where χ̄accx and R̄acc are the accumulated back stress and drag stress in unloading coordi-
nate system and S2

x is the maximum value of axial stress in previous loading system.

• Step 12: Steps 2 through 9 are repeated for unloading procedure until the maximum value
of load is achieved. It should be mentioned that the maximum unload value is difference
between the absolute values of maximum and minimum loads which the load is cycled.
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Also, the total stress and strain are transferred into the main coordinate system using the
following equations:

Sx = S0
x − S1

x

ex = e0x − e1x
epx = ep0x − ep1x (26)

where superscript 1 show the values corresponding to the unloading coordinate system
and superscript 0 shows the values corresponding to the previous loading at maximum
load in main coordinate system.

• Step 13: For reloading, a third coordinate system is attached to the current state of stress
and strain values in the same direction of the main coordinate system.

• Step 14: All values of stress, strain, accumulated, and total plastic strains are set to zero.
The values for back stress and drag stress are transferred into the reloading coordinate
system as:

χ̄accx = S1
x − χ̄x (27)

R̄acc = R̄ (28)

where χ̄accx and R̄acc are the accumulated back stress and drag stress in reloading coordi-
nate system and S1

x is the maximum value of axial stress in previous unloading system.

• Step 15: Steps 2 through 9 are repeated for reloading procedure until the maximum value
of load is achieved. Also, the total stress and strain are transferred into the main coordinate
system using the following equations:

Sx = S0
x + S2

x

ex = e0x + e2x
epx = ep0x + ep2x (29)

where superscripts 2 show the values corresponding to the reloading coordinate system.

• Step 16: Procedure between steps 2 through 15 is repeated until the final cycle of load is
archived.

The flow chart of the above numerical procedure has been shown in Figure (3).

5 Results and Discussion

In this section the effect of creep on load and strain controlled cyclic loading of beam structure
is investigated. For the following examples, a beam made of SS316 steel is considered. The
cross section of the beam is rectangular with height 2c = 50 mm and width h = 25mm. The
geometry, elastic, plastic, and typical values for creep properties of the beam are given in Table
(1) [10].
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Figure 3 Flow chart of numerical procedure

Table 1 Optimized material constant at 500 ◦C temperature [10].

Properties Notation Value Unit
Initial Yield Stress σ0 37.98 MPa
Modules of Elasticity E 135.4666 GPa
Isotropic Hardening Parameter B 16.77 -
Isotropic Hardening Parameter Q 32.79 MPa
Kinematic Hardening Parameter a1 36.66 MPa
Kinematic Hardening Parameter C1 19963.66 -
Kinematic Hardening Parameter a2 160.59 MPa
Kinematic Hardening Parameter C2 1506.58 -
Creep Law Parameter Z 70.60 MPa · s 1

n

Creep Law Parameter n 40.00 -
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Figure 4 Comparison of 1st load cycle with the experimental data of Ref. [10].

5.1 Comparison of Model and Experimental Data

In Figs. (4) through (7), the numerical results obtained in present work are compared with
experimental data for a rectangular steel beam with material properties given in Table (1). Figure
(4) shows the comparison between the results obtained in present work and the experimental
data of Gong [10] under deformation controlled condition and uniform temperature 500 ◦C for
the first cycle of loading. The axial strain is cycled between −0.3% and 0.3% and the strain
rate which is used to evaluate the results is ε̇x = 0.015%/s. As the figure shows, the numerical
results are in close agreement with the experimental data and the percentage of error at the
end of loading and unloading is approximately 3%. Figure (5) shows the stabilized hysteresis
loop at 50th cycle in comparison with the experimental data and the difference between the
axial strain obtained in this work and experimental data at −0.3% and 2.4% is about 0.3% and
4.8% respectively. Fig. (6) shows the amplitude of stress versus the number of cycles up to the
stabilized hysteresis loop represented in the previous figure. The results between the proposed
method and the experimental data are well compared and percentage of error in the first cycle is
about 1.2% and in the 50th cycle is just 0.34%. The maximum error occurs in 22th cycle which
is 1.7%.

In the next example, a beam made of Nickel based alloy under axial cyclic deformation
is cycled through εx = −1 to 1% with 20s relaxation time at the end of per half cycle. The
material properties of the beam are: elasticity modulus E = 170GPa, yield stress σ0 =
144.26MPa, kinematic hardening parameters C1 = 391.61, C2 = 2578.69, a1 = 361.57MPa,
a2 = 26.84MPa, isotropic hardening parametersQ = 161.52MPa, b = 5.54 and the viscoplas-
tic parameters n = 15.496, z = 678.317MPa · s 1

n . Figure (7) shows that the experimental data
of Ref. [4] and numerical data of current work are in close agreement and the maximum error
between the present work and experimental data is about 6%.

5.2 Axial loading

In Figs. (8) through (11) axial stress versus the axial strain are plotted to show the effect of mean
load and creep time on cyclic response of the beam made of material properties given in Table
(1) at 500 ◦C. In Figs. (8), (9), and (10) the axial load is cycled between −300 and 300KN
wherein the mean load is zero. In Fig. (8), creep time is not included at the end of both loading
and unloading half cycles and reversed plasticity behavior is observed. In Fig. (9), the creep is
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Figure 5 Comparison of 50th load cycle with the experimental data of Ref. [10].
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Figure 6 Comparison of stress amplitude with the experimental data of Ref. [10].
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Figure 7 Comparison with experimental data of Ref. [4].
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Figure 8 Reversed plasticity due to the axial cyclic loading with zero mean load.
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Figure 9 Ratcheting due to the creep on loading half cycles.

considered only at the end of loading cycle and ratcheting behavior is observed. In Fig. (10),
creep is included at the end of both loading and unloading half cycles and reversed plasticity is
observed. The creep time at the end of loading or unloading half cycles is 100hr in Figs. (9)
and (10).

Figures (11) and (12) show the cyclic loading results of the beam with nonzero axial mean
load. In these figures the axial load is cycled between −200 to 300KN . The plot of axial stress
versus the axial strain in Fig. (11) shows the ratcheting behavior for the case which the creep
time is excluded. The plot of peak strain at the end of each loading half cycle in Fig. (12)
represents the effect of creep time at the end of half cycles on ratcheting rate of the beam. As
the figure shows, the highest ratcheting rate is archived for the case which the creep time is
included only at the end of loading half cycle while the minimum strain rate is obtained for the
case which excludes the creep effect.

5.3 Bending moment loading

The cyclic loading behavior of the beam due to the bending moment is studied in this part. When
the beam is subjected to the zero mean load, the same behavior of the beam due to the axial load
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Figure 10 Reversed plasticity due to the axial cyclic loading including the creep.
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Figure 11 Ratcheting due to the nonzero axial mean load.
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Figure 12 Effect of creep on ratchetting of axially loaded beam.
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Figure 13 Bending moment with non-zero mean load and creep after the loading half cycle.
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Figure 14 Effect of creep time on ratcheting of the beam subjected to the bending moment.

is achieved but the results are not shown here. That is, the ratcheting behavior is achieved
when the creep is considered at the end of each half load cycle and excluded during the half
unloading cycles. Figures (13) and (14) show the response of the beam at its top layer due to
the cyclic bending moment with nonzero mean load. The bending moment in these figures is
cycled between −3KN.m and 6KN.m. The figures show the same ratcheting behavior of the
beam obtained for the axial load except that the maximum stress will decrease in first few load
cycles. In these figures the loading rate is assumed to be 12 N.m/s. Figure (15) shows that the
lowest stress amplitude corresponds to the case where the creep time is considered at the end of
both loading and unloading half cycles while the maximum stress amplitude corresponds to the
case which the creep is considered at the end of loading half cycle.

Figures (16) and (17) investigate the effect of loading rate on ratcheting response and stress
amplitude of the beam subjected to the cyclic bending moment. In these figures, the bending
moment is cycled between −3 and 6 KN.m. Figure (16) shows that increasing the loading
rate results to decrease in ratcheting rate of the beam while the stress amplitude increases with
increasing the loading rate, as shown in Fig. (17)



76 Iranian Journal of Mechanical Engineering Vol. 18, No. 2, Sep. 2017

1 2 3 4 5 6 7 8 9 10

5.29

5.3

5.31

5.32

5.33

5.34

5.35

Figure 15 Variation of stress amplitude of the beam subjected to the bending moment.
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Figure 16 Beam cyclic loading under bending moment with non-zero mean load without creep time in different
loading rate.
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Figure 17 Beam cyclic loading under bending moment with non-zero mean load without creep time in different
loading rate.
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Figure 18 Combined axial and bending moment cyclic loading with symmetric loading and loading condition.

Figure 19 Combined axial and bending moment cyclic loading with unsymmetric loading and loading condition.

5.4 Combined loading

In Figs. (18) through (19), cyclic loading behavior of the beam subjected to the combination of
axial load and bending moment is investigated. When the beam is subjected to the proportional
cyclic axial and bending moment with zero mean load, identical loading/unloading rate and
identical creep conditions at the end of both loading and unloading half cycle, the beam shows
reversed plasticity behavior. This behavior is represented in Fig. (18) for top and bottom layers
of the beam and under cyclic axial load −100 to 100KN and cyclic bending moment −6 to
6KN.m. When the conditions used for Fig. (18) are not available, the symmetry condition
during loading and unloading is removed and ratcheting behavior is observed as the result of
cyclic loading. This behavior is shown in Fig. (19) for the case which mean axial load is
not zero. In this figure the axial load is cycled between 0 and 100 KN , the bending moment
is cycled between −6 to 6 KN.m, the loading rate for axial load and bending moment is
0.1 KN/s and 6 N.m/s, respectively, while the unloading rate is 0.2 KN/s and 12 N.m/s,
respectively.
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6 Conclusion

Applying the compatibility and equilibrium equations, equations are obtained for stress and
strain distribution along the height of a beam subjected to the axial and bending moment loads.
A unified Chaboche viscoplastic model with combined isotropic and kinematic hardening theo-
ries is used to evaluate the inelastic strains at elevated temperature. A numerical method is pro-
posed which is quiet capable and efficient to handle the cyclic loading analysis of the viscoplas-
tic structures. Cyclic response of a beam due to the axial loading, bending moment loading,
and combined axial and bending moment loading is studied employing the proposed numerical
method. The effect of mean load, creep time, loading rate on ratcheting or reversed plasticity
behavior of the beam subjected to the mentioned mechanical load is obtained at elevated tem-
peratures. The simulation results show that when the beam is subjected to symmetric loading
and unloading conditions, cyclic loading of the beam results to reversed plasticity. When either
the creep time or the loading rate are not equal in loading and unloading conditions, ratcheting
behavior is obtained due to the cyclic loading of beams. When the mean load is not zero, ratch-
eting behavior is obtained in all loading conditions. On the other hand, the represented data
show that increasing the loading rate results to decrease in ratcheting rate, while increasing the
creep time results to increase in ratcheting rate. When the beam is subjected to bending mo-
ment, increase in loading rate results to increase in stress amplitude while the stress amplitude
decreases with increasing the creep time.
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Nomenclature

a1: Material constant for Chaboche model
a2: Material constant for Chaboche model
b: Isotropic hardening material constant
2c: Height of the beam
h: Width of the beam
n: Material constant for viscoplastic model
C1: Material constant for Chaboche model
C2: Material constant for Chaboche model
E: Elastic modulus
M : Bending moment
P : Axial load
Q: Isotropic hardening material constant

Greek symbols

εx: Axial total strain
εpx: Axial plastic strain
εResx : Axial residual strain
σx: Axial stress
σ0: Yield strength
χij: Backstress tensor
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 چكيده

با استفاده از مدل  ،حرارتهای بالا در این مقاله، رفتار انباشتگی کرنش تیرها تحت بارهای مکانیکی در درجه

مورد بررسی قرار  و سینماتیک یکویسکوپلاستیک شابوش با تئوری پلاستیسیته ترکیبی ایزوتروپ یکپارچه

برای تعیین کرنشهای غیرالاستیک  جامع و دقیق بر پایه روش حل پیشرونده گرفته است. یک روند عددی

مدل  ازمعادلات بدست آمده  ربپیشنهادی عددی  روندخزش و پلاستیک پیشنهاد شده است. با اعمال 

مورد بررسی قرار گرفته ستیک و خزش ترکیب کرنشهای پلا اثر، رفتار سیکلی تیر در ویسکوپلاستیکیکپارچه 

ترکیب  تحتتیر ، کرنش خزش و بار متوسط بر دامنه تنش و رفتار انباشتگی کرنش اریبارگذاست. تاثیر نرخ 

دهند که . نتایج نشان میمورد مطالعه قرار گرفته استحرارتهای بالا بارهای محوری و خمشی در درجه 

با افزودن زمان گردد. همچنین کاهش نرخ انباشتگی کرنش و دامنه تنش می منجر بهافزایش نرخ بارگذاری 

در  ارائه شدههای تجربی . نتایج این مقاله با دادهکمتر شده استو دامنه تنش  بیشتر انباشتگی کرنش خزش، 

 است. شدهمقایسه  مقالهسوابق علمی 
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