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Effect of Temperature on Free Vi-
bration of Functionally Graded Mi-
crobeams
Modified couple stress theory is applied to study effect of tem-
perature on free vibration of Timoshenko functionally graded
microbeams. Due to the interatomic and microstructural reac-
tions of the structures in micro scale, the dynamic behavior of
microstructures is predicted more accurately by applying the
couple stress theory. In this work, both of the simply supported
and clamped boundary conditions are assumed to obtain the
natural frequencies of a microbeam structure. Natural frequen-
cies are obtained by minimization of the Lagrange function and
applying the Ritz method. Finally, effects of various parame-
ters such as temperature change, power law index, height to
length scale parameter ratio, and height to length ratio on nat-
ural frequencies of the microbeam are presented and discussed
in detail. Results obtained in this work are validated against
numerical data given in the literature search.
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1 Introduction

Advantages of functionally graded materials have raised their usage in various industrial appli-
cations including biomedicine, optics, electronics, etc. The wide application of microstructures
has led many researchers to study the mechanical behavior of structures made of these materials
in micro/nanomechanical systems. According to interatomic and microstructural reactions in
these structures, conventional strain based theories of structures may not be used to study the
behavior of structures in small scale. Stress couple [1, 2], Non-local [3, 4], strain gradient theo-
ries [5, 6], and modified stress couple theory [7] are proposed to study the behavior of structures
in this scale.

Many researches has been performed on dynamic behavior study of structures made of func-
tionally graded materials in micro and nano scale. Vibration analysis of microstructure using
the nonlocal [8], coupled stress [9] and the strain gradient theories [10] are among these stud-
ies. Liang et al. [11] examined the dynamic behavior of FG nano-beam applying the stress-
couple theory. Max and Reddy [12] studied the free vibration of Timoshenko’s micro-beams
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and obtained their natural frequencies for two different boundary conditions by applying the
stress-couple theory. Liang et al. [13] studied the temperature effect on buckling and natural
frequency of nanobeams made of homogeneous isotropic materials. Asgari et al. [14] utilized
the stress-couple theory to analyze the nonlinear vibration of isotropic beams. Salamat et al.
[15] studied the dynamic and static behavior of FG microbeam by modification of third order
shear deformation theory with stress-couple theory. Ebrahimi et al. [16] studied the thermal
buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal
environments. The nonlocal elasticity theory of Eringen is used to obtain the natural frequen-
cies of the nanobeam. Lee et al. [17] analyzed the thermal effect on vibration frequency of a
scanning thermal microscope cantilever probe using the Timoshenko beam theory. Soh et al.
[18] developed a generalized solution to the coupled thermoelastic vibration of a microscale
beam resonator induced by pulsed laser heating. Park and Gao. [19] investigated the static and
dynamic problems of size-dependent Euler-Bernoulli microbeams by modified couple stress
theory. The dynamic problems of Euler-Bernoulli beams are solved analytically based on the
modified couple stress theory by Kong et al.[20]. The free and forced vibration of a laminated
functionally graded beam of variable thickness under thermally induced initial stresses is stud-
ied by Xiang et al. [21] within the framework of Timoshenko beam theory. Arefi and Zenkour
presented an analytical solution for vibration and bending analysis of the three-layerd curved
nanobeam [22]. They also studied the vibration and bending analysis of sandwich microbeam
with two and three-layer integrated piezo-magnetic face sheets [23, 24]. Using the strain gradi-
ent theory, free vibration of functionally graded microbeams is studied by Ansari et al. [25].

According to the literature review, the effect of temperature on free vibration of functionally
graded microbeams is not studied previously. This paper, studies the effect of temperature on
free vibration of FG microbeams using the Timoshenko assumptions and applying the modified
stress-couple theory. The Lagrange function is obtained by the kinetic and potential energies
of the beam. Minimizing the Lagrange function using the Ritz method, natural frequencies
of the beam are obtained. Simplifying the problem to the homogeneous material, the thermal
effects on natural frequencies are compared with results of [13]. Also neglecting the effect of
temperature, natural frequencies of FG microbeam are compared with those given by Ref. [25].
The natural frequencies obtained by simplification to homogeneous material and neglecting the
temperature effects are well compared with data given in literature search. The results show that
the temperature has significant effect on natural frequencies of microbeams made of functionally
graded materials.

2 Mathematical formulation

Figure (1) shows a beam of length L and thickness h made of functionally graded materials.
Material properties of the beam varies through the thickness and obeys the fraction ratio’s law.

Vc + Vm = 1 (1)

Where, Vc and Vm are volume fractions of ceramic and metal. It is assumed that the bottom of
the beam z = −h

2
is pure ceramic and the top of the beam z = h

2
is pure metal. According to
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Figure 1 Geometry of the FG-Microbeam

the fraction ratio law, the variation of material properties of the beam through its thickness is

E(z) = (Ec − Em)(
z

h
+

1

2
)β + Em (2)

α(z) = (αc − αm)(
z

h
+

1

2
)β + αm (3)

ρ(z) = (ρc − ρm)(
z

h
+

1

2
)β + ρm (4)

where ρm and ρc are densities, Em and Ec are modulus of elasticity, and αm and αc are thermal
expansion coefficient of metal and ceramic respectively. The parameter β is volume fraction
power. Applying the stress-couple theory developed by Yang et al. [7], the strain energy Us in
an isotropic linear elastic material which occupies the region L is

Us =

∫
V

(σijεji +mijχji)dV (5)

where σij is the Cauchy stress tensor. Definition of infinitesimal strain tensor εij , symmetric
curvature tensor χij , and deviatoric part of stress-couple tensor mij is

εij =
1

2
(ui,j + uj,i) (6)

χij =
1

2
(θi,j + θj,i) (7)

mij = 2l2µχij (8)

In Eqs. (6) through (8), ui is the displacement field, µ is the shear modulus and l is the material
length scale parameter. The rotation vector θi is

θi = −1

2
εijkuj,k (9)

Wherein, εijk is permutation symbol.
Based on the Timoshenko beam theory, displacements u1 and u3 of the beam along the x

and z axis are defined as

u1(x, z, t) = zφ(x, t)

u3(x, z, t) = w(x, t) (10)

where φ is the transverse rotation about the normal axis y. Substituting the displacement field
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(10) into strain tensor (7), the strain-displacement equations are found as follow

εxx = z
∂φ

∂x

εxz =
1

2
(
∂w

∂x
+ φ)

εyy = εzz = εyz = εxy = 0 (11)

According to Eq. (10), components of the rotation vector in Eq. (9) are

θy =
1

2
(φ− ∂w

∂x
)

θx = θz = 0 (12)

and components of the symmetric curvature tensor according to the Timoshenko beam theory
are

χxy =
1

4
(
∂φ

∂x
− ∂2w

∂x2
)

χxx = χyy = χzz = χyz = χxz = 0 (13)

Substituting Eq. (13) into Eq. (8), the only nonzero component of deviatoric stress-couple
tensor is

mxy =
l2µ

2

(
∂φ

∂x
− ∂2w

∂x2

)
(14)

Applying the generalized elastic stress-strain constitutive law, stress components of the FG
nanobeam corresponding to strain components given in Eq. (11) are

σij = 2µ(z) εij + [λ(z)εkk − (3λ(z) + 2µ(z))α(z)∆T ]δij (15)

where

λ =
E(z)(1− ν)

(1 + ν)(1− 2ν)
, µ =

E(z)

2(1 + ν)

(16)

Substituting conditions gieven in Eq. (11) into Eq. (15) results

σxx =
E(z)(1− ν)

(1 + ν)(1− 2ν)
εxx −

E(z)

(1− 2ν)
α(z)∆T

σxz =
E(z)

(1 + ν)
εxz (17)

Upon substitution the stress, strain, symmetric curvature and deviatoric stress-couple tensors
into Eq. (5), the strain energy is obtained. Now, the strain energy is divided into thermal and
mechanical parts as follows

US = Um + UT (18)
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where the thermal strain energy UT and mechanical strain energy Um are

Um =
1

2

∫ L

0

[Mx(
∂φ

∂x
) +Qx(

∂w

∂x
+ φ) +

1

2
Yxy(

∂φ

∂x
− ∂2w

∂x2
)]dx (19)

UT =
1

2

∫ L

0

−A11∆T (
∂w

∂x
)2dx (20)

In Eqs. (19) and Eq. (20), the bending moment Mx, the shear force Qx and the torque coupling
Yxy are

Mx =

∫ h/2

−h/2
σxxzdz = D11(

∂φ

∂x
) (21)

Yxy =

∫ h/2

−h/2
mxydz =

1

2
l2A55(

∂φ

∂x
− ∂2w

∂x2
) (22)

Qx =

∫ h/2

−h/2
σxzdz = A55(

∂w

∂x
+ φ) (23)

Constants A11, A55 and D11 are obtained by calculating the following integrals.

A55 =

∫ h/2

−h/2

E(z)

2(1 + ν)
dz (24)

[A11, D11] =

∫ h/2

−h/2

E(z)(1− ν)

(1 + ν)(1− ν)
α(z)[1, z2]dz (25)

By taking into account the rotational inertia, the kinetic energy of the FG nanobeam is

K =
1

2

∫
Λ

ρ(z)(u̇2
1 + u̇2

3)dΛ =
1

2

∫ L

0

[I1(u̇2
1) + I1(ẇ2) + I2(φ̇2

1)]dz (26)

Wherein,

[I1, I2] =

∫ h/2

−h/2
ρ(z)[1, z2]dx (27)

The boundary conditions for a beam with both end simply supported are

u1 = w =
∂φ

∂x
= Mx = 0 at x = 0 and x = L (28a)

and for both end clamped are

u1 = w = φ = 0 at x = 0 and x = L (28b)

To meet the simply support boundary conditions (28a), u3 and φ are assumed as

u1 =
N∑
n=1

An(t) sin(
nπx

L
)

u3 =
N∑
n=1

Bn(t) sin(
nπx

L
)

φ =
N∑
n=1

Cn(t) cos(
nπx

L
) (29)
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and for clamped boundary conditions (30), they are assumed as

u1 =
N∑
n=1

An(t) sin(
nπx

L
)

u3 =
N∑
n=1

Bn(t) sin(
nπx

L
)

φ =
N∑
n=1

Cn(t) sin(
nπx

L
) (30)

The multipliers An(t) , Bn(t) and Cn(t) in Eqs. (29) and (30) are calculated using the Ritz
method. To this aim, the Lagrangian function is defined as

L = K − Us (31)

According to Hamilton’s principle, the integral of Lagrangian function should be stationary
through the motion of the beam. Applying the Ritz method with the solution given in Eqs.
(29) and (30), the functional of Lagrangian (31) is extermized with respect to coefficients An(t)
,Bn(t) and Cn(t)as follows

∂L

∂An
= 0,

∂L

∂Bn

= 0,
∂L

∂Cn
= 0 (32)

Substitution of Eqs. (29) and (30) into Eqs. (19), (20) and (26) and satisfying conditions (32),
results

([K]− ω2[M ]){q} = 0 (33)

In this equation, ω is the natural frequency, [M ] is the mass matrix, [K] is the stiffness matrix.
Stiffness and mass matrixes are composed of (3 × 3) sub-matrices and the elements of these
sub-matrices are given in appendix. Sub-matrices in [K] and [M] are (N × N) matrices. Eqs.
(33), is s a set of linear and simultaneous algebraic equations. In this equation q is vector of the
constants as shown in following equation.

{q} = {An, Bn, Cn}T (34)

Solving the system of Eqs. (34), the natural frequencies and the vector of constants are deter-
mined.

3 Validation

Results obtained in this paper are compared with results of Ansari et al. [25] for a FG mi-
crobeam made of AL/Sic at room temperature and results of Liang et al. [13] for an isotropic
microbeam at various temperatures. In Table (1), normalized natural frequencies obtained for
various volume fraction powers β are compared between current work and Ref. [25] for the sim-
ply supported Timoshenko FG microbeam. In Ref. [25], the strain gradient theory excluding the
thermal effect is applied to the microbeam with material properties EAl = 70 GPa, νAl = 0.3,
ρAl = 2702 kg/m3 for metal (Aluminium), ESc = 427 GPa, νSc = 0.17, ρSc = 3100 kg/m3

for ceramic (SiC), the thickness to length ratio h/L = 0.1 and the length scale parameter
l = 17.6 µm. In present work the gradient of the poisson’s ratio through the thickness of the
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Table 1 Comparison of normalized natural frequency ω̃ between current work and Ref.
[25]

β

Source 1 0.1 0.6 1.2 2 10 ∞
Ref. [25] 0.8538 0.7619 0.6084 0.5470 0.5100 0.4332 0.3863
Present 0.8657 0.8327 0.7286 0.6658 0.61935 0.4873 0.4441

Table 2 Comparison of first three normalized natural frequencies ω̃ with Ref. [13]

∆T

ω Source 0 20 40 60 80 100
ω1 Present 0.3567 0.3415 0.3257 0.3091 0.2915 0.2727

Ref. [13] 0.3478 0.3322 0.3159 0.2986 0.2804 0.2608
ω2 Present 1.4098 1.3950 1.3802 1.3651 1.3499 1.3345

Ref. [13] 1.2890 1.2727 1.2562 1.2394 1.2225 1.2053
ω3 Present 3.1107 3.0963 3.0818 3.0673 3.0527 3.0381

Ref. [13] 2.6277 2.6099 2.5920 2.5739 2.5558 2.5374

beam is neglected and the poisson’s ratio is assumed to be ν = 0.38. In Table(1), the values of
normalized natural frequency of FG-Nanobeam (ω̃) with various volume fraction powers and
double hinged (H-H) boundary conditions are compared with results of Ref. [25]. It is assumed
that the ratio of thickness to length is h/L = 0.1 and temperature change is ∆T = 00C. It
can be seen that the results from this study are well compared to those given in Ref. [25]. In
normalized natural frequency ω̃ is defined as ω̃ = ωL

√
I/A. Where, I and A are

A =

∫ h/2

−h/2

EAL(1− ν)

(1− 2ν)(1 + ν)
dz

I =

∫ h/2

−h/2
ρALdz (35)

EAl and ρAL are elastic modulus and density of Aluminium.
In Table (2), first three normalized natural frequencies of a simply supported isotropic mi-

crobeam obtained in present work is compared with results of Liang et al. [13] for various
values of temperature change. The beam data are E = 1.44 GPa, ρ = 1220 kg/m3, ν = 0.38,
length scale parameter l = 17.6 µm, thickness to length scale parameter ratio h/l = 2, thick-
ness to length ratio h/L = 0.1 and coefficient of thermal expansion α = 54×10−6/oC. Results
of data given in Table (2) shows close agreement between data of present work and Ref. [13].

4 Results and discussion

In this paper the temperature effect on natural frequencies of a simply supported FG-micro
beam made of Al/Sic materials is studied. The material properties of the beam for all results
represented in this section are the same as given for the Table (1) and the length scale parameter
is assumed to be l = 16µm.

Tables (3) and (4) show the effect of temperature, on first natural frequency of a double
hinged (H-H) FG microbeam. The thermal expansion coefficient is α = 54× 10−6/oC. Data of
these tables show that, increasing the temperature decreases the fundamental frequencies of the
beam. Also, increasing the volume fraction power decreases natural frequencies. This is due to
the fact that the percentage of metal increases with increase in volume fraction power. Increase
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Table 3 Fundamental natural frequency of FG-microbeam for h/l = 1 and H-H boundary
condition

β

h/L ∆T 0 0.1 0.5 1 2 5 10
0.1 0 13.2182 12.7371 11.3982 10.4239 9.3687 8.0740 7.2578

20 12.9544 12.4811 11.1676 10.2158 9.1886 7.9274 7.1274
40 12.6850 12.2197 10.9321 10.0034 9.0049 7.7781 6.9946
60 12.4099 11.9527 10.6915 9.7864 8.8173 7.6259 6.8593
80 12.1285 11.6795 10.4453 9.5645 8.6257 7.4706 6.7212
100 11.8404 11.3997 10.1931 9.3373 8.4298 7.3120 6.5802
120 11.5451 11.1130 9.9346 9.1044 8.2291 7.1498 6.4361

0.15 0 30.1857 29.0875 26.0301 23.8044 21.3938 18.4365 16.5731
20 29.9247 28.3211 25.8021 23.5986 21.2156 18.2915 16.4441
40 29.6615 28.5789 25.5719 23.3910 21.0366 18.1454 16.3140
60 29.3959 28.3211 25.3397 23.1816 20.8547 17.998 16.1830
80 29.1278 28.061 25.1054 22.9702 20.6719 17.8495 16.0508
100 28.8573 27.7984 24.8688 22.7569 20.4875 17.6996 15.9175
120 28.5842 27.5334 24.6300 22.5415 20.3014 17.5486 15.7832

Table 4 Fundamental natural frequency of FG-microbeam for h/l = 4 and H-H
boundary condition

β

h/L ∆T 0 0.1 0.5 1 2 5 10
0.1 0 1.9400 1.8571 1.6513 1.5299 1.4219 1.2823 1.1612

20 1.8254 1.7451 1.5497 1.4395 1.3465 1.2238 1.1096
40 1.7031 1.6254 1.4410 1.3430 1.2665 1.1624 1.0555
60 1.5713 1.4961 1.3233 1.2391 1.1812 1.0975 0.9984
80 1.4273 1.3546 1.1941 1.1256 1.0892 1.0286 0.9379
100 1.2672 1.1964 1.0491 0.9993 0.9887 0.9547 0.8747
120 1.0836 1.0138 0.8806 0.8545 0.8767 0.8746 0.8032

0.15 0 4.4303 4.2410 3.7711 3.4937 3.2471 2.9280 2.6517
20 4.3182 4.1316 3.6719 3.4053 3.1732 2.8706 2.6010
40 4.2032 4.0191 3.5698 3.3146 3.0975 2.8120 2.5493
60 4.0849 3.9034 3.4648 3.2213 3.0200 2.7522 2.4965
80 3.9631 3.7842 3.3565 3.1253 2.9404 2.6911 2.4426
100 3.8374 3.6611 3.2446 3.0262 2.8585 2.6285 2.3875
120 3.7075 3.5337 3.1286 2.9237 2.7743 2.5644 2.3311

in h/L, increases the fundamental frequencies. On the other hand, comparison of the natural
frequencies between Tables (3) and (4) shows that, the length scale parameter has significant
effect on fundamental frequencies of the FG microbeam. As it can be seen from these tables,
the natural frequencies decrease rapidly with increase in hight to length scale parameter.

Figure (2) compares the fundamental natural frequency of the FG-microbeam between the
conventional and stress couple theories. The curves plotted in this figure, correspond to h/L =
0.1, β = 5 and ∆T = 600C. As the figure shows the difference between these two theories
increases for small values of height to length scale parameter h/l. The fundamental frequency
obtained by stress couple theory is more than twice of the conventional theory for h/l = 1, while
the difference is negligible for h/l > 6. Also, it can be seen that, the predicted natural frequency
by modified couple stress theory are higher than those obtained by the classical theory always.
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Figure 2 Comparison of fundamental frequency between conventional and stress-couple theories
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Figure 3 Effect of temperature on variation of natural frequency for β = 5 and h/L = 0.1

The difference between frequencies predicted by these two models is more significant when the
thickness of the plate is small, but it is negligible when thickness of the beam is increased. This
indicates that the size effect is tangible and must be taken into account when the thickness of
the beam is in micron scale. Figure (3) shows fundamental frequencies of the FG microbeam
versus the height to length scale parameter ratio at temperature range between 0 to 100oC. The
figure shows that for h/l < 4, natural frequencies of the beam are highly affected by the length
scale parameter. While, for h/l > 10, the natural frequencies are not affected by the length
scale parameter. This behavior is seen for all temperature difference values. Table (5) shows
the thermal effect on first natural frequency of a C-C FG microbeam. Data of these tables show
that, increase in temperature results to decrease in fundamental frequencies of the beam. Also,
increasing the volume fraction power decreases natural frequencies. This is due to the fact that
the percentage of metal increases with increase in volume fraction power. Increase in h/L,
increases the fundamental frequencies. On the other hand, comparison the natural frequencies
of Tables (4) and (5) shows that natural frequency values in the same condition for C-C boundary
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Table 5 Variation of first natural frequency of FG-microbeam for C-C boundary
conditions and h/l = 4

β

h/L ∆T 0 0.1 0.5 1 2 5 10
0.1 0 2.2390 2.1710 2.0081 1.9173 1.8408 1.7446 1.6623

20 2.1405 2.0760 1.9254 1.8460 1.7832 1.7020 1.6266
40 2.0372 1.9764 1.8390 1.7718 1.7236 1.6584 1.5902
60 1.9284 1.8716 1.7484 1.6943 1.6619 1.6136 1.5529
80 1.8130 1.7605 1.6528 1.6132 1.5978 1.5676 1.5147
100 1.6898 1.6419 1.5513 1.5278 1.5311 1.5201 1.4755
120 1.4352 1.5141 1.4426 1.4372 1.4612 1.4711 1.4352

0.15 0 8.1821 8.1158 7.9787 7.9228 7.8919 7.8450 7.7838
20 8.1219 8.0592 7.9323 7.8842 7.8618 7.8238 7.7667
40 8.0614 8.0021 7.8856 7.8455 7.8316 7.8025 7.7495
60 8.0003 7.9446 7.8386 7.8065 7.8012 7.7811 7.7323
80 7.9388 7.8867 7.8013 7.7714 7.7507 7.7397 7.7151
100 7.8768 7.8284 7.7438 7.7280 7.7402 7.7302 7.6978
120 7.8143 7.7696 7.6959 7.6885 7.7094 7.7167 7.6805
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Figure 4 Variation of first natural frequency versus the temperature for h/L = 0.05 and h/l = 1

conditions is much higher in comparison to H-H boundary conditions. The tables show that, the
natural frequencies decrease rapidly with increase in hight to length scale parameter.

Figures (4) and (5) show fundamental frequencies of a H-H FG microbeam versus power law
index and temperature. In these figures, the thickness to length scale parameter ratio are h/l = 1
and h/l = 4 respectively. Data of these Figures show that, increase in temperature results to
decrease in fundamental frequencies of the beam. Also, increasing the volume fraction power
decreases natural frequencies. Also, increasing the volume fraction power and temperature
results to decrease in natural frequencies. This is due to the fact that increase in temperature
and volume fraction reduces the stiffness of the beam. Figure (6) compares the plot of first
natural frequency versus the volume fraction power between H-H and C-C boundary conditions.
In these figures, the thickness to length scale parameter ratios are h/l = 1 and h/L = 0.1
respectively. As it can be seen the frequencies of the C-C boundary conditions are higher than
those of the H-H boundary conditions.
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Figure 5 Variation of first natural frequency versus the temperature for h/L = 0.05 and h/l = 4
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5 Conclusion

In this study, natural frequencies of the FG microbeam are obtained using the stress-couple
theory. To this aim, the Lagrangian function of the beam based on the Timoshenko theory is
obtained. Applying the Hamilton’s principle with the Ritz approximation method, equations
of natural frequencies of the beam are solved numerically to investigate effects of the temper-
ature, the length scale parameter, the gradient of material through the thickness and geometric
parameters of the beam on natural frequencies. Results obtained using the method applied in
this paper are validated with those of given in the literature search for cases of the isotropic
microbeam and the FG mircobeam. The numerical results show that, increasing the tempera-
ture decreases natural frequencies of the beam. Increasing the volume fraction of metal, also
decreases natural frequencies. Comparison of frequencies obtained based on the stress-couple
and the conventional theories shows that the difference of these theories is significant for small
values of height to length scale ratio.
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Nomenclature

[K] Stiffness matrix
[M ] Mass matrix
Ec Modulus of elasticity of ceramic
Em Modulus of elasticity of metal
l Material length scale parameter
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mij Stress-couple tensor components
T Kinetic energy
ui Displacement vector components
Us Strain energy
Vc Volume fraction of ceramic
Vm Volume fraction of metal
q Vector of constants

Greek Symbols
χij Curvature tensor components
εij Strain tensor components
λ Lame constant
µ Shear modulus
ρc Density of ceramic
ρm Density of metal
σij Stress tensor components
θi Rotation vector components

Appendix

The stiffness and mass matrix [K], [M] in Eqs. (33) are

[K] =

 [Kaa
mn] [Kab

mn] [Kac
mn]

[Kbb
mn] [Kbc

mn]
sym [Kcc

mn]

 , [M ] =

 [Maa
mn] [Mab

mn] [Mac
mn]

[M bb
mn] [M bc

mn]
sym [M cc

mn]

 (36)

where

[Kaa
mn] =

∂2Um
∂Am∂An

, [Kbb
mn] =

∂2Um
∂Bm∂Bn

, [Kcc
mn] =

∂2Um
∂Cm∂Cn

,

[Kab
mn] =

∂2Um
∂Am∂Bn

, [Kbc
mn] =

∂2Um
∂Bm∂Cn

, [Kac
mn] =

∂2Um
∂Am∂Cn

,

[Maa
mn] =

∂2w

∂Am∂An
, [M bb

mn] =
∂2w

∂Bm∂Bn

, [M cc
mn] =

∂2w

∂Cm∂Cn
,

[Mab
mn] =

∂2w

∂Am∂Bn

, [M bc
mn] =

∂2w

∂Bm∂Cn
, [Mac

mn] =
∂2w

∂Am∂Cn
(37)

In this work a model with 9 degrees of freedom is applied for H-H and C-C boundary
conditions. The generalized coordinates of the model are: Ai , Bi and Ci with i = 1 to 3.
Elements of sub-matrices in the stiffness matrix [K] and the mass matrix [M] for 9 degrees of
freedom are

[Kaa
mn] = B

 Kaa
11 Kaa

12 Kaa
13

Kaa
22 Kaa

23

sym Kaa
33

 , [Maa
mn] =

 Maa
11 Maa

12 Maa
13

Maa
22 Maa

23

sym Maa
33

 (38)
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 چكيده

 

بررسی ارتعاشات آزاد میکروتیر تیموشنکو ساخته شده از  برایتئوری تنش کوپل اصلاح شده از  ،در این مقاله

 ،رودر مقیاس میک در ریزساختارها اثرات بین اتمی نظر گرفتن در ه دلیل. بگرفته شده است بهرهمواد تابعی 

. هر دو شرط کندبینی میپیشبا دقت بیشتری  تابعی رارفتار دینامیکی میکرو تیر  تئوری تنش کوپل اصلاح شده

نیمم اند. با میهای ساده و گیردار برای بدست آوردن فرکانسهای طبیعی تیر در نظر گرفته شدهگاهمرزی تکیه

ای اند. نهایتا اثرات پارامترهبدست آمده تیرفرکانسهای طبیعی میکروکردن تابع لاگرانژین و اعمال روش رتیز، 

تغییر درجه حرارت، تغییر خواص تابعی ماده، نسبت ارتفاع تیر به پارامتر مقیاس طول و نسبت  مختلف مانند

فته رتیر نشان داده شده و با جزئیات مورد بررسی قرار گارتفاع به طول تیر بر روی فرکانسهای طبیعی میکرو

های موجود در سوابق علمی تحقیق سنجی، نتایج عددی بدست آمده در این مقاله با دادهاست. به منظور صحت

 مقایسه شده است.
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