
 

 

 

 

 
Keywords: Anti-plane crack, Piezoelectric layer, Orthotropic half-planes, Field intensity 

factors, Singular integral equation  

 
1 Introduction 

 

Piezoelectric materials and structures have received significant attention due to the potential for 

designing adaptive structures that are both light in weight and possess adaptive control 

capabilities. Because of their brittleness, cracks in these materials are greatly concerned. 

Piezoelectric ceramics are bounded to composite components in many fields of modern 

technology. It is, thus, of great importance to study the fracture behavior of layered structures 

which are made of piezoelectric components. Cracked piezoelectric materials clearly consist 

multiple cracks with an extremely high crack density.  

Therefore, the interaction between multiple cracks in piezoelectric materials plays an important 

role in the analysis and design of smart structures. An anti-plane shear crack in a piezoelectric 

layer bounded to dissimilar half-spaces under permeable crack-face conditions has been 

discussed using integral transform methods by Narita et al. [1].  
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Cracked Piezoelectric Layer Bounded 

between Two Orthotropic Half-planes 
This paper deals with the behavior of anti-plane shear crack 

in a piezoelectric layer bounded between two orthotropic 

half-planes within the framework of linear electroelasticity. 

The crack surfaces are assumed to be permeable or 

impermeable. The analysis is based on the stress fields 

caused by electro-elastic dislocation in the medium.  
Fourier transforms are used to reduce the dislocation 

problem to the solution of Cauchy-type singular integral 

equations, which are solved numerically for the dislocation 

density on the cracks. The dislocation densities are then 

employed to derive field intensity factors at the crack tips. 

The results show that the stress and the electric 

displacement intensity factors at the crack tips depend on 

the lengths and orientation of the cracks. It is also shown 

that, for a fixed value of the mechanical load, the field 

intensity factor can be either enhanced depending on the 

magnitude and direction of the applied electrical load. 

Furthermore, the interaction between the two cracks is 

investigated. 
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Shin and Lee [2] considered the problem of a finite eccentric crack in a piezoelectric ceramic 

bounded two elastic half-planes. The investigation of two collinear anti-plane shear cracks in a 

piezoelectric layer bounded to half-planes has been studied by Zhou et al. [3]. In this paper the 

effect of the geometry of the two collinear cracks and piezoelectric constants upon the stress 

intensity factors have been studied. Kwon et al. [4] studied electromechanical behavior of an 

eccentric crack in a piezoelectric ceramic layer bounded between two elastic layers under anti-

plane mechanical and in-plane electrical loadings. Ueda [5] considered the problem of a crack 

in a functionally graded piezoelectric material bounded to two elastic surface layers. Shenghu 

and Xing [6] treated the problem of a periodic array of parallel cracks in a homogeneous 

piezoelectric strip bounded to a FGP material.  

Ding and Li [7] treated the problem of a periodic array of cracks in a functionally graded 

piezoelectric strip bounded to a homogeneous piezoelectric material. The effect of an imperfect 

interface on the fracture behavior of a layered piezoelectric was reported by Li and Lee [8]. 

They also concentrated mainly on the crack tip shielding and anti-shielding effects. The 

problem of a piezoelectric material containing a crack bounded to a FGPM material was 

considered by Ding et al. [9]. The plane deformation of a piezoelectric-piezomagnetic 

composite with two un-coaxial cracks parallel to the interface was examined by Li et al. [10]. 

The problem of cracked functionally graded piezoelectric layer was solved by Mousavi and 

Paavola [11]. These authors employed the distributed dislocation technique to solve the 

problem. Interaction between multiple cracks with arbitrary patterns in a piezoelectric strip 

reinforced with FGM coating under anti-plane loading was the subject of study by Bagheri et 

al. [12]. Recently Nourazar and Ayatollahi [13] obtained stress intensity factors for arbitrary 

oriented internal crack in an orthotropic layer bounded between two piezoelectric layers. 

The main purpose of this study is to perform stress analysis of cracked piezoelectric layer which 

is bounded by two orthotropic layers. The distributed dislocation technique is utilized to 

perform a set of singular integral equations for the piezoelectric layer weakened by multiple 

cracks. These Cauchy singular integral equations are solved numerically by using Gauss-

Chebyshev integration technique. The effects of geometry and material properties on field 

intensity factors are investigated. 

 

 

2    Solution of electro-elastic dislocation 

 

The dislocation problem under consideration is described in Fig.1. The piezoelectric layer is 

poled in the z-direction, which guarantees its transversely isotropic nature. Since the 

piezoelectric materials are polarized in the z-direction, the anti-plane elastic field is coupled 

with the in-plane electric field. The constitutive equations for piezoelectric materials in anti-

plane problem can be written as: 

 

(x, y) 0, (x, y) 0, ( , ),u v w w x y= = =  

( , ), ( , ), 0.x x y y zE E x y E E x y E= = =                                         (1) 

 

For a piezoelectric material, the following coupled electromechanical equations hold 
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Figure 1 A schematic of a medium containing electromechanical dislocations. 
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where , ( , )iD i x y=  and j represent the components of electric displacements, and electric 

potential, respectively, 44c , 15e  and 11d  are the shear modulus, piezoelectric coefficient and 

dielectric parameter. 

The piezoelectricity problem requires the solution of the following equilibrium equations:  

 
2 2

44 15

2 2

15 11

( , ) ( , ) 0,

( , ) ( , ) 0, 0.

c w x y e x y

e w x y d x y h y

j

j

Ð + Ð =

Ð - Ð = - < <                      
 (3) 

 

In the above equations, 2Ð  is the two dimensional Laplacian operator. It should be note that 

body forces and free charge are neglected in this study. Suppose that the cracks are electrically 

impermeable. Then, the boundary and continuity conditions for the elastic and electric field are 

taken to be:  

 

lim ( , ) lim ( , ) lim ( , ) 0zx zy
y y y

x y x y w x ys s
­¤ ­¤ ­¤

= = =, 

( ,0 ) 0, ( , ) 0y yD x D x h- += - = , 

( , ) ( , )yz yzx h x hs s+ -- = - ,
 

2 3( , ) ( , )w x h w x h+ -- = - , 

( ,0 ) ( ,0 )yz yzx xs s+ -= , 

1 2( ,0 ) ( ,0 ),w x w x+ -= .¤<x                                       (4) 

 

The conditions representing the screw and electric dislocations are expressed by: 

 



 Iranian Journal of Mechanical Engineering                    Vol. 19, No. 1, March 2018 

 
82 

( , ) ( , )yz yzx xs h s h+ -= , 

( , ) ( , )y yD x D xh h+ -= .                                                     (5a) 

2 2( , ) ( , ) ( )zw x w x b H xh h x+ -- = -, 

2 2( , ) ( , ) ( ),x x b H xjj h j h x+ -- = - x <¤.                          (5b) 

 

In which (.)H  being the Heaviside-step function, superscripts + and – denote upper and lower 

edges of the cut, respectively. The Eqs. (5a), enforce the continuity of tractions and electric 

displacement while the Eqs. (5b) implies the multi valuedness of displacement and electric 

potential. In the case of permeable conditions, the electric potential is continuous in the lower 

and upper edges of the cut. To obtain the stress and electric displacement fields induced by the 

continuously distributed dislocation, one needs to solve the problem of single dislocation. By 

using the standard Fourier transforms, the solution of Eq. (3) may be obtained as: 

1 2

1
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2
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3 4
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¤
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3 4

1
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Where the coefficients ( ), ( ), 1,2,3,4i iA s B s i=  are unknown. These unknown functions will be 

determined from the boundary conditions (4) and (5). Thus, after obtaining the displacement 

components and electric potential expressions, the stresses and the electric displacements are 

as follows: 
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     and 
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and
2

11 44 15 11 15d c e , d ,y yG g g G ea b g= + = = . Also
2

x yg G G=  is the ratio of material 

properties of the half-planes. By observing that the equations 7(a) and 7(b) have the form: 
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 If we let ( , )G y s¤ be the leading term in the asymptotic form of ( , )G y s  for s­¤, ( , )F x y  

can be expressed as: 

( , ) ( , ) ( , )s bF x y F x y F x y= +                                                    (9) 

It is expected that the kernels will exhibit certain singular behavior. Thus, a detailed asymptotic 

analysis of the nature of singularities is needed. The integrals giving the kernels in Eq.(8) show 

divergent behavior for s­¤. These divergent parts of the kernels may be separated by 

inquiring the asymptotic behavior of the integrands. 
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Where Fs is the singular part of the kernel and Fb is the bounded functions. The singular 

behavior of the field components is determined by the asymptotic values of the integrands in 

Eqs. (7a) and (7b) for s­¤. The details of the analysis will not be given in this paper. The 

leading terms of asymptotic expansions of the integrands in Eqs. (7a) and (7b) are the following 

appropriate forms [14]: 

 

44 15

2 2

c
( , y) ,

2 ( ) ( )

z

zy

b b e x
x

x y

j x
s

p x h
¤

+ -
=-

- + -
 

44 15

2 2

c
(x, y) ,

2 ( ) ( )

z

zx

b b e y

x y

j h
s

p x h
¤

+ -
=

- + -
 

15 11

2 2
(x, y) ,

2 ( ) ( )

z

x

b e b d y
D

x y

j h

p x h
¤

- -
=

- + -
 

11 15

2 2
( , ) , 0,

2 ( ) ( )

z

y

b d b e x
D x y y

x y

j x
h

p x h
¤

- -
= < <

- + -
 

44 15

2 2

c
( , ) ,

2 ( ) ( )

z

zy

b b e x
x y

x y

j x
s

p x h
¤

+ -
=-

- + -
 

44 15

2 2
(x, y) ,

2 ( ) ( )

z

zx

b c b e y

x y

j h
s

p x h
¤

+ -
=

- + -
 

11

2 2

15
(x, y) ,

2 ( ) ( )

z

x

b b d y
D

x y

e j h

p x h
¤

-

- + -

-
=  



Cracked Piezoelectric Layer Bounded between... 85 

1511

2 2
(x, y) , .

2 ( ) ( )

z

y

b d b x
D h y

x y

ej x
h

p x h
¤

- -
= - < <

- + -       

 (12) 

 

It may be considered that the stress and electric displacement components have the standard 

Cauchy type singularities at the dislocation location. By adding and subtracting the asymptotic 

expressions of integrands, the stress and electric displacement components are found as follows: 
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For computational efficiency it may also be more convenient to evaluate the kernels in 

appropriate exponential forms. It is seen that for s­¤ all integrals in Eq. (13) decay quickly, 

which makes the integrals susceptible to numerical evaluation. For permeable case, it is 

sufficient to let the jump in the electric potential be zero. 

 
3 The singular integral equations 

 

Let N be the number of cracks in the medium. The curved cracks configurations with respect 

to the Cartesian coordinate may be expressed in parametric form as: 
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                                                 (14) 

  

 Two movable orthogonal coordinate systems s-n are chosen on the i-th crack such that their 

origin locate on the cracks while the s-axis remains tangent to the cracks surface. The stress and 

electric components should be transformed to the s-n coordinate on the i-the crack. Assume 

screw dislocations with unknown density are distributed on the infinitesimal segment 

dttytx jj

22 )]([)]([ ¡+¡  of the surface of j-th crack. The following integral equations are 

obtained:  
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            (15) 

where )(tBzj  and pjB are the dislocation densities on the non-dimensionalized length 11 ¢¢- t

. and the known kernels are given in the Appendix. The left hand side of the Eqs. (15) are stress 

and electric displacement components at the supposed location of the cracks with negative sign. 

The integral equations must be solved under the following single-valuedness conditions: 
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The displacement field is single-valued out of surfaces of embedded cracks. So, Cauchy 

singular integral Eqs. (15) should be complemented by closure requirements  

1

2 2

1

[ ( )] [ ( )] ( ) 0, { , }j j kjx t y t B t dt k z p
-

¡ ¡+ = Íñ
                         

 (17) 

The singular integral equations (15) are solved numerically by using (17) and an appropriate 

collocation technique to determine dislocation density functions. From (15), it is seen that the 

dominant part of the integral has a simple Cauchy kernel and consequently, the solution may 

be expressed as: 
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where ( )kjg t is bounded and ( 1) 0, ( , )kjg k z p° ¸ = . The function ( )kjg t  are obtained via 

solution of the system of equations. The field intensity factors for the i-th embedded crack are 

[12]: 
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=° -ì ü

í ý

                                    (19) 

 

where 
1

2 2 4L ( ) [[ ( 1)] [ ( 1)] ]i i ix y¡ ¡= +  The details of the derivation of field intensity factors to 

reach (19) are not given here.  

 
4 Results and discussions 

 

The main interest in this study is in evaluating the effect of loading conditions, cracks 

interaction and geometric size on field intensity factor in the piezoelectric layer bounded to 

orthotropic half-planes. The field intensity factors are normalized with 0 0 15 44( )DK e c Lt=  

and 0 0 .K Lt=  Where L is the half length of crack. In Table (1), the material properties of 

piezoelectric layer is presented. 

The eletromechanical coupling factor is defined by 0 15

0 11

D e

d
l
t
= . In the proceeding example, 

unless otherwise stated, the medium is assumed to be loaded by constant loading 

0 0,yz yD Ds t= =  which are distributed on the boundaries. In this section we first present some 

results calculated to verify the analytical solution. The validity of results is illustrated by solving 

four examples. 

The problem of an anti-plane shear crack in a piezoelectric layer bonded to dissimilar half-

planes solved by Narita et al. [1] is re-examined and the results are displayed in Fig. (2).  

As it may be seen, the agreement of the results in the above example is excellent. The next 

verification of analysis is established by considering a crack with length 2L which is parallel to 

the piezoelectric layer boundary under permeable condition.  

As it may be observed in Fig. 3, the results of these analyses are in quite good agreement with 

the results given by Shin and Lee [2]. 

 

 

 
            Table 1  The material properties 

 PZT-4 PZT-5 PZT-5H Epoxy 

)(
244

m

N
c  102.56 10³  102.11 10³  102.3 10³  0.176  

)(
215

m

C
e  12.7  12.3  17.0  0  

)(11
Vm

C
d  1064.6 10-³  98.11 10-³  10150.4 10-³  

_ 
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Figure 2 Dimensionless stress intensity factors versus 2h L . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Dimensionless stress intensity factors versus 2L h . 

 

 

The values of normalized stress intensity factor for eccentric crack in a piezoelectric strip 

bounded to half-planes are presented in Fig. (4). The results closely match those obtained for 

the same problem by Shin and Lee [2]. 

The last verification is performed by considering two equal-length collinear cracks with length 

2L which are situated on the center-line of the piezoelectric layer Fig. (5). The results are 

compared with the solution of a cracked piezoelectric layer bounded to two elastic half-planes 

obtained by Zhou et al. [3]. As it may be observed, except for small value of b, the results of 

these analyses have in reasonable agreement. 
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Figure 4 Dimensionless stress intensity factors versus 2e h . 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 Dimensionless stress intensity factors for two collinear cracks 

 

 

Fig. (6). illustrates the effect of crack orientation on the normalized field intensity factors. The 

electromechanical coupling factor was assumed to be 0.5l= . The crack located on the center-

line of the piezoelectric layer. It is seen that, as q increase the normalized field intensity factor 

first decrease obviously from relatively high values and then at 2pq=  tend to zero.  

At 2pq= , the loading is parallel to the crack, consequently, the traction on the crack surface 

vanishes. Therefore, the field intensity factors are zero. The center line of the piezoelectric layer 

is the line of symmetry and the field intensity factors for crack tips are identical. 
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Figure 6 Dimensionless field intensity factors for an oblique crack. 

 

 

 
 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 7 Dimensionless field intensity factors for a vertical crack. 

 

 

 

The field intensity factors for a crack perpendicular to the piezoelectric boundary are plotted in 

Fig. (7). for different values of d h . The results were calculated for a constant value of the 

crack length 2L=0.01m. The same observations can be made when varying the parameter h 

instead of the parameter d. It can be found that, the dimensionless field intensity factors 

decrease with the increase in d h .  

The different between the results of KL and KR decrease rapidly as the d h  approaches to the 

0.5. This phenomenon is caused by the symmetry of the problem. 
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Figure 8 Dimensionless electric intensity factors versus electromechanical coupling factor. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 9 Dimensionless field intensity factor for a parallel crack versus crack length. 

 

 

Fig. (8). depicts the normalized electric intensity factor versus electromechanical coupling 

factor. It follows from the obtained results that decreasing the value of the electromechanical 

coupling factor results in a decrease in the electric intensity factor. 

Fig. (9). displays the variation of the normalized field intensity factors against the normalized 

crack length for various piezoelectric material. The effect of material properties on stress 

intensity factor is negligible, but is noticeable on electric intensity factor.  

 

 



 Iranian Journal of Mechanical Engineering                    Vol. 19, No. 1, March 2018 

 
92 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 
Figure 10 Dimensionless field intensity factor for a curved crack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Dimensionless stress intensity factor for an oblique crack and parallel crack. 

 

 

In the following example a curved crack which are portions of the circumference of a circle is 

considered. The variation of normalized field intensity factors against j is depicted in Fig. 

(10). It may be seen that increasing the value of j while keeping a and h constant tends to 

increase the field intensity factor. It is evident from this figure that decreasing the value of j, 

which means that the crack length become short, leads to a reduction of the field intensity 

factors which become zero corresponding to the case of zero crack length. The variation of field 

intensity factors manifest the same trend. 

Fig. (11). exhibits the variation of stress intensity factor with the interaction of two cracks. The 

cracks L1R1 is fixed whereas crack L2R2 is changing orientation. As expected, stress intensity 

factors are functions of second crack orientations.  
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Figure 12 Dimensionless field intensity factors for parallel off-center cracks. 

 

 

Figure 12 Dimensionless field intensity factors for parallel off-center cracks. 

 

 

 

For 2pq= , the traction vanishes on L2R2 but the interaction between cracks produces small 

values of stress intensity factor of crack tips.  

Two off-center equal-length cracks which are parallel to the piezoelectric layer boundary are 

depicted in Fig. (12). In this case, the results were obtained for a constant value of the cracks 

center distance 0.1 m while the cracks lengths are changing with the same rate. It is observed 

that, the maximum field intensity factor for the crack tips R1 and L2 occur when the distance 

between them is minimum. 

 

5 Concluding remarks 

 

The fracture behavior of a piezoelectric layer bounded between two orthotropic containing 

multiple cracks is investigated using the method of distributed dislocation technique. The 

distributed dislocation technique is used to derive singular integral equations for analyzing a 

cracked piezoelectric layer. Two types of electric boundary conditions on the crack surface are 

considered. The computational results show that the type of piezoelectric layer has significant 

effect on the electric displacement intensity factor, but it has little effect on the stress intensity 

factor. The field intensity factors always increase with the increase of crack length. Also the 

field intensity factors depend on the magnitudes and directions of electrical loads. 
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Nomenclature  
 

,zb bj               Burgers vector  

,zj pjB B            Dislocation densities  

, ,x y zE E E       The electric fields 

(t), (t)zj pjg g     Regular terms of dislocation densities  

h                    Thickness of piezoelectric layer 

(.)H                Heaviside step function  
lm

ijK                 Kernels of integral equations  

,M DK K          Field intensity factor of crack tips 

N                   Total number of cracks  

, ,u v w             The displacement fields  

(s), y (s)i ix      Functions describing the geometry of cracks  

j                   Electric Potential 

,zx zys s          The anti-plane stress components  
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āºĊî¯ 
 

 Ă´æÍ øĊý ÿ¹ Ăz ôÎ¤ù ìĉ¾¤îõvÿÀĊ~ Ăĉwõ ½¹ Üévÿ ë¾£ ½w¤å½ ĂÞõwÖù üĉv ½¹ìĊ~ÿ¾£Ā£½vI ñ ¾Úý ½¹ wz ü¤å¾

¾Éĉv vº¤zv ½¹ )ºùj ¢Åºz ë¾£ ²ÖÅ ć¾ĉ¼~wý»Āæý ÿ ć¾ĉ¼~»Āæý Ôô³ ĈöĊö´£ Ĉĉw¬zwý ìĊ¤Åwõvÿ¾¤îõv ½¹  Ăĉwõ

 ìĉ¾¤îõvÿÀĊ~wz ā¹wæ¤Åv ¿v ôĉº{£ Ăĉ½Āå āºùj ¢Åºz ¢Åv. Ä Å Ăz ìúí Çÿ½ Üĉ¿Ā£ Ĉĉw¬zwý ĂÝĀú¬ù ¡wõ¹wÞù 

Ĉõv¾ò¤ýv wz ĈòþĊî£ ćwă ĈÉĀí ćv¾z ćÿw³ ÔĊ´ù üĉºþ¯ ë¾£ ¢´£ ½wz ÿ¾¤îõvĈîĊýwîù ¢Åºz āºùj ¢Åv )wz 

ô³ ć¹ºÝ ¡wõ¹wÞù Ĉõv¾ò¤ýv ÿ Ă{Åw´ù Ă¤ĊÆýv¹ ćwă Ĉĉw¬zwý ¾z ćÿ½ ±ĀÖÅ ë¾£ Iwă ¿v ûj ćv¾z Ă{Åw´ù 

yĉv¾Ñ ¡ºÉ Èþ£ ĈîĊýwîù ÿ Ĉîĉ¾¤îõv Ĉĉw¬zw« ā¹wæ¤Åv āºÉ ¢Åv)   

ªĉw¤ý ć¹ºÝ ¹v¹ ûwÊý yĉv¾Ñ Ăí ¡ºÉ Èþ£ ÿ Ăz Ĉîĉ¾¤îõv Ĉĉw¬zw« wĄí¾£ ĂÅºþăI  ā¿vºýv½wz  ā¿vºýv IĈîĊýwîù

 ¢Ą« ÿ ½wz Ĉîĉ¾¤îõv)¹½v¹ Ĉò¤Æz 


