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Numerical Study of the Effect of Materials’
Plastic Behavior on Equibiaxial Residual

Stress Measurement using Indentation
Indentation is a new method for estimating residual stress.
M.S - | The plastic behavior of the materials under study can
.Sanayei : : X
PhD student [l 2ffect indentation parameters and, thus, influences the
results of residual stress measurement. In this paper, the
effect of yield stress and work-hardening exponent on the
accuracy of residual stress measurements in steels and
aluminums was studied. Results showed that, for materials
with a low strain-hardening exponent and yield strain,
R.Moharami® @ Lee’s model is applicable,; for materials with relatively
Associate Professor ®high amounts of strain-hardening exponent and yield
strain, Wang’s model is more accurate; and for materials
with a medium range of strain-hardening exponent and
yield strain all three models can be applied. It was also
found that the stresses being tensile or compressive can
affect the accuracy of the calculated results for each
model. The applicable range of each model is represented
in the article.
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1 Introduction

Numerous engineering processes (such as shot peening, laser peening, rolling, and grinding)
can cause residual stress in components. It is obvious that residual stresses can affect the
mechanical behavior of materials, including fracture and fatigue. There are different methods
for residual stress measurement, some of which are destructive (e.g. layer removal) and some
are nondestructive (e.g. x-ray diffraction). Indentation is a nondestructive method which has
widely been used in recent years because of its simplicity of use and applicability on nano- to
macro-scales[1]. In (1996), Tsui et al.[2] and Bolshakov et al.[3] studied the relationship
between residual stress and material hardness in the indentation test. Affected by these
studies, Suresh and Giannakopoulos[4] proposed a model by considering equibiaxial stress
state and ignoring pile-up or sink-in effects to measure residual stress. For this purpose, they
derived a relationship between the contact areas of indentation with and without the existence
of residual stress.

After that, many researchers attempted to develop Suresh and Giannakopoulos’s model to
accommodate the general state of residual stress and different stress ratios.
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Carlsson and Larsson[5] introduced a new parameter which described the relationship
between contact areas and indentation while considering pile-up or sink-in effects. Lee and
Kwon[6] modified Suresh’s idea and defined residual stress or as the differences between the
indentation load with and without stresses on the contact area. Wang et al.[7] developed a
model for calculating the residual stress with regard to the indentation work during the
indentation process. Bocciarelli and Maier[8] used imprint mapping to identify the bi-
dimensional states of stresses. They claimed that the mapped imprint (which, generally, does
not exhibit axial-symmetry because of the presence of the residual stress state) directly
reflects all the features of bi-dimensional stresses. Then, by applying three-dimensional (3D)
simulations and reverse analysis, they proposed a model to measure bi-dimensional residual
stress fields. Huber and Heerens[9] and Heerens et al.[10] made a pervasive analysis of the
problem by examining how the mechanical properties of the surfaces of the material under
investigation are influenced by a residual stress field. It should be noted that Huber and
Heerens[9] and Heerens et al.[10] used spherical indentation rather than the sharp indenters
utilized by other methods. However, in most studies, sharp indenters are of interest because
the hardness and contact area measured by these indenters are independent from indentation
depth, which is a particular advantage while explaining the results[11], and also because of
the applicability of sharp indenters in non-equibiaxial residual stress fields.

Lee et al.[12] employed numerical approaches with experimental conical indentation. They
analyzed the characteristics of conical indentation and selected some normalized parameters
which were independent from the indenter’s geometry. Afterwards, using dimensional
analysis, they presented a model to evaluate general residual stress fields. Lee et al.[13] and
Kwon et al.[14] are still developing their model to obtain the general stress field and the ratio
of biaxial stresses. Many researchers have also conducted case studies in order to investigate
residual stress in particular materials, but their methods are not guaranteed for all materials
and occasions. For example, Yonezu et al.[15] proposed a numerical model for estimating the
residual stress and pre-strain of austenitic stainless steel by performing a large number of
finite-element simulations. Ding and Chromik[16] examined a polycrystalline sample of Fe
with nano-indentation and found that texture and strain-hardening can cause differences
between stresses on micro- and macro-scales.

Based on these results, they proposed an empirical relationship which demonstrates the
potential of predicting macro-scale residual stress levels from nano-indentation experiments.
Pham and Kim[17] performed an extensive FE analysis to explore the effects of residual
stress and plastic parameters on the indentation response in structural steel. They developed a
reverse algorithm to predict unknown parameters (including residual stress, yield stress, and
work-hardening exponent) from the indentation test. Their results were in agreement with
experiments on SS400 and SM490 steels.

All models represented above need to obtain certain parameters from the indentation test to
calculate residual stress fields. These parameters (the contact area between the indenter and
the base material, the real amount of indentation depth, pile-up or sink-in of the base material
under the indenter, etc.) are affected by the mechanical properties of materials and, if this
issue is not considered, it can cause errors in residual stress measurements through
indentation.

The purpose of this paper was to study the effect of the yield stress and work-hardening
exponent of two widely used material, i.e. steels and aluminums, on the accuracy of residual
stress measurement by three commonly used methods, i.e. Suresh’s, Lee’s, and Wang’s
models. To this end, numerous finite-element simulations were performed with different
values of yield stress, work-hardening exponent, and residual stress fields for both steel and
aluminum. For this purpose, a 2D FE model was developed that calculates residual stress
using all three models by obtaining P-h curve data.
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Then, by comparing the results of the three models with the real amount of applied stresses, it
is found which model is suitable for what kind of material; and the applicable range of the
three models for steels and aluminums is presented. Previously, a study with this wide range
of materials (considering both steels and aluminums) has not been done.

2 Theoretical Background

The schematic diagram of the load-displacement curve for an indenter is shown in Figure (1).
The most important data extracted from this chart are: dP/dh, the slope of the initial unloading
portion of the P-h curve for the base material; hc, contact depth (considering pile-up or sink-
in); hy, residual plastic displacement under the indenter after full unloading; and hmax and Pmax,
the maximum indentation depth and maximum indentation load, respectively.

Figure (2) depicts two kinds of material responses beneath the indenter: sinking-in which
usually occurs in hard metals, and piling-up which is observed in work-hardened (or soft)
metals. Of course, different parameters such as the sign of the residual stress field can affect
the sinking-in or piling-up of the material[18].

In the following section, a review of the noted models is presented.

2.1 Suresh’s Model

Based on Tsui and Bulshakov[2, 3], Suresh et al.[4] assumed that the average contact pressure
due to indentation, Pave (and, equivalently, the apparent hardness), is unaffected by any pre-
existing tensile or compressive elastic residual stress. Thus, they proposed a model to
calculate the residual stress based on the contact pressure and contact area between the
Vickers indenter and the base material. To determine the residual stress, they divided the
equibiaxial residual stress at the indented surface by a hydrostatic stress plus a uniaxial stress
component that causes a differential indentation force, as demonstrated in Figure (3).

Since the differential contact load affects the contact area, Suresh et al. developed the
following relation:
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Figure 1 The schematic P-h curve of indentation [19]
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Figure 2 Indentation contact geometry and plan view in the loading condition: (a)
Sinking-in, and (b) Piling-up [18]

Where Po and P are the maximum loads at the same indentation depth hmax with and without
residual stress; fq is a factor which is different in tensile and compressive residual stresses;
and Ac is the projected contact area in the stressed sample. By studying the effect of residual
stress on the contact area between the indenter and the base material in stress-free and pre-
stressed samples, Suresh et al. suggested that the residual stress can be calculated as:

Aw :1+]c TR

A H

C

(2)

Where Aco represents the projected contact area of the stress-free sample and H denotes the
hardness of the stress-free material. fy is a constant which equals 1 for the tensile residual

stress and for the compressive residual stress, fg=sinf, where o = %_a and o is the half angle

of the indenter tip.

2.2 Lee’s Model

Lee and Kwon[6] developed Suresh et al.’s idea and separated the equibiaxial surface residual
stress into mean stress om (hydrostatic stress) and plastic-deformation-sensitive shear deviator
stress op.
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equi-biaxial stress ~ mean stress deviator stress

They assumed that the stress component along the indentation axis in the deviator stress
part (—2o0,/3 ) is directly added to the surface-normal indentation pressure. Thus, the

difference in the indentation load between stressed and stress-free specimens indented to a
specified penetration depth is defined as a residual stress-induced normal load[6]:

3P,—P
RTTA

(4)
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Figure 3 Schematic representation of the role of
tensile residual stress on the indented surface [4]

2.3. Wang’s Model

Wang et al.[7] used a Berkovich indenter and developed a model to determine residual stress
which did not require calculating the contact area between the indenter and the sample’s
surface. They assumed that the indented surface is subjected to an equibiaxial in-plane
residual stress. Based on Suresh’s investigations, Wang et al. assumed that, during
indentation, elastic responses are completely independent of residual stresses on the indented
surface. Therefore, the elastic unloading part of load-depth curves is expected to be
unaffected by residual stresses, as shown in Figure (4).

The energy contribution of residual stress can be obtained from the difference between the
plastic indentation work Uoac (the plastic indentation work of the stressed sample) and Uosc
(the plastic indentation work of the stress-free sample) as:

P-P
Uoas =Uoac “Yorc = 3 ° hr' 5)
in which Uoac and Uogc are the plastic indentation work of stressed and stress-free samples,
respectively, and hy is the residual indentation depth. The energy contribution of residual
stresses in an equibiaxial residual stress state can be estimated from the residual indentation
impression, as depicted in Figure (4).

h, h
Uos = J.h tana ASo = Ih tanoc(htanocdh)dR =§7ztan2ahr36R (6)
0 0

Where o is the cone semi-angle of the residual indentation impression and can be
considered as a geometric correction factor for other sharp indenters. Substituting Equation 6
in Equation 5, the residual stress is calculated as:

P,—P 1 P,—P
OR = = . 7
" 2ztan’ah’ 2h? A, ()
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C

and h is the true indentation depth according to the pile-up or sink-in of the sample’s surface
under indentation.
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Figure 4 The energy contribution of the residual stress analysis, (a) indentation P—h curves with and
without residual stresses, and (b) residual indentation impression after unloading [1]

3 Numerical Analysis

Due to the large number of cases with various combinations of material properties and
residual stresses, it is more economical to use numerical analysis instead of empirical
experiments. A series of two-dimensional (2D) simulations were performed to explore the
effect of work-hardening exponent, yield strainc, / E, and different ratios of o, /Gy on the

accuracy of the residual stress calculated by the three reviewed models. Due to the symmetry
of geometry and loading conditions, eight-node axisymmetric elements (CAX8R) were used
in the indented body. An analytical rigid conical indenter with a 70.3 half-angle which gave
the same area-to-depth ratio as a triangular Berkovich indenter (Wang’s model) and a Vickers
four-sided pyramid indenter (Suresh’s and Lee’s models)[20] were utilized. Figure (5)
illustrates the schematic representation of the 3D symmetric situations where 2D analyses are
acceptable. A typical mesh for the present finite-element simulation is shown in Figure (6-a)
with 10000 axisymmetric elements in total which can accurately calculate the results. The
investigated body was modeled as a cylinder with 10 mm of height and 10 mm in radius.
Boundary conditions are depicted in Figure (6-a). The equibiaxial compressive or tensile
stress was applied to the model by applying pressure along the outer surface of the specimen
prior to the indentation. The Coulomb friction law was employed between contact surfaces
with the friction coefficient of 0.15 [1]. It should be noted that the effect of coulomb friction
coefficient on the results of the estimation of residual stresses, both in these simulations and
in the previous studies (such as [1,20]), has been carried out, and it has been shown that the
Coulomb friction coefficient does not have much effect on the results of residual stress
estimation. In all simulations, the penetration depth of the indenter equaled 10 um. Since a
large local deformation occurred directly beneath the indenter, finer meshes were used around
the contact region to obtain accurate results, as shown in Figure (6-b). In order to check the
independence of simulations from the number of elements, changes in the maximum force at a
constant depth of indentation were studied. Figure (7) presents the independence of
simulations from the number of elements after the considered 10000 elements.

The base material was modeled as an axisymmetric elastic—plastic von Mises material with
an isotropic hardening behavior. The stress—strain relationship of the material is defined as
[2121]:

E <
G:{ an e<o, [E @®)
Re" e>0, /E

in which R =g, (E/c, ).
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Figure 5 a) A schematic view of 3D symmetric samples with equibiaxial stresses,
and b) 2D alternative model
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Figure 6 The finite-element model: (a) complete mesh, and (b) denser mesh zones beneath the indenter
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Figure 7 The independence of simulations from the number of elements

A wide range of material property combinations were examined for aluminums and steels by
varying residual stress, or, yield strength, oy, and work-hardening coefficient, n. For
aluminums, Young’s modulus equaled 70 GPa for all simulations, yield stress changed from
150 MPa to 250 MPa, and the work-hardening exponent varied from 0.01 to 0.5.
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For steels, Young’s modulus was 200 GPa for all simulations, yield stress ranged from 250 to
350 MPa, and the work-hardening exponent varied from 0.01 to 0.5. A sample of stress-strain
curves of the materials under study is illustrated in Figure (8). The normalized residual stress

og /o, ranged from -0.8 to 0.8. To take into account all the possible cases, 192 simulations
were performed. All studied material properties are listed in Table (1). Figure (9) shows a

sample of P-h curves extracted from finite-element simulations for steel with n=0.5 and
oy/E=0.00125.
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Figure 8 Samples of true stress-true strain curves of materials under study:
a) Steel with 6y=250MPa, and
b) Aluminum with 6,=200MPa.
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Figure 9 A sample of P-h curves extracted from finite-element
simulations for steel with n=0.5 and 6,/E=0.00125
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Table 1 The studied material properties

Material ~ Young’s modulus, Yield strength, Work hardening exponent, n  Residual stress

E (GPa) oy (MPa) ratio, Gr/cy

steel 200 250, 300, 0.01, 0.05, 0.8, £0.6,
350 0.1,05 +0.4, £0.2

aluminum 70 150, 200, 0.01, 0.05, 0.8, £0.6,
250 0.1,05 +0.4, £0.2

4 Results

As mentioned before, the accuracy of the three representative models was obtained in this
study by comparing the calculated residual stresses with the applied residual stresses in the FE
simulation under four strain-hardening exponents and three yield strains for steels and
aluminums. The error of the residual stress calculated by each model in each case was
obtained by Equation (9):

error = ># %R 100 9)
Gapp
A sample of calculated result errors for steel with n=0.05, 6,=300 MPa, and for aluminum
with n=0.1, 6y,=200 MPa, and with different ratios of or/oy are represented in Tables (2) and

(3), respectively.

Table 2 Typical results of absolute values of error calculations in
steel with n=0.05 and ¢,=300 MPa.

OR/Oy Error of Error of Errors of Wang’s
Suresh’s Model, % Lee’s Model, % Model, %
-0.8 24.4 29.9 65.9
-0.6 2.9 41.9 71.7
-0.4 30.4 25.9 63.9
-0.2 42.7 64.3 82.6
+0.2 29.4 19.8 41.8
+0.4 39.6 14.5 44.4
+0.6 45.3 2.7 50.2
+0.8 41.1 11.7 459

Table 3 typical results of absolute values of error calculations in
aluminum with n=0.05 and 6y,=200 MPa.

ORr/0y Error of Error of Errors of
Suresh’s Model, % Lee’s Model, % Wang’s Model, %
-0.8 117.6 21.5 40.1
-0.6 102.9 16.4 42.7
-0.4 138.3 22.8 39.4
-0.2 163.0 43.4 29.5
+0.2 14.8 50.4 26.3
+0.4 18.4 52.4 25.5
+0.6 21.4 53.3 25.1

+0.8 25.8 56.4 23.7
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5 Discussions

Figure (10) shows some typical results for steel cases, and Figure (11) illustrates the cases of
aluminum. In these figures, both calculated residual stresses (or) and applied stresses (Gapp)
are normalized by yield stress (oy) and the dashed line is the ideal situation where the
calculated residual stress is equal to the applied stress.

Figures (10-a) to (10-d) demonstrates the results of steels with different strain-hardening
exponents at the same vyield strain oy/E = 0.0015. For steels with small strain-hardening
exponents (n=0.01 and n=0.05), Lee’s model had the best answers in tensile residual stresses
and Suresh’s model had more precise predictions for compressive residual stresses.

Figure (10-c) indicates the results of the three models for n=0.1. In both tensile and
compressive residual stresses, the results predicted by Lee’s model were the most accurate. In
this case, Wang’s model underestimated the amount of applied stress, while Suresh’s model
overestimated the results in compressive and underestimated them in tensile residual stresses.

In steels with relatively high strain-hardening exponents (n=0.5), such as the one illustrated
in Figure (10-d), Wang’s model had the most accurate predictions. Both Lee’s and Suresh’s
estimations seriously deviated from the applied residual stresses, especially in compressive
stresses.

Figures (10-c), (10-e), and (10-f) compare the results at different yield strains with the
same strain-hardening exponent n = 0.1. It seems that, in lower amounts of yield strain, the
predictions by Lee’s model predictions were more compatible with the applied stresses. In
higher amounts of yield strain, Lee’s model had good answers only in the compressive stress
state, but in tensile residual stresses, Wang’s and Suresh’s model were more precise. In
general, yield strain does not seem to be as effective as the strain-hardening exponent on the
accuracy of predicted residual stresses.

The same analysis procedure was applicable for aluminum. Figure (11-a) to (11-d) shows
the results of aluminums with different strain-hardening exponents at the same yield strain
oy/lE = 0.0029. In the case of aluminums with small or medium strain-hardening exponents
(n=0.01, 0.05, and 0.1), the predictions by Lee’s model were in good agreement with the
applied compressive stresses, while in the tensile residual stress state, Wang’s and Suresh’s
models were more accurate. For aluminums with relatively high strain-hardening exponents
(n=0.5), the answers of Wang model were very precise, while the other two models highly
overestimated the amount of applied stress, especially in the compressive state.

Figures (11-c), (11-e), and (11-f) compare the results at various yield strains with the same
strain-hardening exponent n = 0.1 for aluminum. At lower ranges of yield strain, Lee’s model
had the most accurate predictions of the amount of residual stress. As the yield strain
increased, Lee’s model was applicable only in compressive stresses. The answers of Wang’s
model seemed suitable for relatively high-strain-hardening materials. For aluminums with
medium yield strains, Wang’s and Suresh’s model were more precise in predicting the tensile
residual stress. However, for the compressive stress state, Lee’s model had the best answers.
Also, Suresh’s model made a good prediction of tensile stress amount in aluminums with high
strain-hardening exponents.

A summary of the results is presented in tables (4) and (5).
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Figure 10 A comparison of the calculated residual stresses with the applied stresses at different strain-
hardening exponents and different yield strains for steel: a) n=0.01, E/cy=0.0015; b) n=0.05, E/cy=0.0015; c)
n=0.1, E/6,=0.0015; d) n=0.5, E/6y=0.0015; €) n=0.1, E/5,=0.00125; f) n=0.1, E/cy=0.00175
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Figure 11 A comparison of the calculated residual stresses with the applied stresses at different strain
hardening exponents and different yield strains for aluminum: a) n=0.01, E/5y=0.0029; b) n=0.05,
E/6,=0.0029; c) n=0.1, E/cy=0.0029; d) n=0.5, E/5,=0.0029; e) n=0.1, E/cy=0.0021; f) n=0.1, E/c,=0.0036
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Table 4 Applicable range of each model in steel

The state of residual stress Lee’s Model Suresh’s Model ~ Wang’s Model

Tensile 0.01<n<0.1 n=0.01 n=05
Compressive n=0.1 0.01<n<0.05 n=05

Table 5 Applicable range of each model in aluminum

The state of residual stress Lee’s Model Suresh’s Model ~ Wang’s Model

Tensile n=0.01 0.01<n<0.1 0.01<n<05
Compressive 0.01<n<0.1 n=0.01 n=05

6 Conclusion

In this paper, three models, i.e. Suresh’s model, Lee’s model, and Wang’s model, were
reviewed for residual stress calculation through indentation. Afterwards, using finite-element
simulations, the effect of materials’ yield strength, oy, and strain-hardening exponent, n, on
the accuracy of each model’s predictions were studied. It was found that, in steels, for
materials with low strain-hardening exponents, Lee’s model is suitable for tensile stresses and
Suresh’s model is good for the compressive stress state. Lee’s model is also applicable for
materials with medium hardening exponents. Nevertheless, for materials with high strain-
hardening exponents, Wang’s model has the most accurate answers.

In aluminums, it was found that, in materials with small or medium strain-hardening
exponents, the predictions by Lee’s model are in good agreement with the applied
compressive stresses. However, in the tensile residual stress state, Wang’s and Suresh’s
models are more accurate. For aluminums with relatively high strain-hardening exponents, the
answers of Wang model are very precise.

Examining the effects of yield strain on the three models showed that Lee’s model is more
accurate in small yield strains and Wang’s model has the best answers for materials with high
yield strains. For materials with medium yield strains, Lee’s model is applicable for
compressive residual stresses and Wang’s and Suresh’s models are good for the tensile stress
state.
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Nomenclature

This list is located before the list of references and should include English symbols followed
by Greek symbols in alphabetical order as the following examples:

Ac Real projected contact area between the indenter and the specimen, m?
A Projected contact area between the indenter and the specimen, m?

E Modulus of elasticity, N/m?

P Force, N

h Displacement of the indenter during indentation, m

dp/dh The slope of the initial unloading portion of the P-h curve, N/m

he The real contact depth, m

hr Residual plastic displacement under the indenter after full unloading, m
OR Residual stress, N/m?

oy Yield stress, N/m?

n Work hardening exponent

Greek symbols

£ Strain
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