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1 Introduction 

 

Numerous engineering processes (such as shot peening, laser peening, rolling, and grinding) 

can cause residual stress in components. It is obvious that residual stresses can affect the 

mechanical behavior of materials, including fracture and fatigue. There are different methods 

for residual stress measurement, some of which are destructive (e.g. layer removal) and some 

are nondestructive (e.g. x-ray diffraction). Indentation is a nondestructive method which has 

widely been used in recent years because of its simplicity of use and applicability on nano- to 

macro-scales[1]. In (1996), Tsui et al.[2] and Bolshakov et al.[3] studied the relationship 

between residual stress and material hardness in the indentation test. Affected by these 

studies, Suresh and Giannakopoulos[4] proposed a model by considering equibiaxial stress 

state and ignoring pile-up or sink-in effects to measure residual stress. For this purpose, they 

derived a relationship between the contact areas of indentation with and without the existence 

of residual stress.  

After that, many researchers attempted to develop Suresh and Giannakopoulos’s model to 

accommodate the general state of residual stress and different stress ratios.  
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Numerical Study of the Effect of Materials’ 

Plastic Behavior on Equibiaxial Residual 

Stress Measurement using Indentation 
Indentation is a new method for estimating residual stress. 

The plastic behavior of the materials under study can 

affect indentation parameters and, thus, influences the 

results of residual stress measurement. In this paper, the 

effect of yield stress and work-hardening exponent on the 

accuracy of residual stress measurements in steels and 

aluminums was studied. Results showed that, for materials 

with a low strain-hardening exponent and yield strain, 

Lee’s model is applicable; for materials with relatively 

high amounts of strain-hardening exponent and yield 

strain, Wang’s model is more accurate; and for materials 

with a medium range of strain-hardening exponent and 

yield strain all three models can be applied. It was also 

found that the stresses being tensile or compressive can 

affect the accuracy of the calculated results for each 

model. The applicable range of each model is represented 

in the article. 
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Carlsson and Larsson[5] introduced a new parameter which described the relationship 

between contact areas and indentation while considering pile-up or sink-in effects. Lee and 

Kwon[6] modified Suresh’s idea and defined residual stress σR as the differences between the 

indentation load with and without stresses on the contact area. Wang et al.[7] developed a 

model for calculating the residual stress with regard to the indentation work during the 

indentation process. Bocciarelli and Maier[8] used imprint mapping to identify the bi-

dimensional states of stresses. They claimed that the mapped imprint (which, generally, does 

not exhibit axial-symmetry because of the presence of the residual stress state) directly 

reflects all the features of bi-dimensional stresses. Then, by applying three-dimensional (3D) 

simulations and reverse analysis, they proposed a model to measure bi-dimensional residual 

stress fields. Huber and Heerens[9] and Heerens et al.[10] made a pervasive analysis of the 

problem by examining how the mechanical properties of the surfaces of the material under 

investigation are influenced by a residual stress field. It should be noted that Huber and 

Heerens[9] and Heerens et al.[10] used spherical indentation rather than the sharp indenters 

utilized by other methods. However, in most studies, sharp indenters are of interest because 

the hardness and contact area measured by these indenters are independent from indentation 

depth, which is a particular advantage while explaining the results[11], and also because of 

the applicability of sharp indenters in non-equibiaxial residual stress fields.  

Lee et al.[12] employed numerical approaches with experimental conical indentation. They 

analyzed the characteristics of conical indentation and selected some normalized parameters 

which were independent from the indenter’s geometry. Afterwards, using dimensional 

analysis, they presented a model to evaluate general residual stress fields. Lee et al.[13] and 

Kwon et al.[14] are still developing their model to obtain the general stress field and the ratio 

of biaxial stresses. Many researchers have also conducted case studies in order to investigate 

residual stress in particular materials, but their methods are not guaranteed for all materials 

and occasions. For example, Yonezu et al.[15] proposed a numerical model for estimating the 

residual stress and pre-strain of austenitic stainless steel by performing a large number of 

finite-element simulations. Ding and Chromik[16] examined a polycrystalline sample of Fe 

with nano-indentation and found that texture and strain-hardening can cause differences 

between stresses on micro- and macro-scales.  

Based on these results, they proposed an empirical relationship which demonstrates the 

potential of predicting macro-scale residual stress levels from nano-indentation experiments. 

Pham and Kim[17] performed an extensive FE analysis to explore the effects of residual 

stress and plastic parameters on the indentation response in structural steel. They developed a 

reverse algorithm to predict unknown parameters (including residual stress, yield stress, and 

work-hardening exponent) from the indentation test. Their results were in agreement with 

experiments on SS400 and SM490 steels. 

All models represented above need to obtain certain parameters from the indentation test to 

calculate residual stress fields. These parameters (the contact area between the indenter and 

the base material, the real amount of indentation depth, pile-up or sink-in of the base material 

under the indenter, etc.) are affected by the mechanical properties of materials and, if this 

issue is not considered, it can cause errors in residual stress measurements through 

indentation. 

The purpose of this paper was to study the effect of the yield stress and work-hardening 

exponent of two widely used material, i.e. steels and aluminums, on the accuracy of residual 

stress measurement by three commonly used methods, i.e. Suresh’s, Lee’s, and Wang’s 

models. To this end, numerous finite-element simulations were performed with different 

values of yield stress, work-hardening exponent, and residual stress fields for both steel and 

aluminum. For this purpose, a 2D FE model was developed that calculates residual stress 

using all three models by obtaining P-h curve data.  
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Then, by comparing the results of the three models with the real amount of applied stresses, it 

is found which model is suitable for what kind of material; and the applicable range of the 

three models for steels and aluminums is presented. Previously, a study with this wide range 

of materials (considering both steels and aluminums) has not been done. 

 

2 Theoretical Background 

 

The schematic diagram of the load-displacement curve for an indenter is shown in Figure (1). 

The most important data extracted from this chart are: dP/dh, the slope of the initial unloading 

portion of the P-h curve for the base material; hc, contact depth (considering pile-up or sink-

in); hr, residual plastic displacement under the indenter after full unloading; and hmax and Pmax, 

the maximum indentation depth and maximum indentation load, respectively. 

Figure (2) depicts two kinds of material responses beneath the indenter: sinking-in which 

usually occurs in hard metals, and piling-up which is observed in work-hardened (or soft) 

metals. Of course, different parameters such as the sign of the residual stress field can affect 

the sinking-in or piling-up of the material[18]. 

In the following section, a review of the noted models is presented. 

 
2.1 Suresh’s Model 

 

Based on Tsui and Bulshakov[2, 3], Suresh et al.[4] assumed that the average contact pressure 

due to indentation, Pave (and, equivalently, the apparent hardness), is unaffected by any pre-

existing tensile or compressive elastic residual stress. Thus, they proposed a model to 

calculate the residual stress based on the contact pressure and contact area between the 

Vickers indenter and the base material. To determine the residual stress, they divided the 

equibiaxial residual stress at the indented surface by a hydrostatic stress plus a uniaxial stress 

component that causes a differential indentation force, as demonstrated in Figure (3).  

Since the differential contact load affects the contact area, Suresh et al. developed the 

following relation: 

0 .  g R cP P f A                                                             (1) 

 

 

Figure 1 The schematic P-h curve of indentation [19] 
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Figure 2 Indentation contact geometry and plan view in the loading condition: (a) 

Sinking-in, and (b) Piling-up [18] 

 

Where  P0 and P are the maximum loads at the same indentation depth hmax with and without 

residual stress; fg is a factor which is different in tensile and compressive residual stresses; 

and Ac is the projected contact area in the stressed sample. By studying the effect of residual 

stress on the contact area between the indenter and the base material in stress-free and pre-

stressed samples, Suresh et al. suggested that the residual stress can be calculated as: 

0 1c R

c

A f

A H


                                                                (2) 

Where  Ac0 represents the projected contact area of the stress-free sample and H denotes the 

hardness of the stress-free material. fg is a constant which equals 1 for the tensile residual 

stress and for the compressive residual stress, fg=sinθ, where 
2


    and α is the half angle 

of the indenter tip. 

 

2.2 Lee’s Model 

Lee and Kwon[6] developed Suresh et al.’s idea and separated the equibiaxial surface residual 

stress into mean stress σm (hydrostatic stress) and plastic-deformation-sensitive shear deviator 

stress σD: 
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                       (3) 

They assumed that the stress component along the indentation axis in the deviator stress 

part ( R2 3   ) is directly added to the surface-normal indentation pressure. Thus, the 

difference in the indentation load between stressed and stress-free specimens indented to a 

specified penetration depth is defined as a residual stress-induced normal load[6]: 

03

2
R

c

P P

A



                                                             (4) 
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Figure 3 Schematic representation of the role of  

tensile residual stress on the indented surface [4] 

 

2.3. Wang’s Model 

 

Wang et al.[7] used a Berkovich indenter and developed a model to determine residual stress 

which did not require calculating the contact area between the indenter and the sample’s 

surface. They assumed that the indented surface is subjected to an equibiaxial in-plane 

residual stress. Based on Suresh’s investigations, Wang et al. assumed that, during 

indentation, elastic responses are completely independent of residual stresses on the indented 

surface. Therefore, the elastic unloading part of load–depth curves is expected to be 

unaffected by residual stresses, as shown in Figure (4). 

The energy contribution of residual stress can be obtained from the difference between the 

plastic indentation work UOAC (the plastic indentation work of the stressed sample) and UOBC 

(the plastic indentation work of the stress-free sample) as: 

0 .
3


  OAB OAC OBC r

P P
U U U h                                        (5) 

in which UOAC and UOBC are the plastic indentation work of stressed and stress-free samples, 

respectively, and hr is the residual indentation depth. The energy contribution of residual 

stresses in an equibiaxial residual stress state can be estimated from the residual indentation 

impression, as depicted in Figure (4). 

  2 3

0 0

2
tan  tan tan tan

3

r rh h

OAB R R r RU h S h h dh h                     (6) 

Where α is the cone semi-angle of the residual indentation impression and can be 

considered as a geometric correction factor for other sharp indenters. Substituting Equation 6 

in Equation 5, the residual stress is calculated as: 

0 0

22 2

2

1

22 tan
R

rr c

c

P P P P

hh A

h


 

 
                                               (7) 

and hc is the true indentation depth according to the pile-up or sink-in of the sample’s surface 

under indentation. 
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Figure 4 The energy contribution of the residual stress analysis, (a) indentation P–h curves with and 

without residual stresses, and (b) residual indentation impression after unloading [1] 

 

3 Numerical Analysis 

 

Due to the large number of cases with various combinations of material properties and 

residual stresses, it is more economical to use numerical analysis instead of empirical 

experiments. A series of two-dimensional (2D) simulations were performed to explore the 

effect of work-hardening exponent, yield strain y E , and different ratios of res y   on the 

accuracy of the residual stress calculated by the three reviewed models. Due to the symmetry 

of geometry and loading conditions, eight-node axisymmetric elements (CAX8R) were used 

in the indented body. An analytical rigid conical indenter with a 70.3̊ half-angle which gave 

the same area-to-depth ratio as a triangular Berkovich indenter (Wang’s model) and a Vickers 

four-sided pyramid indenter (Suresh’s and Lee’s models)[20] were utilized. Figure (5) 

illustrates the schematic representation of the 3D symmetric situations where 2D analyses are 

acceptable. A typical mesh for the present finite-element simulation is shown in Figure (6-a) 

with 10000 axisymmetric elements in total which can accurately calculate the results. The 

investigated body was modeled as a cylinder with 10 mm of height and 10 mm in radius. 

Boundary conditions are depicted in Figure (6-a). The equibiaxial compressive or tensile 

stress was applied to the model by applying pressure along the outer surface of the specimen 

prior to the indentation. The Coulomb friction law was employed between contact surfaces 

with the friction coefficient of 0.15 [1]. It should be noted that the effect of coulomb friction 

coefficient on the results of the estimation of residual stresses, both in these simulations and 

in the previous studies (such as [1,20]), has been carried out, and it has been shown that the 

Coulomb friction coefficient does not have much effect on the results of residual stress 

estimation. In all simulations, the penetration depth of the indenter equaled 10 μm. Since a 

large local deformation occurred directly beneath the indenter, finer meshes were used around 

the contact region to obtain accurate results, as shown in Figure (6-b). In order to check the 

independence of simulations from the number of elements, changes in the maximum force at a 

constant depth of indentation were studied. Figure (7) presents the independence of 

simulations from the number of elements after the considered 10000 elements.  

The base material was modeled as an axisymmetric elastic–plastic von Mises material with 

an isotropic hardening behavior. The stress–strain relationship of the material is defined as 

[2121]: 

      

    

   
  
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n
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R E
                                                    (8) 

in which  
n

y yR E   .  
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Figure 5 a) A schematic view of 3D symmetric samples with equibiaxial stresses, 

and b) 2D alternative model 

 

Figure 6 The finite-element model: (a) complete mesh, and (b) denser mesh zones beneath the indenter 

 

Figure 7 The independence of simulations from the number of elements 

 

A wide range of material property combinations were examined for aluminums and steels by 

varying residual stress, σR, yield strength, σy, and work-hardening coefficient, n. For 

aluminums, Young’s modulus equaled 70 GPa for all simulations, yield stress changed from 

150 MPa to 250 MPa, and the work-hardening exponent varied from 0.01 to 0.5.  
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For steels, Young’s modulus was 200 GPa for all simulations, yield stress ranged from 250 to 

350 MPa, and the work-hardening exponent varied from 0.01 to 0.5. A sample of stress-strain 

curves of the materials under study is illustrated in Figure (8). The normalized residual stress 

R y   ranged from -0.8 to 0.8. To take into account all the possible cases, 192 simulations 

were performed. All studied material properties are listed in Table (1). Figure (9) shows a 

sample of P-h curves extracted from finite-element simulations for steel with n=0.5 and 

σy/E=0.00125. 

 

 

Figure 8 Samples of true stress-true strain curves of materials under study: 

a) Steel with σy=250MPa, and 

b) Aluminum with σy=200MPa. 

 

Figure 9 A sample of P-h curves extracted from finite-element 

simulations for steel with n=0.5 and σy/E=0.00125 
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Table 1 The studied material properties 

Material Young’s modulus, 

 E (GPa) 

Yield strength,  

σy (MPa) 
Work hardening exponent, n Residual stress  

ratio, σR/σy 

steel 200 250, 300,  

350 

0.01, 0.05,  

0.1, 0.5 

±0.8, ±0.6,  

±0.4, ±0.2 

aluminum 70 150, 200,  

250 

0.01, 0.05,  

0.1, 0.5 

±0.8, ±0.6,  

±0.4, ±0.2 

 

4 Results  

 

As mentioned before, the accuracy of the three representative models was obtained in this 

study by comparing the calculated residual stresses with the applied residual stresses in the FE 

simulation under four strain-hardening exponents and three yield strains for steels and 

aluminums. The error of the residual stress calculated by each model in each case was 

obtained by Equation (9): 

100
 

 


app R

app

error                                               (9) 

A sample of calculated result errors for steel with n=0.05, σy=300 MPa, and for aluminum 

with n=0.1, σy=200 MPa, and with different ratios of σR/σy are represented in Tables (2) and 

(3), respectively. 

 

 
Table 2 Typical results of absolute values of error calculations in 

steel with n=0.05 and σy=300 MPa. 

σR/σy Error of  

Suresh’s Model, % 

Error of  

Lee’s Model, % 

Errors of Wang’s  

Model, % 

-0.8 24.4 29.9 65.9 

-0.6 2.9 41.9 71.7 

-0.4 30.4 25.9 63.9 

-0.2 42.7 64.3 82.6 

+0.2 29.4 19.8 41.8 

+0.4 39.6 14.5 44.4 

+0.6 45.3 2.7 50.2 

+0.8 41.1 11.7 45.9 
 

 

Table 3 typical results of absolute values of error calculations in 

aluminum with n=0.05 and σy=200 MPa. 

σR/σy Error of  

Suresh’s Model, % 

Error of  

Lee’s Model, % 

Errors of  

Wang’s Model, % 

-0.8 117.6 21.5 40.1 

-0.6 102.9 16.4 42.7 

-0.4 138.3 22.8 39.4 

-0.2 163.0 43.4 29.5 

+0.2 14.8 50.4 26.3 

+0.4 18.4 52.4 25.5 

+0.6 21.4 53.3 25.1 

+0.8 25.8 56.4 23.7 
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5 Discussions 

 
Figure (10) shows some typical results for steel cases, and Figure (11) illustrates the cases of 

aluminum. In these figures, both calculated residual stresses (σR) and applied stresses (σapp) 

are normalized by yield stress (σy) and the dashed line is the ideal situation where the 

calculated residual stress is equal to the applied stress.  

Figures (10-a) to (10-d) demonstrates the results of steels with different strain-hardening 

exponents at the same yield strain σy/E = 0.0015. For steels with small strain-hardening 

exponents (n=0.01 and n=0.05), Lee’s model had the best answers in tensile residual stresses 

and Suresh’s model had more precise predictions for compressive residual stresses.  

Figure (10-c) indicates the results of the three models for n=0.1. In both tensile and 

compressive residual stresses, the results predicted by Lee’s model were the most accurate. In 

this case, Wang’s model underestimated the amount of applied stress, while Suresh’s model 

overestimated the results in compressive and underestimated them in tensile residual stresses. 

In steels with relatively high strain-hardening exponents (n=0.5), such as the one illustrated 

in Figure (10-d), Wang’s model had the most accurate predictions. Both Lee’s and Suresh’s 

estimations seriously deviated from the applied residual stresses, especially in compressive 

stresses. 

Figures (10-c), (10-e), and (10-f) compare the results at different yield strains with the 

same strain-hardening exponent n = 0.1. It seems that, in lower amounts of yield strain, the 

predictions by Lee’s model predictions were more compatible with the applied stresses. In 

higher amounts of yield strain, Lee’s model had good answers only in the compressive stress 

state, but in tensile residual stresses, Wang’s and Suresh’s model were more precise. In 

general, yield strain does not seem to be as effective as the strain-hardening exponent on the 

accuracy of predicted residual stresses. 

The same analysis procedure was applicable for aluminum. Figure (11-a) to (11-d) shows 

the results of aluminums with different strain-hardening exponents at the same yield strain 

σy/E = 0.0029. In the case of aluminums with small or medium strain-hardening exponents 

(n=0.01, 0.05, and 0.1), the predictions by Lee’s model were in good agreement with the 

applied compressive stresses, while in the tensile residual stress state, Wang’s and Suresh’s 

models were more accurate. For aluminums with relatively high strain-hardening exponents 

(n=0.5), the answers of Wang model were very precise, while the other two models highly 

overestimated the amount of applied stress, especially in the compressive state. 

Figures (11-c), (11-e), and (11-f) compare the results at various yield strains with the same 

strain-hardening exponent n = 0.1 for aluminum. At lower ranges of yield strain, Lee’s model 

had the most accurate predictions of the amount of residual stress. As the yield strain 

increased, Lee’s model was applicable only in compressive stresses. The answers of Wang’s 

model seemed suitable for relatively high-strain-hardening materials. For aluminums with 

medium yield strains, Wang’s and Suresh’s model were more precise in predicting the tensile 

residual stress. However, for the compressive stress state, Lee’s model had the best answers. 

Also, Suresh’s model made a good prediction of tensile stress amount in aluminums with high 

strain-hardening exponents. 

 

A summary of the results is presented in tables (4) and (5). 
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Figure 10 A comparison of the calculated residual stresses with the applied stresses at different strain-

hardening exponents and different yield strains for steel: a) n=0.01, E/σy=0.0015; b) n=0.05, E/σy=0.0015; c) 

n=0.1, E/σy=0.0015; d) n=0.5, E/σy=0.0015; e) n=0.1, E/σy=0.00125; f) n=0.1, E/σy=0.00175 
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Figure 11 A comparison of the calculated residual stresses with the applied stresses at different strain 

hardening exponents and different yield strains for aluminum: a) n=0.01, E/σy=0.0029; b) n=0.05, 

E/σy=0.0029; c) n=0.1, E/σy=0.0029; d) n=0.5, E/σy=0.0029; e) n=0.1, E/σy=0.0021; f) n=0.1, E/σy=0.0036 
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Table 4 Applicable range of each model in steel  

The state of residual stress Lee’s Model Suresh’s Model Wang’s Model 

Tensile 0.01 0.1n    0.01n   0.5n   

Compressive 0.1n   0.01 0.05n   0.5n    

 
Table 5 Applicable range of each model in aluminum 

The state of residual stress Lee’s Model Suresh’s Model Wang’s Model 

Tensile 0.01n   0.01 0.1n   0.01 0.5n   

Compressive 0.01 0.1n   0.01n   0.5n    

 

 

6 Conclusion 

In this paper, three models, i.e. Suresh’s model, Lee’s model, and Wang’s model, were 

reviewed for residual stress calculation through indentation. Afterwards, using finite-element 

simulations, the effect of materials’ yield strength, σy, and strain-hardening exponent, n, on 

the accuracy of each model’s predictions were studied. It was found that, in steels, for 

materials with low strain-hardening exponents, Lee’s model is suitable for tensile stresses and 

Suresh’s model is good for the compressive stress state. Lee’s model is also applicable for 

materials with medium hardening exponents. Nevertheless, for materials with high strain-

hardening exponents, Wang’s model has the most accurate answers.  

In aluminums, it was found that, in materials with small or medium strain-hardening 

exponents, the predictions by Lee’s model are in good agreement with the applied 

compressive stresses. However, in the tensile residual stress state, Wang’s and Suresh’s 

models are more accurate. For aluminums with relatively high strain-hardening exponents, the 

answers of Wang model are very precise. 

Examining the effects of yield strain on the three models showed that Lee’s model is more 

accurate in small yield strains and Wang’s model has the best answers for materials with high 

yield strains. For materials with medium yield strains, Lee’s model is applicable for 

compressive residual stresses and Wang’s and Suresh’s models are good for the tensile stress 

state. 
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Nomenclature 

This list is located before the list of references and should include English symbols followed 

by Greek symbols in alphabetical order as the following examples: 

Ac Real projected contact area between the indenter and the specimen, m2 

A Projected contact area between the indenter and the specimen, m2 

E Modulus of elasticity, N/m2 

P Force, N 

h Displacement of the indenter during indentation, m 

dp/dh The slope of the initial unloading portion of the P-h curve, N/m 

hc The real contact depth, m 

hr Residual plastic displacement under the indenter after full unloading, m 

σR Residual stress, N/m2 

σy Yield stress, N/m2 

n Work hardening exponent 

Greek symbols 

ε Strain  
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 چکیده
 

ی تحت گیری تنش پسماند است. رفتار پلاستیک مادهاستفاده از آزمون فرورونده، روشی نوین برای اندازه

تاثیر قرار دهد. در گیری تنش پسماند را تحت تواند پارامترهای آزمون، و در نتیجه، نتایج اندازهبررسی می

گیری تنش پشماند در فولادها و سختی بر روی دقت اندازهاین مقاله، اثر تنش تسلیم و توان کرنش

 مورد مطالعه قرار گرفته است. با استفاده از سه مدل رایج لی، سورش و وانگ، ها آلومینیوم

برای کم، مدل لی قابل اعمال است؛  سختی و کرنش تسلیمدهند که برای مواد با توان کرنشنتایج نشان می

تری دارد؛ و برای های دقیقسختی و کرنش تسلیم، مدل وانگ جوابمواد با مقادیر نسبتاً زیاد توان کرنش

ها مقدار متوسطی دارد، از هر سه مدل بررسی شده در این سختی آنموادی که کرنش تسلیم و توان کرنش

تواند بر های پسماند، میمشخص شد که کششی یا فشاری بودن تنشتوان استفاده کرد. همچنین مقاله می

ها قابل استفاده است در ای که در آن هر یک از مدلدقت نتایج محاسبه شده در هر مدل تاثیر بگذارد. بازه

 مقاله ارائه شده است.

 


